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SUMMARY

Preterm birth, the leading cause of perinatal morbidity and mortality worldwide, frequently 

results from the syndrome of preterm labor. The best-established causal link to preterm labor 

is intra-amniotic infection, which involves premature activation of the parturition cascade in the 

reproductive tissues. Herein, we utilize single-cell RNA sequencing (scRNA-seq) to generate a 

single-cell atlas of the murine uterus, decidua, and cervix in a model of infection-induced preterm 

labor. We show that preterm labor affects the transcriptomic profiles of specific immune and 

non-immune cell subsets. Shared and tissue-specific gene expression signatures are identified 

among affected cells. Determination of intercellular communications implicates specific cell types 

in preterm labor-associated signaling pathways across tissues. In silico comparison of murine 

and human uterine cell-cell interactions reveals conserved signaling pathways implicated in labor. 

Thus, our scRNA-seq data provide insights into the preterm labor-driven cellular landscape and 

communications in reproductive tissues.

In brief

Garcia-Flores et al. generate a single-cell atlas of the murine uterus, decidua, and cervix using a 

model of intra-amniotic infection-induced preterm labor and demonstrate alterations in cell type 

composition, transcriptional profiles, and cell-cell signaling. This scRNA-seq dataset can serve as 

a valuable resource to be leveraged by future investigations.

Graphical Abstract
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INTRODUCTION

Preterm birth, a devastating clinical condition that affects 15 million infants each year, is 

the leading cause of neonatal morbidity and mortality worldwide.1,2 Spontaneous preterm 

birth often results from preterm labor, a syndrome for which multiple etiologies have 

been proposed.3,4 Among them, the best-established causal link to preterm birth is intra-

amniotic infection, a clinical condition resulting from invasion of microbes into the amniotic 

cavity.5–13 The most frequently detected bacteria in amniotic fluid of women diagnosed with 

intra-amniotic infection include genital mycoplasmas, Streptococcus agalactiae, Gardnerella 
vaginalis, and Escherichia coli, among others.14–25 Human descriptive studies have 

consistently shown that such microbial invasion of the amniotic cavity is accompanied by a 

local acute inflammatory response that includes infiltration of leukocytes into the amniotic 

cavity (including amniotic fluid26–39 and placental tissues40–57) as well as the reproductive 

tissues.58 More recently, animal models coupled with omics technologies have been utilized 

to strengthen this concept and establish causality between intra-amniotic infection and 

the inflammatory milieu observed in the reproductive tissues (e.g., uterus, decidua, and 

cervix) that serve to orchestrate premature activation of the common pathway of labor.59–62 

However, a simultaneous investigation of the cellular landscape and interaction networks at 

single-cell resolution in the reproductive tissues implicated in preterm parturition has not 

been undertaken.

Single-cell technology has emerged as a useful tool for evaluating cellular composition, 

transcriptomic activity, and communication networks in gestational and reproductive 

tissues.63–70 We have applied single-cell RNA sequencing (scRNA-seq) to investigate 

the physiological and pathological processes of labor in the placenta and extraplacental 

membranes.68 More recently, we utilized scRNA-seq to unravel the myometrial cell types 

that participate in the normal process of term parturition as well as key cell-cell interactions 

taking place in this compartment.70 The discovery of single-cell signatures derived from the 

placental tissues and myometrium has translational value, as these can serve as potential 

non-invasive biomarkers of labor progression and/or obstetric disease.65,68,70–73

In the current study, we utilized scRNA-seq coupled with an allogeneic murine model of 

intra-amniotic infection to investigate the cellular landscape and cell-cell communications 

in the reproductive tissues (uterus, decidua, and cervix) during the process of preterm 

labor. We utilized a murine model of preterm labor and birth induced by the intra-amniotic 

inoculation of E. coli and assessed cervical shortening to establish the timing of active 

preterm labor. Next, using scRNA-seq and computational approaches, we generated a 

single-cell atlas of the uterus, decidua, and cervix during preterm labor as well as their 

cell type-specific transcriptomic activity. We also established the cell-cell communication 

networks between cell types in each tissue during preterm labor and identified key signaling 

pathways implicated in this process. Last, we integrated cell-cell signaling pathways derived 

from the murine uterus with those from the human myometrium during the processes of 

preterm and term labor, respectively, to demonstrate conserved labor-associated signaling.
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RESULTS

A single-cell atlas of murine reproductive tissues during preterm labor induced by E. coli

Intra-amniotic infection has been documented as inducing inflammatory changes in the 

tissues surrounding the amniotic cavity.74–77 To investigate such changes at single-cell 

resolution, we established a murine model of preterm labor and birth induced by intra-

amniotic inoculation with E. coli, one of the microorganisms commonly identified in the 

amniotic fluid of women with intra-amniotic infection.14,16,20,78 Mice with an allogeneic 

pregnancy underwent ultrasound-guided intra-amniotic injection of E. coli or vehicle control 

on 16.5 days post coitum (dpc) (Figure 1A). Intra-amniotic inoculation with E. coli reduced 

the gestational length in a majority of dams (Figure 1B), resulting in an 83.3% (5 of 6) 

rate of preterm birth (Figure 1C). We then intra-amniotically injected a second cohort of 

mice with E. coli or PBS to perform tissue collection for single-cell analyses. To ensure 

that the E. coli-injected mice were undergoing preterm labor at the time of tissue collection, 

we utilized ultrasound to evaluate cervical length just prior to intra-amniotic injection and 

again 24 h later as a readout of cervical effacement (Figure 1D). Cervical shortening was 

observed in all dams that received intra-amniotic E. coli 24 h after injection, indicating that 

these dams were in active preterm labor at the time of tissue collection, whereas no cervical 

shortening was observed in controls (Figure 1E). Therefore, intra-amniotic inoculation with 

E. coli represents a translational model that resembles the clinical scenario of intra-amniotic 

infection leading to preterm labor and birth.

Preterm parturition includes activation of the common pathway of labor that comprises 

increased uterine contractility, triggering of the local immune response in the decidual 

tissues, and cervical dilatation.4,79–83 Therefore, to establish a single-cell atlas of murine 

reproductive tissues in preterm labor, we utilized the uterus, decidua, and cervix of dams 

that received intra-amniotic inoculation with E. coli in the active phase of parturition 

(17.5 dpc) for scRNA-seq (Figure 1F). We identified 31 cell clusters across the uterus, 

decidua, and cervix that corresponded to multiple cell types: smooth muscle cells (SMC) 

(2 clusters), epithelial cells (10 clusters), fibroblasts (3 clusters), stromal cells (3 clusters), 

endothelial, neutrophil, monocyte, macrophages (2 clusters), dendritic cell, T cell, B cell, 

natural killer (NK) cells (2 clusters), erythroid, plasmocyte, and trophoblast (Figure 1G). 

The heterogeneous and distinct cellular composition of the uterus, decidua, and cervix was 

highlighted by assigning a tissue identity to each cell cluster (Figure 1H). In control dams, 

the uterus, decidua, and cervix each displayed a distinct basal cellular repertoire. The uterus 

showed a predominance of fibroblasts (clusters 0 and 1) and non-decidual stromal (clusters 2 

and 12) cell types, and the decidua also included an exclusive subset of stromal cells (cluster 

4) (likely corresponding to conventional decidual stromal cells) (Figure S1A). The uterus 

and decidua of control mice also included modest populations of innate immune cells, such 

as monocyte and macrophage subsets, as well as lymphocytes such as T cell, NK cell-1, 

NK cell-2, and B cell (Figure S1A), likely representing the resident immune populations 

that have been characterized in human and murine tissues.66,68,70,84–86 By contrast with 

the uterus and decidua, the cervix of control mice comprised a diverse compartment of 

epithelial subsets (clusters 5, 7, 8, 10, 11, and 14) and other major cell types (Figure 

S1A), as shown previously.87–89 Immune cells were scarce in the cervix although a modest 
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macrophage-1 population was observed (Figure S1A), which is consistent with prior reports 

of cervical cell composition in late gestation.90–93 These data provide an overview of the 

single-cell composition and diversity in the murine uterus, decidua, and cervix in late 

murine pregnancy. By dissecting the cellular repertoire of the cervix, we demonstrated the 

underappreciated heterogeneity of this compartment.

Preterm labor induced by E. coli dysregulates the repertoire of immune and non-immune 
cell types in reproductive tissues

We then examined the effects of preterm labor on the abundance of each cell type identified 

across all tissues (Figure 2A) as well as in the uterus, decidua, and cervix (Figures 2B–

2D and S1B; Table S1). During preterm labor, a relative increase in innate immune cell 

clusters, such as monocyte, macrophages, dendritic cell, and neutrophil (clusters 3, 6, 9, 

and 18), was observed in the uterus, decidua, and, to a lesser extent, the cervix (Figures 

2B–2D and S1B). The NK cell-2 and plasmocyte subsets in the uterus and decidua also 

showed changes with preterm labor (Figures 2B, 2C, and S1B). Dendritic cell type was 

increased in the decidua (Figures 2C and S1B), with a similar tendency observed in the 

uterus (Figures 2B and S1B). The macrophage-1 cell type was decreased in the uterus with 

preterm labor (Figures 2B and S1B). The T cell population (cluster 16) also appeared to 

increase in the uterus and decidua with preterm labor (Figures 2B, 2C, and S1B), which is 

consistent with prior studies implicating T-cell infiltration and activation as a component of 

parturition.94–101 Although not visually apparent from the uniform manifold approximation 

and projection (UMAP) plots (Figure S1B), the uterus and decidua showed a substantial 

decrease in non-immune subsets, such as fibroblast-1, fibroblast-2, and stromal-3, with 

preterm labor (Figures 2B and 2C), with stromal-2 also showing modest changes in the 

uterus (Figure 2B). A subset of epithelial cells (cluster 11, epithelial-10) that was largely 

absent in the uterus and decidua of controls became apparent in preterm labor (Figure 

S1B), suggesting labor-induced differentiation or activation of these cells. By contrast with 

the uterus and decidua, the cervix only showed changes in two cell types: neutrophil and 

epithelial-8 were increased with preterm labor (Figure 2D), indicating that a modest cellular 

response to intra-amniotic infection occurs in this tissue. We also evaluated whether cells 

of fetal origin were represented among the populations of the uterus, decidua, and cervix 

during preterm labor (Figures S1C–S1E). A small population of fetal cells (Trophoblast) was 

detected in the uterus and decidua, which is consistent with prior single-cell studies of the 

human myometrium70 and may represent residual placental cells attached to the uterus and 

decidua.

To validate the leukocyte infiltration of the uterus, decidua, and cervix indicated by our 

single-cell data, we undertook a series of histological and immunohistochemical analyses 

(Figure S2). We observed collagen degradation in the uterine and cervical tissues with 

preterm labor, and mucin production by cervical cells appeared to increase compared to 

control tissues (Figures S2A–S2C). Histological changes in preterm labor were accompanied 

by increased CD45+ leukocyte infiltration in the uterus and decidua (Figures S2D–S2F). 

Uterine leukocytes were more evenly distributed among neutrophils, monocytes, and 

macrophages, whereas decidual leukocytes were predominantly neutrophils and, to a lesser 

extent, monocytes (Figures S2G–S2I). Similar to our scRNA-seq results, the leukocyte 
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abundance in the cervical tissues was largely comparable between the control and preterm 

labor groups (Figure S2I).

Thus, our scRNA-seq data indicate a shift in the cellular composition of the murine uterus, 

decidua, and cervix that accompanies preterm labor.

Preterm labor induced by E. coli dysregulates gene expression of immune and non-
immune cell types in reproductive tissues

Given that preterm labor altered the cellular composition of the uterus, decidua, and cervix, 

we next explored whether this inflammatory process would also result in transcriptomic 

changes to the identified cell types. Consistent with their altered abundance, multiple 

fibroblast, stromal, and epithelial cell types in the uterus and decidua displayed upregulated 

gene expression with preterm labor (Figures 2E and 2F; Table S2), whereas cervical 

non-immune cells with upregulated gene expression were exclusively epithelial (Figure 

2G; Table S2). Innate immune cell types showed strong dysregulation of gene expression 

in both directions that was inconsistent among tissues; although monocyte showed more 

downregulated differentially expressed genes (DEGs) in the uterus (Figure 2E) and cervix 

(Figure 2G), this cell type showed more upregulated DEGs in the decidua (Figure 2F). 

Neutrophil showed stronger downregulation of DEGs in the uterus and decidua (Figures 2E 

and 2F), whereas DEGs were primarily upregulated in this cell type in the cervix (Figure 

2G). Macrophage-1, dendritic cell, and NK cell-1 consistently displayed predominantly 

upregulated DEGs in the uterus and decidua (Figures 2E and 2F) and were not represented 

in the cervix, as noted previously. The uterine macrophage-2 and NK cell-2 populations 

displayed upregulated DEGs (Figure 2E), which was not observed in other tissues (Figures 

2F and 2G). Although not as abundant as innate immune cells, the T cell population also 

displayed upregulated DEGs with preterm labor in the uterus and decidua (Figures 2E and 

2F). Quantile-quantile plots of DEGs from enriched cell types indicated that the uterus 

is the tissue most affected by the process of labor (Figures 2H–2J). Thus, preterm labor 

primarily induced gene expression in the dominant cell types from each tissue; however, the 

substantial amount of downregulated gene expression in innate immune cells may indicate 

an immunological switch from one transcriptomic program to another to combat infection.

Preterm labor induced by E. coli involves conserved cell types that display distinct 
processes in reproductive tissues

Transcriptomic profiling of cell types suggested that specific subsets show conserved 

responses with preterm labor across the reproductive tissues. Therefore, we next focused 

on shared preterm labor-specific gene expression among the uterus, decidua, and cervix. 

The Venn diagram displayed in Figure 3A highlights the overlap in DEGs across tissues, 

particularly the uterus and decidua. Correlation analyses indicated stronger relationships 

between preterm labor and gene expression changes in the uterus and decidua than in the 

cervix (Figure S3A), which was reflective of the total preterm labor-associated DEGs in 

each tissue. This observation was confirmed by the correlation between the gene expression 

profiles of the uterus and decidua, which was stronger than the correlations between 

the decidua and cervix or the uterus and cervix (Figure S3B). Given that the uterus, 

decidua, and cervix displayed some degree of correlation for preterm labor-associated 
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gene expression, we evaluated the cell type-specific transcriptomic changes that were 

conserved across all three tissues. We found that innate immune cell types (monocyte 

and neutrophil) as well as non-immune cell types (epithelial-3, -4, and -6 and endothelial) 

showed conserved gene expression changes associated with preterm labor across the uterus, 

decidua, and cervix (Figure 3B). We reasoned that, although the transcriptome profiles of 

specific cell types were affected across all tissues, such cells may display distinct biological 

processes according to their location. Gene Ontology (GO) analysis of the neutrophil cell 

type in the uterus, decidua, and cervix revealed that, although these cells shared some 

processes, such as “response to bacterium” and “response to lipopolysaccharide,” processes 

specific to neutrophil in each tissue were also observed (Figure 3C). Uterine neutrophil 

showed enrichment of processes related to cytokine signaling and anti-viral response, 

whereas decidual neutrophil showed enrichment of cellular activation-associated processes 

(Figure 3C). In the cervix, enriched neutrophil processes were primarily associated with 

response to external stimuli and bacteria (Figure 3C). Uterine and decidual monocyte 

and macrophage-1 cells also shared enriched processes related to cytokine production and 

response to bacteria/lipopolysaccharide, with decidual monocyte also showing enrichment 

of activation-associated processes (Figure 3D). By contrast, cervical monocyte displayed 

highly distinct processes related to protein synthesis and humoral immune response (Figure 

3D), suggesting that such cells may functionally differ from their counterparts in the uterus 

and decidua. Epithelial-6, which had sufficient DEGs to perform GO analysis in all three 

tissues, displayed largely consistent processes across the uterus, decidua, and cervix that 

were related to inflammation, antibacterial response, and cytokine production (Figure 3E). 

The uterine epithelial-4 cell type displayed enrichment of several chemotaxis-associated 

processes, suggesting involvement in leukocyte recruitment to this tissue, whereas the 

cervical epithelial-4 showed enrichment of effector functions, such as production of NO 

(nitric oxide), interleukin-1 (IL-1), and interferon γ (IFNγ) (Figure 3E). Epithelial-3, 

which only displayed sufficient DEGs for GO analysis in the cervix, showed enrichment 

of multiple processes related to promotion of B cell and antibody responses (Figure 3E). 

Thus, the conserved cell types affected by preterm labor in the uterus, decidua, and cervix 

each display distinct enrichment of biological processes, suggesting that similar cell types 

display tissue-specific functions in the context of intra-amniotic infection leading to preterm 

labor. Together with the observed increase in cervical epithelial-8 cell counts with preterm 

labor, it is possible that the upregulation of inflammatory gene expression represents an 

infection-induced differentiation of cervical epithelial cells to better participate in host 

defense mechanisms in this compartment.

To infer cellular functionality in preterm labor, we utilized the Kyoto Encyclopedia 

of Genes and Genomes database to evaluate the pathways enriched in labor-associated 

DEGs in each cell type (Figure S3C). Immune and non-immune cell types with altered 

gene expression in preterm labor showed enrichment of immunological pathways, such 

as “cytokine-cytokine receptor interaction,” “NOD-like receptor signaling pathway,” and 

“viral protein interaction with cytokine and its receptor,” across the three tissues (Figure 

S3C). Such findings are consistent with previous studies showing upregulation of immune-

related pathways in decidual endothelial102 and stromal cells69 from women with labor. 

Additional inflammatory pathways, such as “NF-κB signaling pathway” and “Toll-like 
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receptor signaling pathway,” were also represented, to a lesser extent, by immune cells (e.g., 

NK cells and neutrophil) as well as non-immune cells, such as epithelial cells (Figure S3C).

We also investigated the biological processes enriched in several non-immune cell subsets 

that were conserved between the uterus and decidua with preterm labor (Figure S4). 

Stromal-1 and stromal-2 in the uterus showed largely similar enrichment of biological 

processes, as did the stromal-1 and stromal-2 cell types in the decidua (Figure S4A). 

However, these cell types differed between tissues, given that the decidual stromal cells 

were enriched for leukocyte migration and chemotaxis, whereas the uterine stromal cells 

showed enrichment for response to immune signaling (Figure S4A). The fibroblast-1 and 

stromal-3 cell types showed less diversity in their enriched processes when compared 

between the uterus and decidua, with the former associated with host defense against 

infection and the latter associated with immune activation, including adaptive immunity 

(Figure S4B). Fibroblast-2 and fibroblast-3 were also comparable between the uterus and 

decidua; however, the decidual fibroblast-3 showed more striking enrichment of responses 

to microorganisms and cytokine signaling (Figure S4C). Finally, the uterine and decidual 

endothelial cell types displayed similar enrichment of processes related to host defense, 

innate immunity, and cytokine signaling, with the decidual subset showing modestly higher 

enrichment for processes related to neutrophil migration (Figure S4D).

These data indicate that the uterus, decidua, and cervix contain cell types that display 

distinct tissue-specific gene expression profiles in preterm labor, pointing to differing 

functional roles for these cells in the host response to intra-amniotic infection. However, 

there is an overall tendency for the enrichment of similar immunological pathways in 

immune and non-immune cell types across tissues, likely as part of the common host 

response to intra-amniotic infection.

Preterm labor influences cell-cell communications in reproductive tissues

Having established that preterm labor drives distinct transcriptomic changes in specific cell 

types in the uterus, decidua, and cervix, we next leveraged our single-cell data to elucidate 

cell-cell communication networks in these tissues.

Cell-cell communications in the uterus—The uterus is a highly heterogeneous organ 

with multiple described regions that differ in cellular composition and function.103–112 To 

unravel the intercellular communications taking place in the murine uterus with preterm 

labor, we performed a correlation analysis across preterm labor-associated genes for each 

pair of identified cell types (Figure S5A). The strongest correlations were observed for non-

immune cell types, such as stromal, epithelial, fibroblast, smooth muscle, and endothelial 

cell types (Figure S5A), suggesting that these cells exhibit similar changes in gene 

expression with preterm labor. Innate and adaptive immune cell types also showed moderate 

correlations: T cell, NK cell-1, NK cell-2, macrophage-1, macrophage-2, monocyte, and 

dendritic cell (Figure S5A). The cell types with the weakest correlations were primarily 

epithelial subsets as well as neutrophil, erythroid, stromal-3, and SMC-2 (Figure S5A), 

indicating that such cells show more distinct gene expression changes with preterm labor.
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We next applied CellChat to infer cell-cell communications within the uterus, using 

our single-cell gene expression data and a database of established interactions between 

signaling ligands, receptors, and their cofactors.113 Signaling pathways that were enriched 

or diminished in preterm labor, as well as those that were unaffected by this process, 

are shown in Figure S5B and Table S3. The alluvial plots shown in Figures 4A and 4B 

display the major cell-cell communication processes taking place in the uterus as well as 

the cell types that participate as senders or receivers in each process. Innate and adaptive 

immune cell subsets (neutrophil, macrophage-1, monocyte, dendritic cell, NK cell-1, and 

T cell) contribute to the top signaling pathways implicated in preterm labor, such as C-C 

chemokine ligand (CCL), C-X-C chemokine ligand (CXCL), complement, IFN-I, IFN-II, 

IL-1, and IL-6 (Figures 4A and 4B). Multiple non-immune subsets also participate in these 

processes: fibroblast, stromal, epithelial, SMC, and endothelial cell types (Figures 4A and 

4B). Although immune and non-immune cell types served as receivers of preterm labor-

associated signaling, specific responders to each pathway could be distinguished (Figure 

4B). For example, the signaling pathway of IL-6, which is commonly utilized as a biomarker 

of intra-amniotic inflammation,47 was primarily driven by immune cell types (Figure 

4A); however, the receiver cells for this pathway were non-immune subsets (Figure 4B). 

Conversely, the primary senders for the Annexin signaling pathway were non-immune cell 

types (Figure 4A), with the downstream receivers being predominantly immune cells (Figure 

4B). The changes in cell-cell communication occurring as a result of preterm labor were 

visualized using the arrow plot in Figure 4C, where the directionality of each cell type arrow 

reflects the propensity for increased outgoing and/or incoming interaction strength. Cell 

types such as macrophage-2, stromal-2, stromal-3, and fibroblast-3 showed primarily even 

increases in incoming and outgoing signaling with preterm labor (Figure 4C). Other cell 

types were more biased toward incoming interactions, such as macrophage-1, neutrophil, 

dendritic cell, plasmocyte, monocyte, and epithelial-6, or toward outgoing interactions, such 

as stromal-1, fibroblast-1, and fibroblast-2 (Figure 4C). Several cell types showed a net 

decrease in signaling with preterm labor: T cell and SMC-1 (Figure 4C).

The top 25% of aggregated cellular interactions in the uterus were then contrasted between 

the control and preterm labor groups, emphasizing the overall increase in cell-cell signaling 

with preterm labor as well as the incorporation of new signaling pathways from cell 

types that were rarely present in control tissues, such as neutrophil (Figure 4D). Although 

macrophage-1 signaling was increased, macrophage-2 signaling decreased, which could 

indicate a homeostatic role for the latter subset that is diminished in preterm labor, as 

reported previously.114 Next, we examined the top contributors within uterine cell-cell 

signaling pathways enriched with preterm labor (Figure 4E). We found that macrophage 

subsets and dendritic cell were primary contributors to CCL signaling between control 

uterine cell types, and such signaling was strengthened in preterm labor (Figure 4E). By 

contrast, the galectin signaling pathway, already enriched in control uterine tissues, was 

upregulated in new cell types in preterm labor (e.g., epithelial-6) and diminished in others 

(e.g., macrophage-2) (Figure 4E).

We also explored the changes in cell type-specific expression of genes related to 

progesterone and prostaglandin signaling in the uterus (Figures S5C and S6A). As expected, 

progesterone-related gene expression was consistently downregulated across uterine cell 
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types in preterm labor (Figure S5C). Prostaglandin-related gene expression showed more 

activity in the uterus than in other tissues (Figure S6); however, preterm labor-associated 

changes in each gene were consistent across uterine cell types (Figure S6A), supporting 

the involvement of multiple immune and non-immune cell populations in labor-mediator 

signaling pathways.

These findings highlight the complex cell-cell communication network taking place in the 

murine uterus and how such interactions are modulated by the inflammatory process of 

preterm labor in immune and non-immune cell types.

Cell-cell communication in the decidua—We next examined the correlations across 

preterm labor-associated changes in gene expression for each pair of cell types identified 

in the decidua (Figure S7A). Similar to the uterine tissues, the strongest correlations were 

observed for non-immune cell types (e.g., stromal, epithelial, fibroblast, smooth muscle, and 

endothelial), followed by innate and adaptive immune cells, of which the macrophage and 

monocyte clusters were best correlated (Figure S7A). Similarly, the weakest correlations 

were observed for some epithelial cell types and neutrophil (Figure S7A). Thus, decidual 

cells display preterm labor-associated changes in gene expression with varying magnitudes 

of sharing among cell types, which resemble those observed in the uterine tissues.

The inferred cell-cell signaling pathways that were enriched or diminished in the decidua 

with preterm labor are shown in Figure S7B and Table S3. From among them, the top 

pathways are displayed, with their participating sender and receiver cell types, in Figures 

5A and 5B. Similar to the uterine tissues, key cell-cell communication pathways were 

primarily related to immune functions, such as cytokine and chemokine signaling (Figured 

5A and 5B). Among the three compared tissues, the IL-17 pathway was most prominent 

in the decidua (Figures 5A and 5B), which was consistent with a previous report of 

IL-17 signaling in endothelial cells derived from the human peripartum decidua102 and 

suggested that decidual T cells participate in the local inflammatory response to intra-

amniotic infection. Among other identified signaling pathways, immune and non-immune 

cell subsets contributed as senders or receivers, including the NK cell-2 subset, which 

was not implicated in uterine cell-cell signaling (Figures 5A and 5B). The decidual 

epithelial-5 cell type appeared to be primarily functioning as a receiver of cell-cell 

signaling in this tissue (Figures 5A and 5B). We then visualized the preterm labor-driven 

changes in incoming and outgoing signaling and observed that subsets such as monocyte, 

macrophage-1, neutrophil, NK cells, and dendritic cell showed predominantly incoming 

interactions (Figure 5C). On the other hand, stromal and fibroblast subsets as well as T 

cell tended toward increased outgoing signaling, whereas SMC-1 and endothelial showed 

an overall reduction in interaction strength (Figure 5C). Outgoing interaction strength was 

greater in decidual T cell compared to uterine T cell (Figures 5C versus Figure 4C), 

which emphasizes a role of T cell-derived signals in the pathophysiology of preterm labor 

associated with intra-amniotic infection.115 Consistent with enhanced cell-cell signaling in 

preterm labor, aggregated cellular interaction plots demonstrated an overall net increase in 

decidual intercellular interactions compared to controls (Figure 5D). Similar to the uterine 

tissues, enriched signaling pathways, such as CCL and galectin, were primarily driven 
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by macrophage-1, monocyte, and dendritic cell in preterm labor, with overall interactions 

among cell types increasing compared to controls (Figure 5E).

Similar to the changes observed in the uterus, decidual expression of progesterone-related 

genes was consistently downregulated across cell types with preterm labor (Figure 

S7C). The patterns of change in prostaglandin-related gene expression were also similar 

between the decidua and uterus; however, some differences in the magnitude of change 

between compartments were observed for multiple genes, potentially indicating a stronger 

upregulation of preterm labor-associated prostaglandin signaling in the uterus relative to the 

decidua (Figure S6B).

These data provide insight into the distinct cellular interactions taking place in the decidua 

during the process of preterm labor, including the involvement of cell types and signaling 

pathways not observed in other tissues. However, the decidua and uterus also share cell 

type-specific communications that are affected by preterm labor.

Cell-cell communication in the cervix—Our investigation of the cell type-specific 

changes taking place in the cervix with preterm labor indicated that the neutrophil and 

monocyte subsets were most affected, in tandem with previous studies showing labor-

associated infiltration of immune cells90,91,116–118 as well as multiple epithelial cell subsets 

(Figures 2 and 3). Correlation analysis of these cell types showed the strongest associations 

in gene expression changes driven by preterm labor among epithelial cell types (Figure 

S8A), whereas neutrophil and monocyte showed modest correlation of genes affected by 

preterm labor (Figure S8A). Inferred cell-cell signaling pathways were noticeably fewer 

compared to the other tissues and included multiple processes exclusive to the cervix (Figure 

S8B; Table S3), which could be attributed to the less diverse cell type composition observed 

in this tissue. As shown by the participating senders and receivers, signaling pathways 

that were strongly implicated in the uterus and decidua with preterm labor were not as 

enriched in cervical cell types (Figures 6A and 6B). On the other hand, cell-cell signaling 

pathways related to extracellular matrix were strongly represented (Figures 6A and 6B), 

which is consistent with the primarily connective tissue composition of the cervix.119–121 As 

expected, given their inferred roles as receivers, most cervical epithelial cell types showed 

strong incoming interactions with preterm labor, whereas the SMC-1, fibroblast-2, and 

stromal-1 subsets showed a tendency toward increased outgoing interactions (Figures 6B 

and 6C). This finding was supported by the aggregated cervical cell-cell interactions in the 

control and preterm labor groups showing increased receipt of signaling by epithelial-1 and 

epithelial-8 as well as SMC-1 and fibroblast-2 (Figure 6D). Fibroblast-2 and SMC-1 were 

top contributors to enriched signaling pathways such as collagen and tenascin (Figure 6E). It 

is possible that the fibroblast-2 and/or SMC-1 cell clusters include cervical myofibroblasts, 

given that a previous histological investigation indicated a pregnancy-specific accumulation 

of such cells, which could be interacting with the extracellular matrix to aid in supporting 

the mechanical stresses present during labor.122 In the last decade, a new paradigm for the 

role of SMCs in the human cervix has emerged, suggesting a sphincter-like function of the 

internal os, in which the SMCs express contractility-associated proteins that are responsive 

to oxytocin signaling.123 Together with our current findings, these observations support the 

involvement of SMC-1 and fibroblast-2 subsets in preterm labor-associated signaling in the 
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murine cervix and emphasize the distinct cell-cell signaling pathways taking place in this 

tissue during preterm labor.

Shared cellular signaling pathways in the murine uterus and human myometrium during 
the processes of preterm and term labor

Last, to examine the shared pathways implicated in the process of parturition in mice and 

humans, we utilized the differential cellular interactions in the murine uterus with preterm 

labor together with our previously generated single-cell atlas of the human myometrium 

with labor at term70 (Figure 7). We investigated the interaction strength between cell types 

affected by labor and prominent signaling pathways and then contrasted them between the 

murine and human tissues. Overall, we found that labor-associated cell-cell interactions 

were primarily driven by SMC, stromal, fibroblast, and innate immune cell types in the 

murine uterus and human myometrium, independent of differences in sender/receiver status 

(Figures 7A and 7B).

Specifically, in the murine uterus, non-immune cell types (such as fibroblast-1, -2, and -3, 

stromal-2 and -3, and SMC-1) showed the strongest labor-associated increase in outgoing 

cell-cell signaling, whereas outgoing signaling by macrophage-2 was greatly diminished 

(Figure 7A). The top receivers of labor-associated signaling were fibroblast-3, stromal-2 

and -3, and epithelial-6 as well as innate immune cell types (monocyte, neutrophil, and 

macrophage-1) (Figure 7A). Endothelial, SMC-1, plasmocyte, and macrophage-2 showed 

diminished incoming signaling with preterm labor (Figure 7A).

In the human myometrium, labor involved increased outgoing signaling almost exclusively 

by SMC and stromal subsets, with myofibroblast and lymphoid endothelial decidual (LED) 

also contributing to this process (Figure 7B). Receivers of such outgoing interactions 

included macrophage subsets and monocyte, which is consistent with previous investigations 

indicating that myometrial cell contraction during labor is promoted by crosstalk with 

macrophages in a co-culture model.124 Multiple myometrial cell subsets displayed 

substantially reduced outgoing signaling with labor, such as extravillous trophoblast (EVT), 

macrophage-4, plasmablast, unciliated epithelial, and innate lymphoid cell (ILC) (Figure 

7B). For incoming signaling, the majority of human myometrial cell types tended to have 

increased interaction only with cells that displayed greater outgoing signals, such as smooth 

muscle and stromal cells (Figure 7B). Some exceptions seemed to be the macrophage-1, 

SMC-3, and stromal-1 subsets, whose incoming signaling from the majority of other cell 

types was strengthened (Figure 7B).

We then examined the top 25% of aggregated cell-cell interactions in the human 

myometrium at term without labor and at term with labor (Figure S8A). Consistent with 

the correlation analysis above (Figure 7B), a clear shift in the cell types contributing to 

myometrial cell-cell signaling was observed between groups, with the EVT, macrophage-4, 

plasmablast, and unciliated epithelial clusters showing greatly diminished interactions in 

labor and the SMC and stromal cell subsets acquiring increased interactions (Figure 

S9A). This shift in interaction with labor was also reflected by the combined differential 

interaction analysis shown in Figure S8B. When examining the specific cell-cell signaling 

pathways that were affected by labor, terms such as collagen, IL-1, CCL, complement, 
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and CXCL were found to be shared between the murine uterus and human myometrium, 

indicating shared labor-associated cellular signaling between species (Figures 7C, 7D, 

and S9C–S9G); however, closer inspection of these shared signaling pathways revealed 

differences in the cell types contributing to each (Figures 7C, 7D, and S9C–S9G). The 

relevance of immune pathways such as chemokine signaling in the process of labor is 

supported by previous reports demonstrating that use of a chemokine inhibitor on human 

myometrial cells decreased contraction and gap junction formation, disrupting intercellular 

communication.125,126 These data indicated that labor-associated cell-cell interactions 

heavily involve SMC, stromal, fibroblast, and innate immune cell types in the murine 

uterus and the human myometrium, providing evidence of labor-specific signaling processes 

between immune and non-immune cells that are shared between species. However, this 

interpretation should be taken with caution, given that we compared the physiologic process 

of labor in the human myometrium to the pathologic process of labor induced by bacteria in 

the murine uterus.

DISCUSSION

The current study provides a single-cell atlas of the murine uterus, decidua, and cervix that 

highlights the cell-type composition, transcriptional profiles, and cell-cell signaling taking 

place in these tissues in normal late gestation and in the context of infection-induced preterm 

labor and birth. scRNA-seq allowed deep characterization of immune and non-immune 

cells that demonstrates the underappreciated heterogeneity of cell types conventionally 

considered to be uniform in function, such as uterine SMCs and cervical epithelial cells. 

Our data can thus serve as a reference for future studies seeking to target specific subsets 

of these cells, which may have differing roles in pregnancy and labor, as indicated by 

their distinct transcriptional profiles. Shared modulation of gene expression, noted between 

uterine and decidual cell types, was reflected by the similar enrichment of labor-associated 

signaling pathways, which is consistent with the spatial proximity of these tissues. However, 

comparison of individual cell types across tissues indicated that the most-represented 

biological processes can vary according to location; therefore, the tissue of origin should 

be taken into consideration when inferring cellular function. Herein, we provide scRNA-seq 

characterization of the understudied cervical tissues, demonstrating a plethora of epithelial 

subsets with different potential functions as well as SMC and fibroblast cell types that 

indicate an unexpected level of heterogeneity in the cervix. Recent evidence has suggested 

a sphincter-like function of SMCs in the internal os of the human cervix,123 and our 

current findings support this concept. Inferred cell-cell communications provided evidence 

of substantial cross-talk among uterine, decidual, and cervical cell types during the process 

of preterm labor, highlighting key signaling pathways that could potentially be targeted in 

future translational studies aimed at preventing spontaneous preterm labor. This analysis 

demonstrated cell types with elevated or diminished interactions driven by inflammation, 

which can serve to identify cell types that are most and least involved in such signaling. 

To demonstrate the application of our single-cell dataset, we leveraged prior single-cell 

analyses of the human myometrium in term labor to evaluate cellular interactions compared 

to our murine model of preterm labor. This analysis provided useful insight into shared 

signaling pathways associated with the inflammatory process of labor, providing a practical 
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demonstration of how our scRNA-seq dataset can be leveraged for in silico discovery of 

specific cell types, pathways, or genes that can be subsequently targeted in vitro and/or in 
vivo.

Limitations of the study

The current study has some limitations. First, it is important to consider that spontaneous 

preterm labor is a syndrome for which intra-amniotic infection represents only one known 

etiology.4 Herein, we focused on preterm labor triggered by intra-amniotic infection with 

E. coli, a Gram-negative bacterium, using an established animal model that resembles 

the clinical condition.127 Other known or proposed etiologies for spontaneous preterm 

labor may have subtle differences in the involved cell types and associated signaling 

pathways; thus, further characterization of the cellular atlas in each preterm labor subtype 

is necessary for their distinction. Second, intra-amniotic infection is often polymicrobial 

and/or can be induced by a variety of bacterial species,20,25 of which Ureaplasma species 

are the most commonly found in the amniotic cavity;16,17,76,128–130 therefore, the immune 

responses triggered by each bacterium or cluster of bacteria may differentially affect cellular 

responses in the reproductive and gestational tissues. However, in vivo standardization of 

a polymicrobial infection model and isolation of clinically relevant Ureaplasma species 

are challenging; thus, herein, we utilized intra-amniotic infection with an easily cultured 

bacterium, E. coli, to induce preterm birth in mice. Future investigations may utilize 

other bacteria detected in the amniotic cavity of women diagnosed with intra-amniotic 

infection.18,20 Single-cell RNA-seq is a discovery-based approach that we utilized to 

generate an atlas of the murine reproductive tissues, and careful interpretation is required 

when extrapolating specific findings to the human context. Last, RNA techniques using 

single-cell suspensions lose information about the spatial relationships among cell types in 

target tissues; therefore, such data may be complemented by using spatial transcriptomics 

and/or proteomics. Our data serve as a resource for targeted studies that can validate such 

findings using human samples.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Nardhy Gomez-Lopez (nardhy.gomez-

lopez@wayne.edu).

Material availability—This study did not generate new unique reagents.

Data and code availability

• Single-cell RNA-seq data have been deposited at GEO and are publicly available 

as of the date of publication (see key resources table for accession number). 

Original western blot images have been deposited at Mendeley and are publicly 

available as of the date of publication (see key resources table for DOI). 

Microscopy data reported in this paper will be shared by the lead contact upon 

reasonable request.
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• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication (see key resources table for DOI).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon reasonable request.

EXPERIMENTAL MODEL DETAILS

Mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA) and bred in the 

animal care facility at the C.S. Mott Center for Human Growth and Development, Wayne 

State University (Detroit, MI, USA). Mice were under a circadian cycle of light:dark = 12:12 

h. Eight- to twelve-week-old C57BL/6 (RRID:IMSR_JAX:000664) female mice were bred 

with BALB/cByJ male mice (RRI-D:IMSR_JAX:001026), and females were examined daily 

between 0800 and 0900 to check for the presence of a vaginal plug, which was considered as 

0.5 days post coitum (dpc). Upon observation of a vaginal plug, females were removed from 

mating cages and housed separately, and their weights were monitored daily. At 12.5 dpc, 

a weight gain of ≥2 g was considered confirmation of pregnancy. Mice were randomized to 

receive intra-amniotic injection of E. coli or vehicle control (1X phosphate-buffered saline, 

PBS) (Thermo Fisher Scientific/Gibco, Grand Island, NY, USA), and investigators were 

not blinded to control or treatment assignment. No experimental mice were excluded from 

analysis. All procedures and experiments were approved by the Institutional Animal Care 

and Use Committee (IACUC) at Wayne State University under Protocol nos. 18–03-0584 

and 21–04-3506.

METHOD DETAILS

Preparation of E. coli for intra-amniotic injection—Escherichia coli was purchased 

from the American Type Culture Collection (ATCC, Manassas, VA, USA) (ATCC 12014) 

and was grown in Luria-Bertani (LB) broth (cat. no. L8050, Teknova, Hollister, CA, USA) 

at 37°C. From an overnight culture, a sub-culture was placed with fresh LB broth and grown 

to the logarithmic phase (OD600 0.9–1). Additional dilution was performed using sterile 1X 

PBS to reach a working concentration of 10 CFU/25 μL.

Measurement of cervical length by ultrasound—Dams were anesthetized on 16.5 

dpc by inhalation of 2% isoflurane (Fluriso™ (Isoflurane, USP), VetOne, Boise, ID, USA) 

and 1 to 2 liters/min of oxygen in an induction chamber. Anesthesia was maintained with 

a mixture of 1.5–2% isoflurane and 1.5 to 2 liters/min of oxygen. Mice were positioned 

on a heating pad and stabilized with adhesive tape. Fur removal from the abdomen was 

performed using Nair cream (Church & Dwight Co., Inc., Ewing, NJ, USA). Sterile forceps 

were utilized to expose the vulva and 150 μL of Sterile Aquasonic® 100 ultrasound 

transmission gel (Parker laboratories, Fairfield, NJ, USA) was used to fill the vagina to 

create contrast and allow for clear visualization of the external limit of the uterine cervix 

(i.e., the external os). A trans-abdominal ultrasound approach was utilized to evaluate the 

cervix using the Vevo® 2100 Imaging System (VisualSonics Inc., Toronto, ON, Canada). 

The transducer was slowly moved toward the lower part of the abdomen and the cervix was 

positioned in a longitudinal view. The cervical length was measured from the internal to the 

external os at least three times per mouse, and its average was utilized as the final value 
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for cervical length. This procedure was performed prior to ultrasound-guided injection with 

either E. coli or PBS and repeated 24 h later (on 17.5 dpc) (i.e., prior to tissue collection). 

The change in cervical length was determined as a percentage by considering the cervical 

length on 16.5 dpc as 100% and then calculating the percentage of the cervical length on 

17.5 dpc.

Intra-amniotic inoculation with E. coli—Dams that underwent cervical measurement 

were maintained on the heating pad under anesthesia as described above. The ultrasound 

transducer was slowly moved toward the abdomen to localize the amniotic sacs. The 

syringe with E. coli suspension (10 CFU/25 μL) was stabilized by a mechanical holder 

(VisualSonics). Ultrasound-guided intra-amniotic inoculation with E. coli was performed 

in each amniotic sac using a 30G needle (BD PrecisionGlide needle; Becton Dickinson, 

Franklin Lakes, NJ, USA). Controls were injected with 25 μL of sterile 1X PBS into 

each amniotic sac. After the ultrasound injection, the dams were placed under a heat lamp 

for recovery (defined as when the mouse resumed normal activities such as walking and 

responding), which typically occurred 10 min after removal from anesthesia. After recovery, 

mice were video monitored to observe pregnancy outcomes.

Video monitoring—Pregnancy outcomes were recorded via video camera (Sony 

Corporation, Tokyo, Japan) to determine gestational length, and therefore rate of preterm 

birth. Preterm birth was defined as delivery occurring before 18.5 dpc, based on the earliest 

delivery of PBS-injected control dams, and its rate was represented by the percentage of 

females delivering preterm among the total number of mice injected.

Tissue collection prior to preterm birth—Dams were euthanized on 17.5 dpc and 

the reproductive tissues (uterus, decidua, and cervix) were collected. Tissues collected for 

the preparation of single-cell suspensions were placed in sterile 1X PBS, while tissues 

for histological analyses were fixed in 10% Neutral Buffered Formalin (Surgipath, Leyca 

Biosystems, Wetzlar, Germany) and embedded in paraffin. Five-μm-thick sections were 

cut and mounted on Superfrost® Plus microscope slides (Cat. No. 48311–703, VWR 

International, LLC. Radnor, PA, USA).

Histological characterization of murine reproductive tissues

Leukocyte detection using DAB immunohistochemistry: Five-μm-thick tissue sections 

from mice injected with PBS or E. coli were deparaffinized and rehydrated using xylene 

and a series of decreasing ethanol concentrations, respectively. Immunohistochemistry 

staining using the Monoclonal Rabbit Anti-Mouse CD45 (AB_2799780; clone D3F8Q, 

cat. no. 70257S, Cell Signaling Technology, Danvers, MA, USA) was performed using 

the Leica Bond Max Automatic Staining System in a peroxidase-mediated oxidation of 

3,3’-diaminobenzidine (DAB) from the Bond™ Polymer Refine Detection Kit (both from 

Leica Microsystems, Wetzlar, Germany). The negative control used was the Rabbit FLEX 

Universal Negative Control (cat. no. IR60066–2, Agilent, Santa Clara, CA, USA). Images 

were scanned using the Brightfield setting of the Vectra Polaris Multispectral Imaging 

System (Akoya Biosciences, Marlborough, MA, USA).
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Movat’s pentachrome staining: Five-mm-thick tissue sections from mice injected with 

PBS or E. coli were histologically characterized for the presence of collagen, elastin, 

muscle, and mucin using the Movat Pentachrome Stain Kit (Modified Russell-Movat; 

ScyTek Laboratories, Inc. Logan, UT, USA), following manufacturer’s instructions with 

modifications. Briefly, tissue sections were deparaffinized, stained with working Elastic 

Stain solution for 20 min, and rinsed in running tap water for 1 min followed by rinsing 

with deionized water. Then, the following reagents from the kit were sequentially applied to 

the entire tissue section with distilled water rinsing in between each application: 2% Ferric 

Chloride for 5–8 s, 5% Sodium Thiosulfate Solution for 1 min, Alcian Blue Solution (pH 

2.5) for 20 min, Biebrich Scarlet-Acid Fuchsin Solution for 2 min, 5% Phosphotungstic 

Acid Solution for 7 min, and 1% Acetic Acid Solution for 3 min. Excess Acetic Acid 

Solution was drained from the slides and Yellow Stain Solution was immediately applied for 

20 min. The slides were then rinsed in 100% ethanol followed by rinsing with xylene. 

Images were scanned using the Brightfield setting of the Vectra Polaris Multispectral 

Imaging System.

OPAL multiplex immunofluorescence: OPAL multiplex immunofluorescence staining was 

performed using the OPAL Multiplex 7-color IHC kit (Cat. no. NEL811001KT; Akoya 

Biosciences), according to the manufacturer’s instructions. Prior to multiplex staining, the 

order of antibody staining was optimized using single-plex staining paired with tyramide 

signal amplification (TSA)-conjugated OPAL fluorophores. The optimized detection panel 

includes antibody-OPAL fluorophore pairs in the following order: Monoclonal Rabbit Anti-

Mouse F4/80 (AB_2799771; clone D2S9R; cat. no. 70076S, Cell Signaling Technology) 

with OPAL 520, Monoclonal Rabbit Anti-Mouse CD3ε (AB_2889902; clone E4T1B; cat. 

no. 78588S, Cell Signaling Technology) with OPAL 570, Monoclonal Rabbit Anti-Mouse 

Klrb1c/CD161c (AB_2892989; clone E6Y9G; cat. no. 39197S, Cell Signaling Technology) 

with OPAL 620, Polyclonal Rabbit Anti-Mouse Ly6C (cat. no. HA500088, HuaBio, Boston, 

MA, USA) with OPAL 650, and Monoclonal Rabbit Anti-Mouse Ly6G (AB_2909808; 

clone E6Z1T; cat. no. 87048S, Cell Signaling Technology) with OPAL 690. The Rabbit 

FLEX Universal Negative Control (Agilent) was used as isotype. Briefly, 5-μm-thick tissue 

sections from mice injected with PBS or E. coli were deparaffinized and rehydrated 

using xylene and a series of decreasing ethanol concentrations, respectively. The slides 

were rinsed in deionized water and epitope retrieval was performed by submerging the 

slides in appropriate antigen retrieval (AR) buffer and boiling in a microwave oven. Non-

specific binding was prevented by incubating slides in OPAL antibody diluent/blocking 

solution prior to incubating with each primary antibody at room temperature. Next, 

the slides were rinsed in TBST prior to incubation with anti-mouse secondary antibody-

horse radish peroxidase (HRP) conjugate followed by the selected TSA-conjugated OPAL 

fluorophore. Cycles of sequential epitope retrieval, target detection, and signal amplification 

were repeated using the optimized antibody-OPAL fluorophore pair. Once all targets 

were detected, the slides were incubated with DAPI (4′,6-diamidino-2-phenylindole) as a 

nuclear counterstain and mounted using AquaSlip™ Aqueous Permanent Mounting Medium 

(American MasterTech). Fluorescence image acquisition was performed using the Vectra 

Polaris Multispectral Imaging System at 20x magnification. Multispectral images were 

analyzed using the inForm software version 2.4 (Akoya Biosciences).
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Tissue dissociation of murine uterus and decidua—Immediately following tissue 

collection, the uterus and decidua were dissociated to prepare single-cell suspensions. The 

tissues were mechanically dissociated and enzymatically digested by incubating at 37°C 

using enzymes from the Umbilical Cord Dissociation Kit (Miltenyi Biotec). A second round 

of mechanical dissociation was performed using the gentleMACS Dissociator (Miltenyi 

Biotec), and dissociated cells were rinsed with 1X PBS prior to filtration using a 100 μm 

cell strainer (Miltenyi Biotec). Filtered cells were pelleted by centrifugation at 300 × g for 

5 min, erythrocytes were eliminated using ACK Lysing Buffer (Life Technologies), and the 

cells were rinsed in 0.04% Bovine Serum Albumin (BSA, Sigma Aldrich) and 0.5 mM 

EDTA (Sigma Aldrich) diluted in 1X PBS. Finally, the cells were filtered using a 30 μm 

cell strainer (Miltenyi Biotec), and the Dead Cell Removal Kit (Miltenyi Biotec) was used to 

remove dead cells to obtain a cell viability of ≥80%.

Tissue dissociation of the murine cervix—Immediately following the collection 

of the cervix, the tissue was mechanically dissociated and enzymatically digested using 

Collagenase A (160 mg/mL) (Sigma Aldrich) and incubated at 37°C. Then, the dissociated 

cells were pelleted by centrifugation at 16,000 × g for 10 min at 20°C and resuspended 

with 0.05% trypsin-EDTA (Thermo Fisher Scientific, Waltham, MA) prior to a second round 

of mincing and incubation in 0.05% trypsin-EDTA at 37°C. The enzymatic reaction was 

stopped by the addition of FBS (Fetal Bovine Serum, Thermo Fisher). Cells were then 

filtered using a 70 μm cell strainer (Miltenyi Biotec, San Diego, CA, USA) and pelleted by 

centrifugation at 300 × g for 10 min. Erythrocytes were removed using ACK Lysing Buffer 

(Life Technologies, Grand Island, NY, USA). Finally, the cells were resuspended in 0.04% 

BSA diluted in 1X PBS and filtered through a 30 μm cell strainer. The cell concentration and 

viability were determined using an automatic cell counter (Cellometer Auto 2000, Nexcelom 

Bioscience, Lawrence, MA, USA) and the Dead Cell Removal Kit was used to remove dead 

cells to obtain a cell viability of ≥80%.

Generation of gel beads-in-emulsion (GEMs) and library preparation—
Generation of gel beads-in-emulsion (GEMs) and preparation of library constructs was 

performed on viable single-cell suspensions using the 10x Genomics Chromium Single Cell 

3′ Gene Expression Version 3.1 Kit (10x Genomics, Pleasanton, CA, USA), according to 

the manufacturer’s instructions. Briefly, viable single cells were encapsulated in partitioning 

oil together with a single Gel Bead with barcoded oligonucleotides within the Chromium 

Controller. Reverse transcription of mRNA into complementary (c)DNA was performed 

using the Veriti 96-well Thermal Cycler (Thermo Fisher Scientific, Wilmington, DE, 

USA). Dynabeads MyOne SILANE (10x Genomics) and the SPRIselect Reagent (Beckman 

Coulter, Indianapolis, IN, USA) were used to purify resulting cDNA, which was optimized 

by enzymatic fragmentation, end-repair, and A-tailing. Next, adaptors and sample index 

were incorporated by ligation. The sample index PCR product was then amplified using 

the Veriti 96-well Thermal Cycler and double-sided size selection was performed using 

the SPRIselect Reagent. Following the formation of cDNA and final library construct, the 

Agilent Bioanalyzer High Sensitivity DNA Chip (Agilent Technologies, Wilmington, DE, 

USA) was used determine sample quality and concentration.
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Sequencing—Prior to sequencing of post-library constructs, samples were quantified 

using the Kapa DNA Quantification Kit for Illumina platforms (Kapa Biosystems, 

Wilmington, MA, USA), following the manufacturer’s instructions. The sequencing of 10x 

scRNA-seq libraries was performed on the Illumina NextSeq 500 at the Genomics Services 

Center (GSC) of the Center for Molecular Medicine and Genetics (Wayne State University 

School of Medicine, Detroit, MI, USA). The Illumina 75 Cycle Sequencing Kit (Illumina, 

San Diego, CA, USA) was used with 58 cycles for R2, 26 for R1, and 8 for I1.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of all analyses are described in the figure legends or STAR Methods.

scRNA-seq data normalization and pre-processing—Sequencing data were 

processed using Cell Ranger version 4.0.0 (10x Genomics). The “cellranger counts” was 

also used to align the scRNA-seq reads by using the STAR aligner131 to produce the bam 

files necessary for demultiplexing the individual of origin based on genotype information 

using demuxlet132 and a custom vcf file. The genotype data were downloaded from ftp://

ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.vcf.gz, the strains 

C57BL_6NJ and BALB_cJ were extracted, and a new synthetic vcf file was generated 

consisting of all the genetic variants where these two strains diverge, and containing a 

maternal genotype column identical to the C57BL_6NJ strain and a fetal genotype column 

with a “0/1” heterozygote genotype. Ambient RNA contamination and doublets were 

removed using SoupX version 1.5.2133 and DoubletFinder 2.0.3.134 Additionally, any cell 

with <200 genes or >20,000 genes detected, or that had >10% mitochondrial reads, was 

excluded (Table S4). All count data matrices were then normalized and combined using the 

Seurat package in R (Seurat version 4.0.3).135,136 The first 100 principal components were 

obtained, and the different libraries were integrated and harmonized using the Harmony 

package in R version 1.0.0137.The top 30 harmony components were then processed 

to embed and visualize the cells in a two-dimensional map via the Uniform Manifold 

Approximation and Projection for Dimension Reduction (UMAP) algorithm.138,139 A 

resolution of 0.5 was used to cluster the single cells.

Annotation of cell types—The SingleR140 package in R version 1.6.1 was used to 

annotate cell types based on their similarities to reference datasets with known labels.144,145 

SingleR annotates single cells from query data by computing the Spearman’s correlation 

coefficient between the single-cell gene expression data and samples from the reference 

dataset. The correlation is measured only based on the variable genes in the reference 

dataset. The multiple correlation coefficients per cell type are combined according to the 

cell type labels of the reference dataset to assign a score per cell type. Additionally, we 

confirmed the cell type identities by identifying the top DEGs (see below) and the gene-

cell type mapping data provided by the Mouse Cell Atlas and single-cell MCA (scMCA) 

package141 in R version 0.2.0. Using different annotations obtained from the reference 

mapping workflows, the final cell type labels were assigned based on a majority vote. If 

multiple clusters were assigned to the same consensus cell type, we added a sub-index to 

that cell type for each different original Seurat cluster: Clusters 0, 1, and 21 were annotated 

as Fibroblast-1, Fibroblast-2, and Fibroblast-3; clusters 2, 4, and 12 were annotated as 
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Stromal-1, Stromal-2 (Decidua), and Stromal-3; clusters 5, 7, 8, 10, 11, 13, 14, 20, 23, and 

28 were annotated as Epithelial-1 (basal), Epithelial-2 (squamous), Epithelial-3 (squamous), 

Epithelial-4 (glandular), Epithelial-10 (proliferative), Epithelial-5 (luminal), Epithelial-6 

(secretory), Epithelial-7 (glandular), Epithelial-8 (Enterocyte), and Epithelial-9 (Secretory); 

clusters 9 and 24 were annotated as Macrophage-1 and Macrophage-2 (progenitor); clusters 

15 and 26 were annotated as SMC-1 and SMC-2; and clusters 19 and 27 were annotated as 

NK-cell-1 and NK-cell-2. All remaining clusters were assigned a unique cell type identifier 

(Table S5).

Differential gene expression for cell type analysis—For this analysis, the 

differential expression of selected marker genes for each cell type/cluster was identified 

using the Wilcoxon Rank Sum test and the FindAllMarkers function from Seurat (Table 

S5). For this analysis, we compared each cluster to all cell types. We further used the top 

cell markers [ranked based on log2(Fold change) and requiring q < 0.1] assigned to each 

sub-cluster to annotate the clusters using the Mouse Cell Atlas and scMCA package.141

Differential gene expression in preterm labor—The identification of preterm labor-

associated DEGs between study groups was performed using the DESeq2 R package version 

1.32.0.142 A term for each library was added to the DESeq2 model to correct for technical 

batch effects (library identifier). For each cell type/replicate combination, we only used 

combinations with more than 20 cells; otherwise, it was treated as non-observed. Cell 

types found in <3 combinations per study group were dropped from the differential gene 

expression analysis (Table S2 contains all genes determined as differentially expressed). 

Note that these thresholds imply that clusters with <120 cells are not analyzed to ensure 

robust gene expression estimation. Quantile-quantile plots were used to show that p-values 

are well calibrated under the null hypothesis of no effect of preterm labor, and also to show 

which tissues and cell types are more enriched for preterm labor-associated gene expression 

changes (Figures 2H–2J). Multiple comparison correction was performed by controlling 

for false discovery rate using Benjamini-Hochberg’s method and genes with q < 0.1 were 

reported in Figures 2E–2G and Table S2. Statistical difference between the fraction of genes 

that were upregulated versus downregulated by preterm labor in each cell type was assessed 

with a binomial test and corrected for multiple comparisons using Benjamini-Hochberg’s 

method. To compare the effects of preterm labor on gene expression across different tissues 

and cell types, we performed Spearman’s correlation between the log2FC obtained in each 

DESeq2 analysis performed using genes that had been detected as differentially expressed 

in at least one cell-type/tissue, q < 0.1. These correlations were visualized as a heatmap in 

Figures S5A, S6A, and S7A and in boxplots for relevant tissue and cell-type combinations in 

Figures 3B–3D.

Gene ontology and pathway enrichment analysis of genes affected by 
preterm labor—The clusterProfiler in R version 4.0.4143 was used to perform the Over-

Representation Analysis (ORA) separately for each list of genes obtained as differentially 

expressed for each cell type based on the Gene Ontology (GO), Kyoto Encyclopedia of 

Gene and Genomes (KEGG), and Reactome databases. The functions “enrichPathway”, 

“enrichKEGG”, and “enrichGO”, from “clusterProfiler” were used. In ORA analyses, the 
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universe of genes for each cell type was the subset that was expressed at a level sufficient 

to be tested in differential gene expression analysis. When results are combined across cell 

types, any genes tested (with a calculated p-value) in any of the cell types are used for the 

universe. Only ORA results that were significant after correction were reported with q < 

0.05 being considered statistically significant.

Cell-cell communication analysis—CellChat113 was used to infer the cell-cell 

communications using the single-cell gene expression data from preterm labor and control 

conditions and a database of prior knowledge of the interactions between signaling ligands, 

receptors, and their cofactors. The top 25% of significant cell-cell communications (p < 

0.05) across different pathways were shown for the two conditions of preterm labor and 

control. Next, the aggregated cell-cell communication between different cell groups was 

calculated for the two study groups, and the interaction strength was compared among 

different cell types from the two study groups. The differential interaction strength was 

represented with circle plots with red (or blue) edges showing the increased (or decreased) 

signaling in preterm labor compared to controls. Additionally, the detailed differential 

interaction strengths were shown using heatmap representations. Major signaling sender and 

receiver cells were displayed using scatter plots where the changes in signaling strength 

from control to preterm labor were represented by arrows. The R packages CellChat 

version 1.1.2, ggalluvial version 0.12.3, and ggplot2 version 3.3.5 were used to visualize 

cell-cell communication analyses. The major sending and receiving signaling roles based 

on context-specific pathways across different cell groups were identified using a cut-off of 

0.5 when visualizing the connection. The overall information flow [sum of the significant 

communication probability (p < 0.05) in the inferred cell-cell network] for each signaling 

network was represented using a bar plot. The comparison between the overall information 

flow from the two study groups (preterm labor and control) was performed using the paired 

Wilcoxon test with the function “rankNet” from CellChat.

Comparison between cell-cell communication in human and murine uterine 
tissues—We inferred cell-cell communications using the human myometrial single-cell 

gene expression data from term in labor and term not in labor study groups,70 and compared 

the inferred interactions between mouse (uterus) and human (myometrium) across the top 

common signaling pathways with highest numbers of DEGs.

Statistical analysis—Observational mouse data were analyzed by using SPSS v19.0 and 

GraphPad Prism version 8. For comparing the rates of preterm birth, the Fisher’s exact test 

was used. For gestational length and cervical shortening, the statistical significance of group 

comparisons was assessed using the Mann-Whitney U-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell atlas of the murine uterus, decidua, and cervix in preterm labor

• Preterm labor alters shared and tissue-specific single-cell gene expression

• Preterm labor drives communication among specific cell types across tissues

• Labor-associated signaling pathways are conserved between murine and 

human uterus
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Figure 1. Single-cell atlas of murine reproductive tissues during preterm labor induced by 
intra-amniotic infection
(A–C) Experimental design for the ultrasound-guided intra-amniotic injection of E. coli or 

PBS (vehicle control) into pregnant mice on 16.5 days post coitum (dpc) (n = 3–6 per 

group) (A). Mice were monitored to determine pregnancy outcomes (B and C). Shown are 

the gestational age and preterm birth rate of dams injected intra-amniotically with E. coli or 
PBS. Gestational age was compared using a 2-sided Mann-Whitney U test, and preterm birth 

rates were compared using a 2-sided Fisher’s exact test. p < 0.05 was considered significant.

Garcia-Flores et al. Page 33

Cell Rep. Author manuscript; available in PMC 2023 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Experimental design for determination of cervical length on 16.5 dpc, prior to intra-

amniotic injection of E. coli or PBS, and 24 h later (17.5 dpc) (n = 6–9 per group).

(E) Cervical length of dams injected intra-amniotically with E. coli or PBS on 16.5 and 17.5 

dpc. Cervical length was compared between time points using a 2-sided Mann-Whitney U 

test. p < 0.05 was considered significant. The change in cervical shortening was calculated 

by considering the measurement at 16.5 dpc as 100%.

(F) Diagram illustrating generation of single-cell suspensions from the uterus, decidua, 

and cervix collected for single-cell RNA sequencing (scRNA-seq) experiments (n = 4 per 

group).

(G) Uniform manifold approximation and projection (UMAP) plot showing all cell types 

present in the uterus, decidua, and cervix.

(H) UMAP color-coded plot showing tissue-specific predominance of distinct cell types in 

the uterus (blue), decidua (pink), and cervix (orange). Blue dotted lines distinguish major 

cell types: myeloid, endothelial, stromal, smooth muscle, epithelial, and lymphoid.

SMC, smooth muscle cell; NK, natural killer. See also Figure S1.
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Figure 2. Preterm labor induced by E. coli dysregulates the repertoire and gene expression of 
immune and non-immune cell types in reproductive tissues
(A) Color-coded uniform manifold approximation and projection (UMAP) plot showing the 

effects of preterm labor on the abundance of specific cell types (red) compared to the control 

(blue).

(B–D) Bar plots showing the numbers of each cell type in the uterus, decidua, and cervix. 

The comparison of cell numbers between the two study groups for each cell type was 

performed using a 2-sided t test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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(E–G) Bar plots showing the numbers of differentially expressed genes (DEGs) induced 

by preterm labor in each cell type in the uterus, decidua, and cervix. Red and pink bars 

indicate upregulated and downregulated DEGs, respectively (derived from DESeq2, q < 0.1). 

The comparisons of the fraction of downregulated and upregulated DEGs in each cell type 

between the study groups were calculated using two-sided binomial tests. *q < 0.05, **q < 

0.01, ***q < 0.001, ****q < 0.0001.

(H–J) Quantile-quantile plot showing differential expression of genes analyzed for selected 

enriched cell types from the uterus, decidua, and cervix. Deviation above the 1:1 line (solid 

black line) indicates enrichment.

See also Figure S2 and Tables S1 and S2.
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Figure 3. Preterm labor induced by E. coli involves conserved cell types that display distinct 
processes in reproductive tissues
(A) Venn diagrams showing the numbers of differentially expressed genes (DEGs; q < 0.1) 

that are exclusive to or shared among the uterus, decidua, and cervix.

(B) Boxplots showing the correlation of specific cell types affected by preterm labor and 

conserved across the uterus, decidua, and cervix, using the Spearman’s method.

(C–E) Cluster profiler dot plots showing the preterm labor-associated Gene Ontology (GO) 

biological processes that are exclusive to or shared among

(C) neutrophil, (D) monocyte and macrophage, and (E) epithelial cell types from the uterus, 

decidua, and cervix. The size and color of each dot represent gene ratio and significance 

level, respectively. 1-sided Fisher’s exact tests were used.
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See also Figures S3 and S4 and Table S2.
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Figure 4. Cellular interactions in the uterus during preterm labor
(A and B) Alluvial plots showing the roles of specific cell types as senders or receivers 

of preterm labor-associated signaling in the uterus based on selected enriched signaling 

pathways comparing the overall information flow within networks between preterm labor 

and control derived from CellChat (full list of pathways in Figure S5B). Connecting lines are 

color coded and represent the participation of each cell type as senders or receivers of the 

indicated signaling pathway. Line thickness is proportional to the strength of interaction.
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(C) Arrow plot showing changes in outgoing and incoming interaction strength between 

preterm labor (point of the arrow) and control conditions (base of the arrow) for specific cell 

types in the uterus.

(D) Circle plots showing the top 25% increased (red) or decreased (blue) signaling 

interactions in the uterus for specific pathways in preterm labor compared to controls.

(E) Circle plots showing the top 25% of aggregated interactions among cell types in the 

uterus for control and preterm labor groups. Each node represents a cell type, and the 

interaction is shown by lines color coded based on the sender cell.

PTL, preterm labor. See also Figures S5 and S6 and Table S3.
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Figure 5. Cellular interactions in the decidua during preterm labor
(A and B) Alluvial plots showing the roles of specific cell types as senders or receivers of 

preterm labor-associated signaling in the decidua based on 11 enriched signaling pathways 

comparing the overall information flow within networks between preterm labor and control 

conditions derived from CellChat (full list of pathways in Figure S6B). Connecting lines are 

color coded and represent the participation of each cell type as a sender or as a receiver of 

the indicating signaling pathway. Line thickness is proportional to the strength of interaction.
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(C) Arrow plot showing changes in the outgoing and incoming interaction strength between 

preterm labor (point of the arrow) and control conditions (base of the arrow) for specific cell 

types in the decidua.

(D) Circle plots showing the top 25% increased (red) or decreased (blue) signaling 

interactions in the decidua for specific pathways in preterm labor compared to controls.

(E) Circle plots showing the top 25% of aggregated interactions among cell types in the 

decidua for control and preterm labor groups. Each node represents a cell type, and the 

interaction is shown by color-coded lines.

PTL, preterm labor. See also Figures S6 and S7 and Table S3.
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Figure 6. Cellular interactions in the cervix during preterm labor
(A and B) Alluvial plots showing the roles of specific cell types as senders or receivers 

of preterm labor-associated signaling in the cervix based on selected enriched signaling 

pathways (full list of pathways in Figure S7B). Connecting lines are color coded and 

represent the participation of each cell type as a sender or as a receiver of the indicating 

signaling pathway. Line thickness is proportional to the strength of interaction.
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(C) Arrow plot showing changes in the strength of outgoing and incoming interactions 

between preterm labor (point of the arrow) and control conditions (base of the arrow) for 

specific cell types in the cervix.

(D) Circle plots showing the top 25% increased (red) or decreased (blue) signaling 

interactions in the cervix for specific pathways in preterm labor compared to controls.

(E) Circle plots showing the top 25% of aggregated interactions among cell types in the 

cervix for control and preterm labor groups. Each node represents a cell type, and the 

interaction is shown by color-coded lines.

PTL, preterm labor. See also Figures S6 and S8 and Table S3.
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Figure 7. Shared cellular signaling pathways in the murine uterus and human myometrium 
during the processes of preterm and term labor
(A) Heatmap showing the differential interaction strength among cell types in the murine 

uterus with preterm labor. Red and blue shading indicate increased or decreased signaling, 

respectively, in preterm labor compared to control.

(B) Heatmap showing the differential interaction strength among cell types in the human 

myometrium with term labor. Red and blue shading indicate increased or decreased 

signaling, respectively, in term labor compared to term without labor.
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(C) Circle plots representing the top 25% murine uterine cell-cell communications inferred 

for the collagen, IL-1, and CCL pathways for the control and preterm labor groups.

(D) Circle plots representing the top 25% human myometrial cell-cell communications 

inferred for the collagen, IL-1, and CCL pathways for the control and preterm labor groups.

EVT, extravillous trophoblast; ILC, innate lymphoid cell; LED, lymphoid endothelial 

decidual cell. See also Figure S9.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

The Monoclonal Rabbit Anti-Mouse CD45 Cell Signaling Technology Cat#70257S; RRID: AB_2799780

Rabbit FLEX Universal Negative Control Agilent Cat# IR60066-2

Monoclonal Rabbit Anti-Mouse F4/80 Cell Signaling Technology Cat# 70076S; RRID: AB_2799771

Monoclonal Rabbit Anti-Mouse CD3ε Cell Signaling Technology Cat# 78588S; RRID: AB_2889902

Monoclonal Rabbit Anti-Mouse Klrb1c/CD161c Cell Signaling Technology Cat# 39197S; RRID: AB_2892989

Polyclonal Rabbit Anti-Mouse Ly6C HuaBio Cat# HA500088

Monoclonal Rabbit Anti-Mouse Ly6G Cell Signaling Technology Cat# 87048S; RRID: AB_2909808

Bacterial and virus strains

Escherichia coli ATCC ATCC 12014

Critical commercial assays

Umbilical Cord Dissociation Kit, human Miltenyi Biotec Cat# 130-105-737

Dead Cell Removal Kit Miltenyi Biotec Cat# 130-090-101

Chromium Next GEM Single Cell 3′ GEM, Library &Gel 
beads Kit

10× Genomics PN:1000121

Chromium Next GEM Chip G Single Cell Kit 10× Genomics PN:1000120

Single Index Kit T Set A 10× Genomics PN: 1000213

SPRIselect Reagent Beckman Coulter Item Number: B23318

Deposited data

scRNA-sequencing This paper Gene Expression Omnibus: GSE200289

Scripts This paper Zenodo: https://doi.org/10.5281/zenodo.7335384

Experimental models: Organisms/strains

Mouse: C57BL/6 The Jackson Laboratory RRID: IMSR_JAX:000664

Mouse: BALB/cByJ The Jackson Laboratory RRID: IMSR_JAX:001026

Software and algorithms

Cell Ranger version 4.0.0 10× Genomics http://www.10xgenomics.com

STAR aligner (Dobin et al.)131 https://github.com/alexdobin/STAR

Demuxlet (Kang et al.)132 https://github.com/statgen/demuxlet

SoupX version 1.5.2 (Young et al.)133 https://github.com/constantAmateur/Soup

DoubletFinder 2.0.3 (McGinnis.)134

Seurat version 4.0.3 (Stuart et al.)135

(Hafemeister et al.)136
https://satijalab.org/seurat/

Harmony package in R version 1.0.0 (R package from 
CRAN)

(Korsunsky et al.)137 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Uniform Manifold Approximation and Projection for 
Dimension Reduction (UMAP) algorithm

(McInnes et al.)138

(Becht et al.)139
N/A

SingleR package in R version 1.6.1 (Aran et al.)140 https://doi.org/10.18129/B9.bioc.SingleR

Mouse Cell Atlas and single-cell MCA (scMCA) package in 
R version 0.2.0

(Han et al.)141 http://bis.zju.edu.cn/MCA/search.html

DESeq2 R package version 1.32.0 (Love et al.)142 https://doi.org/10.18129/B9.bioc.DESeq2

clusterProfiler in R version 4.0.4 (Yu et al.)143 https://doi.org/10.18129/B9.bioc.clusterProfiler

CellChat version 1.1.2 (R package from CRAN) (Jin et al.)113 N/A

ggalluvial version 0.12.3 (R package from CRAN) N/A

ggplot2 version 3.3.5 (R package from CRAN) N/A

Other

Human uterine scRNA-seq data (Pique-Regi et al.)70 dbGaP: phs001886.v4.pl
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