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Abstract

Background: Neurofibromatosis 1 (NF1; OMIM# 162200) is a common autosomal
dominant genetic disease [incidence: ~1:3500]. In 95% of cases, clinical diagnosis of
the disease is based on the presence of at least two of the seven National Institute of
Health diagnostic criteria. The molecular pathology underlying this disorder entails
mutation in the NF/ gene. The aim of this study was to investigate clinical and mo-
lecular characteristics of a cohort of Egyptian NF1 patients.

Method: This study included 35 clinically diagnosed NF1 patients descending from
25 unrelated families. Patients had >2 NIH diagnostic criteria. Examination of NF
gene was done through direct cDNA sequencing of multiple overlapping fragments.
This was supplemented by NFI multiple ligation dependent probe amplification
(MLPA) analysis of leucocytic DNA.

Results: The clinical presentations encompassed, café-au-lait spots in 100% of
probands, freckling (52%), neurofibromas (20%), Lisch nodules of the iris (12%),
optic pathway glioma (8%), typical skeletal disorders (20%), and positive family his-
tory (32%).

Mutations could be detected in 24 families (96%). Eight mutations (33%) were novel.
Conclusion: This study illustrates the underlying molecular pathology among
Egyptian NF1 patients for the first time. It also reports on 8 novel mutation expanding

pathogenic mutational spectra in the NFI gene.
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1 | INTRODUCTION

Neurofibromatosis (NF) is a progressive genetic disease
characterized by a neuroectodermal abnormality, mainly
affecting the skin, nervous system, bones, eyes, and possi-
bly other organs. This disorder has been divided into three

forms: Neurofibromatosis type 1, Neurofibromatosis type 2,
and Shwannomatosis (Jett & Friedman, 2010).
Neurofibromatosis 1 (NF1; OMIM# 162200) is one of
the most common autosomal dominant genetic diseases with
a worldwide incidence of about 1:3500 (Jett & Friedman,
2010; Mao et al., 2018). In 95% of cases, clinical diagnosis
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of the disease is based on the presence of at least two of the
seven National Institute of Health (NIH) diagnostic crite-
ria ("Neurofibromatosis. Conference statement. National
Institutes of Health Consensus Development Conference",
1988) including six or more cafe’-au-lait macules (CALs),
two or more neurofibromas of any type or one plexiform neu-
rofibroma, inguinal or axillary freckling, optic glioma, two or
more Lisch nodules (iris hamartomas), a distinctive osseous
lesion such as sphenoid dysplasia or tibial pseudarthrosis and
a first-degree relative with NF1 as defined by the above cri-
teria (Jett & Friedman, 2010). In some cases, the disease has
also been manifested with learning disabilities, vascular dis-
ease, skeletal abnormalities, central nervous system (CNS)
neoplasms, or malignant peripheral nerve sheath tumors
(MPNSTs; Jett & Friedman, 2010). Before the age of 8 years,
many cases do not meet a sufficient number of classical di-
agnostic criteria and cannot be diagnosed clinically (Sabatini
et al., 2015). Although NF1 is a classical monogenic disorder
with complete penetrance by adulthood, clinical symptoms
can vary within a family, or even at different life stages of the
same patient (Mao et al., 2018). The reasons for phenotypic
variability are poorly understood, but it could be due to mod-
ifier genes, epigenetic alterations, or other environmental fac-
tors (Sabatini et al., 2015).

The NF1 disease is caused by heterozygous mutations in
the neurofibromin gene (17q11.2; NM_001042492.2; Barker
et al., 1987). It is a tumor suppressor gene whose protein,
neurofibromin down regulates Ras-GTP levels in the Ras/
MAPK/AP-1 pathway (Brundage et al., 2014). The NFI
protein contains six main domains. The Ras-GAP activity
of NF1 protein is mediated by the GTPase activating protein
Related Domain (GRD), which corresponds to exons 27-34
(Abramowicz & Gos, 2014). The NFI (OMIM# 613113)
gene is expressed in many human tissues, such as brain,
white blood cells, skin fibroblast, spleen, muscle, and lung.
Expression of NF1 was also reported in tumor tissues, such as
neuroblastoma, neurofibroma, thymoma, and breast cancer.
Suzuki et al. reported the expression of NF1 in NF1 neurofi-
brosarcoma cell line, and a colon carcinoma cell line (Suzuki
et al., 1991). The alternatively spliced isoforms of the NF1
transcript have been investigated to determine their expres-
sion pattern in various tissues (Shen et al., 1996).

The NF1I is one of the longest protein coding genes in
the human genome and contains 61 exons distributed over
350 Kb (Trovo-Marqui & Tajara, 2006). The gene codes for at
least four alternatively spliced transcripts (Shilyansky et al.,
2010). The two major protein isoforms are type I (GRD I) and
type I (GRD II; 2818 and 2839 amino acids, respectively;
Trovo-Marqui & Tajara, 2006). They are tissue specific
where neurofibromin type I predominates in neurons of CNS
and dorsal root ganglia, while type II predominates in most
other tissues and in Schwann cells, and is essential for learn-
ing and memory in mouse models (Barron & Lou, 2012). It

was shown that GRD I and GRD II are equally represented
in Epstein—Barr virus transformed lymphocytes either from
NF1 patients or from normal controls and also, in human pla-
centa, kidney, and lung (Suzuki et al., 1991; Viskochil et al.,
1993). Andersen et al showed that GRD I and GRD II tran-
scripts were expressed in various tissues but with a variation
in their relative amounts (Andersen et al., 1993). It was found
also that the expression of the two isoforms was associated
with the differentiation status of a particular tissue. GRD I
predominated in the fetal brain and undifferentiated primi-
tive neuroectodermal tumors, whereas GRD II was predomi-
nantly expressed in differentiated cell lines.

The molecular study of NFI genes is a challenging pro-
cess because of the NFI gene size and its several alterna-
tively spliced transcripts. The gene has the highest mutation
rate seen in humans (estimated at 1 in about 10,000 alleles
per generation); approximately 100-folds higher than those
seen for other loci (Shen et al., 1996), and about 50% of
the cases are caused by sporadic mutations (Valero et al.,
2011; Peltonen & Poyhonen, 2012). Mutations are dispersed
throughout the NF1 gene with no identified hot-spot muta-
tion and there is a wide spectrum of the different types of
mutations (Peltonen & Poyhonen, 2012). Moreover, multiple
NFI pseudogenes are found in the human genome and some
of these pseudogenes are expressed, thus additionally com-
plicating specific primer design.

More than 2,500 different NFI mutations have been re-
ported and listed in the Human Gene Mutation Database
Professional (Stenso et al., 2003). Most of the mutations (93%)
are small mutations (including nonsense, missense, insertion,
deletion or splicing mutations). The remaining ones consist
of intragenic deletions/duplications (2%) and microdeletions
that span NF1 and neighboring genes (5%). These mutations
could be identified mainly by multiplex ligation-dependent
probe amplification (MLPA) analysis (Terribas et al., 2013).
Therefore, it might be more efficient and economical to pri-
marily use cDNA sequencing rather than DNA sequencing
for NFI sequence analysis.

Although genotype—phenotype correlations have been
proposed, further investigations are required to con-
firm their validity. There are several reported genotype—
phenotype correlations. First, individuals with large
(~1.4 Mb) genomic microdeletions, spanning the entire
NF1 gene locus and neighboring genes, have more severe
clinical phenotype, including increased number of neuro-
fibromas, elevated risk for cardiac malfunction, skeletal
anomalies, facial dysmorphism, malignant tumor develop-
ment, and a higher prevalence of learning disabilities com-
pared to patients with an intragenic NF'/ mutation (Pasmant
et al., 2010). Second, a specific germline NF'/ gene muta-
tion (¢.2970_2972delAAT) do not cause the development
of cutaneous neurofibromas in NF1 patients (Upadhyaya
et al., 2007). The third genotype-phenotype correlation was
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the association between the different changes of the amino
acid located at p. Arg1809 and a milder form of the disease.
This form is characterized by the presence of CALs and
freckles only (Pinna et al., 2015; Rojnueangnit et al., 2015;
Santoro et al., 2015). Recently a new genotype-phenotype
correlation was reported by Koczkowska et al. in which the
pathogenic NFI p. Met1149, p. Argl276, or p. Lys1423
missense variants had an association with a Noonan-like
phenotype (Koczkowska et al., 2020). In this correlation,
p. Argl276 and p. Lys1423 pathogenic missense variants
were associated with a high prevalence of cardiovascular
abnormalities, while p. Arg1276 variants had a high preva-
lence of symptomatic spinal neurofibromas compared with
“classic” NF1-affected cohorts. However, p. Metl149-
positive individuals had a milder phenotype, characterized
mainly by pigmentary manifestations without presence of
neurofibromas.

To the best of our knowledge, this is the first report in-
vestigating the molecular pathology of NF1 among Egyptian
cases. Here, we report on 35 Egyptian patients to elucidate
the mutational spectrum among them and investigate possi-
bilities of genotype-phenotype correlation.

2 | SUBJECTS AND METHODS

2.1 | Subjects

The present study included 35 patients ascertained from
25 unrelated families that were originated from differ-
ent Egyptian governorates. Patients were referred to the
Genodermatoses Clinic, National Research Centre (NRC)
Cairo, Egypt. Diagnosis of NF1 disease was based on the
presence of two or more features of the NIH diagnostic cri-
teria ("Neurofibromatosis. Conference statement. National
Institutes of Health Consensus Development Conference",
1988).

All patients and sibs were subjected to complete clin-
ical examination and full medical history including three
generation-pedigree construction. Clinical evaluation also
comprised brain neuroimaging (CT and/or MRI), electroen-
cephalogram (EEG), karyotyping, fundus examination, and
echocardiography.

2.2 | Methods

A written consent was obtained from all participants in ac-
cordance with the ethical standards of the institutional and/or
national researchethical committee (Medical Research Ethics
Committee at the National Research Center; Reference
Number: 15-221) and with the 1964 Helsinki declaration and
its later amendments or comparable ethical standards.

Molecul . ic Medici
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2.3 | DNA and RNA isolation

Peripheral blood samples of all patients and their parents
were obtained.

Total RNA extraction from peripheral blood leucocytes
was done using QIAamp RNA Blood Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer's protocol.
To prevent illegitimate splicing, blood samples were pro-
cessed within 4 hours from venipuncture. Genomic DNA
was extracted from peripheral blood using a standard method
(Miller et al., 1988) for performing MLPA analysis and ver-
ification of the novel mutations detected in cDNA samples.

2.4 | NF1 mutation analysis by cDNA
sequencing approach

Reverse transcription was performed using 500 ng of total
RNA and random hexamers according to the manufacturer's
instructions of High-Capacity cDNA Reverse Transcription
Kit (Thermo Fisher Scientific Inc.). The entire coding re-
gion of the NFI gene (GenBank Ref Seq no. NG_009018.1)
was amplified in 16 overlapping fragments. 25-uL final
reaction mix containing 2.0 uL of cDNA, 10 pmol each
primer, 200 mmol/LL dNTPs, and 1X reaction buffer with
1.5 mmol/L MgCl, and 1.5 U GoTag® G2 Flexi DNA
Polymerase (Promega). Amplification conditions were as
follows: 95°C for 5 min, followed by 35 cycles of 95°C
for 1 min, annealing temperature (range: 57°C-66°C) for
1 min, and 72°C for 1 min for 35 cycles. The final exten-
sion was 72°C for 10 min. Primer pairs were designed from
the reference sequence of the NF/ gene (GenBank Ref Seq
no. NG_009018.1, NM_001042492.2; Ensembl transcript
ID ENST00000358273.8) [Designed primer sequences are
available on request]. Quality of primers was examined
using NetPrimer software and the product was blasted by
NCBI nucleotide blast software. Subsequently, The PCR
products were purified using Exo-SAP PCR Clean-up kit
(Fermentas) and sequenced in both directions using the
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems). Furthermore, verification of the mutations de-
tected by cDNA analysis was carried out by sequencing of
the genomic DNA regions encompassing them using BigDye
Sequencing Kit. Detected mutations were described accord-
ing to isoform type II (NCBI accession no. NM_000267.3;
Ensembl transcript ID ENST00000356175.7). Variants were
annotated in accordance to HGVS nomenclature.

2.5 | MLPA analysis

For patients with no detected pathogenic mutations by se-
quencing, their samples were further analyzed using SALSA
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MLPA P081/P082 NF1 Kit for single and multiple exon de-
letions/duplications, according to the manufacturer's instruc-
tions (MRC Holland). Peak areas for each separated fragment
were measured using the Coffalyser.NET software (Version
v. 140721.1958, MRC Holland).

2.6 | Database search and
bioinformatics analyses

All the genetic variants identified were queried by browsing
through different databases including the LOVD (Leiden Open
Variation Database [Fokkema et al., 2011]), Human Gene
Mutation Database (HGMD; “HGMD® home page”, 2003) and
NCBI dbSNP (database of Single Nucleotide Polymorphisms,
ClinVar). Reported frequencies of identified variants were veri-
fied on 1000 genomes (“IGSR | samples”, Clarke 2017) and the
gnomAD (“NF1 | gnomAD”, 2019) databases.

For novel missense mutations, the putative effects on
the NF1 protein were investigated using several prediction
algorithms and scoring tools, including SIFT (Sim et al.,
2012), Polyphen2 (Adzhubei et al., 2010), MutPred (Xie
et al., 2013), Mutation Assessor (Reva et al., 2007), REVEL
(Ioannidis et al., 2016) SNP&GO (Calabrese et al., 2009),
PhD-SNP (Capriotti et al., 2006), PROVEAN (Choi et al.,
2012), and Mutation Taster (Schwarz et al., 2014).

3 | RESULTS

3.1 | Clinical findings

This study included 35 clinically diagnosed NF1 patients
who were ascertained from 25 families, probands’ clinical
features are listed in Tablel. Positive family history was
noted in 32% of patients (8/25) and the rest were sporadic.
For familial cases, four was paternally inherited and four was
maternally inherited. Parental consanguinity was reported in
36% of families (9/25). The six NIH diagnostic criteria were
present in probands with different percentages: 1—CALs
(>6 Patches), 100% (25/25); 2—Freckling, 60% (15/25);
3—neurofibromas, 20% (5/25); 4—Lisch nodules of the iris,
12% (3/25); 5—Magnetic Resonance Image (MRI) evidence
of optic nerve glioma, 8% (2/25); and 6—distinctive osse-
ous lesions, 20% (5/25). Minor features were present in 80%
(20/25) of probands (Table 1). Karyotyping was normal for
all Probands.

3.2 | Molecular findings

Mutational analysis of the entire coding region of the NFI
gene identified pathogenic mutations in 24/25 families (96%;

Table 2). The majority of detected mutations (22/24, 92%)
consisted of point mutations and small indels (<4 bp). They
comprised nonsense mutations (6/22; 27%), single nucleo-
tide duplications (3/22; 14%), small deletions (3/22; 14%),
missense mutations (7/22; 32%), splice site mutations (2/22;
9%), and inframe deletions (1/22; 4%).

In addition, MLPA analysis revealed the presence of gross
deletions in 2 patients (8%). Whole NFI gene deletion in one
patient (F22/V-7) and one exon deletion in another (F16/111-1;
Figure 1).

A total of eight identified mutations (33%) were novel; 3
of them were frameshift mutations, 1 inframe deletion, 3 mis-
sense mutations, and 1 splice mutation, (Figure 2). Only one
of these novel mutations was detected in a proband familial
case (F13/IV-3) but the other seven were de novo. Novel mu-
tations have been identified and already submitted to ClinVar
database.

3.3 | Insilico analysis

Four out of the eight novel mutations were variants caus-
ing an unambiguous pathogenic effect on the NF1 protein
(frameshifting, nonsense, and nucleotide changes at the ca-
nonical +1 or 2 splice site; Richards et al., 2015).

The inframe mutation ¢.2086_2088delTGG (p.
Trp696del) was predicted by PROVEAN to have a deleteri-
ous effect (score: 16.512).

The effect of the 3 missense variants were predicted with
9 algorithms and scoring tools including: SIFT, Polyphen2,
Mutation Assessor, REVEL, Mutation Taster, MutPred,
PROVEAN, PhD-SNP, and SNPs&GO (Table 3). Mutation
c.lA>C (p. MetlLeu) was predicted to have a patho-
genic effect in 4 algorithms Whilemutation ¢.2521A>C
(p. Thr841Pro) was predicted to be deleterious or has a
pathogenic effect in 7 algorithms. The pathogenicity of the
third missense mutation ¢.3579T>G (p. Phel193Leu) was
confirmed in all the nine algorithms. These missense vari-
ants were classified either likely pathogenic variants (class 4)
or pathogenic variants (class 5) according to ACMG recom-
mendations (Richards et al., 2015).

4 | DISCUSSION

Neurofibromatosis type I is one of the most common au-
tosomal dominant diseases. Despite its monogenic nature,
it is characterized by an extremely variable clinical pres-
entation even within the same family. Identification of the
genetic causes of the NF1 disease has greater diagnostic
utility because mutation detection can confirm the etiol-
ogy of the disease in individuals in whom the clinical phe-
notype does not fulfill the NIH diagnostic criteria. A firm
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FIGURE 1

MLPA ratio charts of patients with detected variation. (a) Patient (F18/I1I-1), deletion of exon 38 indicated; (b) patient (F24/V-7),

deletion of the whole gene indicated gene accession number: (GenBank Ref Seq no. NG_009018.1; NM_000267.3; Ensembl transcript ID

ENST00000356175.7)

diagnosis of NF1 directs the patient toward a multidisci-
plinary management with specific monitoring. It allows
counseling regarding mode of inheritance, recurrence risk,
and potentially prenatal diagnosis too. However, detection
of the pathogenic variations in NFI gene is a challenging
process due to the large size of the gene, lack of hot spot
mutations and presence of several transcripts and pseu-
dogenes. In this study, we integrated MLPA and cDNA
analyses to detect the underlying mutations in NF/ gene in
an Egyptian patient cohort. We successfully identified the
causative mutation in 24 out of 25 NF1 patients (detection
rate: 96%). Up to our knowledge, this is the first molecular
report on Egyptian NF1 patients. Generally, there are only
few studies about NF1 in the Middle East including two
large cohort studies in Tunisia (Azaiz et al., 1994; Gouider
et al., 1994), and another one in United Arab Emirates
(Ben-Salem et al., 2014).

The detected mutations in the current study included 7
missense, 6 nonsense, 2 splice site, 6 frameshift, and 1 in-
frame mutation, in addition to 2 gene and exon deletions.
The rate of de novo mutations was 68%, higher than previous
reports (~50%; Valero et al., 2011; Peltonen & Poyhonen,
2012).

The detected mutations were scattered along the whole
gene starting from the start codon in which there was a novel
mutation (c.1A>C, p. MetlLeu) in patient F1/III-1. This
mutation was predicted to be likely pathogenic according
to ACMG recommendations. Other mutations in the start
codon were reported before, and postulated that one of the
downstream inframe methionine (M68, M102 and M108)
might act as an alternative start codon (Fahsold et al., 2000).
Another hypothesis postulated that Leu might act as non-
AUG start codon where it could replace AUG for transla-
tion initiation (Lind & Aqvist, 2016). However, experimental
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functional studies are required to reveal the consequences of
such mutations.

Two other mutations reside in the non-characterized re-
gion located before the first domain, Cystein/Serine Rich
Domain (CSRD). One mutation is a previously reported
splice site mutation (c.480-2A>G) detected in a 9 month old
infant (F2/VI-1) who manifested with CALs, Freckling, and
scoliosis (Upadhyaya et al., 2008). The second (c.1278G>A,
p. Trp426%*), a previously reported nonsense mutation, was
detected in the patient F3/III-2 presenting with CALs, freck-
ling, and deformed back/neck (lateral deviation; Sabbagh
et al., 2013). So it might be suggested that a correlation be-
tween molecular pathology of this non-characterized region
and skeletal anomalies is possible.

Six mutations were identified (6/24, 25%) in the CSRD
(residues 543-909). Clustering of mutations in this domain
had previously been observed (Fahsold et al., 2000; Mattocks
et al., 2004). It is hypothesized that CSRD domain binds to
ATP and has three cAMP-dependent protein kinase (PKA)
recognition sites that are phosphorylated by PKA (Izawa
et al., 1996). Mangoura et al. (2006), showed that neurofi-
bromin Ras-GAP activity is regulated by PKC-dependent
phosphorylation of CSRD and proposed that CSRD phos-
phorylation may increase Ras-GAP function and promote
the arrest of cell growth instead of cell proliferation. Xu
et al. (2018), proposed a positive association between optic
nerve glioma (OPG) and NF1 mutation clustering in CSRD.
The OPG was not evidenced, so far, in any of our six pa-
tients (F4/V-2, F5/111-3, Fo/111-2, F7/111-1, F8/VI-1, and F9/
III-1) with CSRD mutations. Three of these mutations were
novel, including 1 inframe mutation ¢.2086_2088delTGG
(p. Trp696del) detected in patient F6/III-2. This mutation
was predicted by PROVEAN to have a deleterious effect.
The second mutation c. 2325+1G>T was a splice site de-
tected in patient F7/III-1 and predicted to be disease caus-
ing by mutation taster prediction software. Importantly, this
mutation causes skipping of exon 19 on the mRNA level,
which confirms splice site change and its pathogenicity.
The third novel mutation in patient F9/III-1 was a missense
mutation (c.2521A>C, p. Thr841Pro) and predicted to be
a likely pathogenic variant (class 4) according to ACMG
recommendations. Additionally, three previously reported
CSRD mutations were identified, one frameshift mutation
c.1756_1759delACTA in patient F4/V2 and two nonsense
mutations (c.2041C>T; p. Arg681* in patient F5/III-3 and
¢.2446C>T; p. Arg816* in F8/VI-1). This later mutation was
reported by several research groups to correlate with differ-
ent types of neurofibromas and severe clinical manifestations
(Fahsold et al., 2000; Upadhyaya et al., 2008).

In between the first domain (CSRD) and the second
domain, tubulin binding domain (TBD), there is an un-
identified region consisting of 2 exons (23 and 24). In this
region, we detected two missense mutations. Both mutations

were previously reported, the first one was (c.2998C>T; p.
Argl000Cys in F10/V-2; Pasmant et al., 2015). Although
the mutation was reported in ClinVar with uncertain signif-
icance, insilico analysis supported its pathogenicity (Table
3). The second mutation (c.3104T>A; P. Met1035Lys) was
recently reported (Giugliano et al., 2019). Our patient F11/
IV-3 shared the NIH criteria with the patient reported by
Giugliano et al. (i.e. CALMs and Freckles only). However
they were different in the minor features as the patient in the
current study presented only dysmorphic features while the
previously reported patient presented dystrophic scoliosis,
and behavioral problems (Giugliano et al., 2019).

The TBD interacts with the dynein heavy chain and kine-
sin-1 - motor proteins responsible for transporting organelles
or large complexes along the cytoskeleton fibers (Arun et al.,
2013). Interaction of NF1 with motor proteins will therefore
be particularly important for the proper functioning of cells
having long cytoplasmic protrusions, such as melanocytes or
Schwann cells (Abramowicz & Gos, 2014). Two novel mu-
tations were detected in this domain; a frameshift mutation
(c.3452dupA, p. Asnl151Lysfs*44 in F12/1II-1) and a mis-
sense mutation (¢.3579T>G, p. Phel193Leu) in family 13
that encompassed 4 affected cases.

The activation of Ras catalyzed GTP hydrolysis by
Neurofibromin is well investigated in biochemical and struc-
tural detail. The importance of Argl1276 for the physiological
functionality of Neurofibromin was underlined by demon-
stration that the missense mutation Argl276pro led to a
8000-fold reduction of Neurofibromin GAP activity in vitro,
without changing the binding affinity towards Ras (Klose
et al., 1998). This provided direct evidence that neurofibro-
min GAP function failure was the critical element in NF1
pathogenesis. In our cohort, only two NF1 mutations affected
GRD-GTPase domain. Both mutations were previously re-
ported, the first one was a nonsense mutation (c.3721>C>T;
p- Argl241%) in patient F14/VI-11 with a relatively severe
phenotype (Table 1). Due to its occurrence in a hypermu-
table CpG dinucleotide, this mutation was a recurrent one
and might be mediated by 5-methylcytosine deamination
(Krawczak, 1994). The second one was a missense mutation
in exon 31(c. 4267A>C; p. Lys1423Gln). It was identified
in a 31 year old patient (F15/11I-1), who presented only with
CALs and Freckles. His clinical presentation was milder than
those of the 2 previously reported patients with the same
mutation. The first patient presented with CALSs, macroceph-
aly, hypertelorism and cardiac abnormalities in the form of
pulmonary valve stenosis while the second presented with
CALs, hypertelorism, Lisch nodules, malar hypoplasia and
pectus/thoracic abnormalities in addition to minor features
(De Luca et al., 2005).

Two frameshift mutations in exon 36 (c.4911delT; p.
Leul638Serfs*39 in F16/I1I-2 and c.4918_4921delAAGT,
p- Lys1640Glyfs*36 in F17/V-6) were detected in the fourth
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domain of NF1 protein, SEC14p Homology Domain (SEC
14).. The first case was a 13 year teenage girl who developed
CALs at age of one year but increased in number and size
with age and also had 3 truncal fibromas. The first mutation
was previously reported in two NF1 patients from different
populations, one of them had malignant myeloid disorder
(van Minkelen et al., 2014; Side et al., 1997). The second
mutation was novel and the patient presented only with CALs
and freckles.

—WILEY——

[Open Access]

In the third unidentified region between the Pleckstrin
Homology (PH), and the C-terminal Domains (CTD), one
repeatedly reported mutation (¢.5839C>T; p. Argl947* in
F19/11I-1) in exon 40 was detected (Fahsold et al., 2000;
Park et al., 2000). It was suggested that the Arg1947 codon
is a mutation hot spot and that this cytosine is particularly
prone to mutation (Park et al., 2000). This mutation was re-
ported previously in different patients with different clinical
presentations.

FIGURE 3 Proportion of each
mutation type in this study in relation to
HGMD database
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FIGURE 4 Distribution of 20 small NF1 mutations and one genomic deletion on several NFI exons identified in Egyptian patients. The

type of mutation is indicated using different ball color. Exon numbering is according to the new consensus system. CSRD, Cysteine Serine

Rich Domain; CTD, C-Terminal Domain; GRD, GTPase Activating Protein Related Domain; NLS, Nuclear Localization Site; PH, - Pleckstrin
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Four mutations were detected in the last NF1 do-
main, CTD. One of them was a novel frameshift mutation
(c.6784dupG, p. Asp2262Glyfs*24) in a 5 year old girl
(F20/III-2) with severe phenotype. The other three mu-
tations were previously reported, two of them were two
different nonsense mutations in exon 45 (p. Tyr2264%).
The first nonsense mutation (c.6791C>A; p. Tyr2264%)
was identified in a 3 year child (F21/III-1) presented with
CALs and delayed speech with difficulty in attiring spe-
cial sounds. It is worth mentioning that Messiaen et al, re-
ported two different patients with the same mutation who
had learning disability (Messiaen et al., 1997) which could
be a possible genotype phenotype correlation among our
patients and previously reported ones. This mutation was
also among few mutations detected in several NF1 reports
(Ars et al., 2000). Interestingly this mutation led to exon
skipping rather than protein truncation as in the most cases
of nonsense mutations (Upadhyaya et al., 1996). The sec-
ond nonsense mutation (c.6791dupA; p. Tyr2264*) which
caused protein truncation was detected in family 22 as well
as previously reported in patients presenting with CALs,
neurofibroma, and/or Scoliosis (Maruoka et al., 2014;
Upadhyaya et al., 1996). The third previously reported mu-
tation in this domain was missense mutation (c.7118T>G;
p- Leu2373Arg) in patient F23/III-3. Although the muta-
tion was reported in ClinVar with uncertain significance,
according to ACMG guidelines this mutation had two
strong evidences, so it is recommended to be pathogenic.

In our cohort, two different large mutations were detected
by MLPA analysis. One exon deletion (c.5484-7_5686+7del)
was detected in a sporadic case (F18/III-1) who presented
with CALs and Freckles. The second one was a whole gene
deletion in case F24/V-7 who developed neither learning dis-
abilities nor facial dysmorphism like the previously reported
one, (Pasmant et al., 2010).

The frequency of each NF1 mutation type was variable
among different study cohorts (Nemethova et al., 2013). In
comparison to HGMD database (Human Gene Mutation
Database Professional, 2019), the Egyptian studied cohort
showed a significantly higher frequency of missense/non-
sense mutations (54% versus 28.1%), and a lower one for
small deletions (16.7% versus 27.5; Figures 3 and 4).

Finally, the causative mutation could not be detected in
only one patient (4%). This might be due to the inability to
detect genetic variants residing in the regulatory, the flank-
ing intronic, or the deep intronic non-coding regions, large
genomic rearrangements or epigenetic alterations. It is fore-
seeable that the combination of genomic DNA and cDNA
(mRNA) analyses together with testing for copy number
variations could increase the detection rate of NF1 mutation
detection (Evans et al., 2016).

In conclusion, the current study has presented a useful di-
agnostic approach for molecular analysis of NFI gene leading

to a relatively high mutation detection rate that might help
in prenatal diagnosis and control of the disease. The study
has also evidenced the disease clinical variability and pos-
sible genotype-phenotype correlations in some studied NF1
patients.
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