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Abstract: Diabetic neuropathy is one of the most common complications of diabetes. This complica-
tion is peripheral neuropathy with predominant sensory impairment, and its symptoms begin with
hyperesthesia and pain and gradually become hypoesthesia with the loss of nerve fibers. In some
cases, lower limb amputation occurs when hypoalgesia makes it impossible to be aware of trauma
or mechanical stimuli. On the other hand, up to 50% of these complications are asymptomatic and
tend to delay early detection. Therefore, sensitive and reliable biomarkers for diabetic neuropathy
are needed for an early diagnosis of this condition. This review focuses on systemic biomarkers
that may be useful at this time. It also describes research on the relationship between target gene
polymorphisms and pathological conditions. Finally, we also introduce current information on
regenerative therapy, which is expected to be a therapeutic approach when the pathological condition
has progressed and nerve degeneration has been completed.

Keywords: diabetic neuropathy; biomarker; regenerative medicine; supplementation therapy with
exogenous; cytokines cell transplantation therapy; exosome

1. Introduction

Diabetic neuropathy is the earliest and most frequent complication of the three major
complications associated with diabetes, but it is often not diagnosed until the disease
has seriously progressed [1]. Therefore, early diagnosis is extremely important for care
and treatment. This complication is peripheral neuropathy with predominant sensory
impairment, and its symptoms are hyperesthesia, pain, and a gradual loss of sensation
due to the loss of nerve fibers. When hypoalgesia occurs, trauma and mechanical irritation
cannot be noticed; as a result, foot ulcers and gangrene may occur, leading to amputation
of the lower limbs [2]. Therefore, since this disease imposes a physical and mental burden
on patients and their families and decreases the quality of life, it is important to develop
diagnostic methods with high sensitivity for its early detection. It has been clarified that
the onset and progression of neuropathy can be suppressed by strictly controlling the blood
glucose levels of diabetic patients over long periods of time [3,4]; however, it is difficult to
completely prevent neuropathy. Currently, symptomatic treatment is the only option, as
there is no reliable and effective treatment method.

It has been reported that up to 50% of diabetic peripheral neuropathy cases can be
asymptomatic [5]. Therefore, together with clinical symptoms and neurological findings
for the early detection of diabetic neuropathy, more sensitive and convenient biomarkers
that detect the severity or stage progression are required. Information on the pathogenic
mechanism is required for the development of biomarkers; however, there are different
theories on the pathogenic mechanism of diabetic neuropathy, which makes the study of its
mechanism very complicated [6]. Due to glucose uptake independent of insulin, metabolic
changes occur in peripheral nerve tissue when hyperglycemic conditions persist. Due to
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damage to vascular endothelial cells of neurotrophic blood vessels and degeneration of
nerve fibers (axons and Schwann cells), diabetic neuropathy finally appears. (1) Promotion
of polyol metabolism, (2) promotion of the production of advanced glycation end products
(AGEs), (3) an increase in free radicals, (4) a decrease in NO levels, and (5) promotion of
the activity of protein kinase Cβ (PKCβ) have been proposed to be involved in metabolic
changes. It is reported that they function synergistically to cause this disease. Since
biomarkers reflect the complexity of these etiologies and the progression of the pathological
condition, several types of factors have been identified as potential biomarkers of diabetic
neuropathy. These include factors closely linked to the etiology, those associated with the
progression of pathological conditions such as inflammation, and molecules involved in
the cellular response to vascular endothelial cell damage and neurodegeneration.

In addition to biomarkers localized in intracellular organelles or specific cells, this
review focuses on systemic biomarkers, such as serum, which are less invasive and can be
easily quantified. Other excellent reviews [7–9] also describe local biomarkers. In addition,
since biomarkers are molecules whose levels fluctuate during disease progression, they are
often the cause on their own; hence, supplementing them can slow down or restore the
progress of disease. This review also outlines current information on regenerative therapy,
which is expected to be a treatment method when the condition progresses and nerve
degeneration is complete.

2. Biomarkers for Diabetic Neuropathy

In this review, biomarkers for diabetic neuropathy are divided into four groups:
(a) AGE-related molecules (methyl glyoxal and glyoxalase I), (b) molecules that participate
in the progression of inflammation (Toll-like receptors, TNF-α, miR-146a, adiponectin, etc.),
(c) molecules associated with nerve damage (nerve specificity enolase and semaphorin), and
(d) molecules involved in nerve protection (nerve growth factor and HSP27). Group (a) is
considered the causative agent of the onset of diabetic neuropathy, and the biomarkers from
groups (b)–(d) are regarded as those that manifest in the late stage of disease progression.
Table 1 summarizes the biomarkers for diabetic neuropathy covered in this section.

2.1. AGE-Related Molecules
2.1.1. AGEs and Their Precursors

Non-enzymatic glycation of proteins has been established as a major cause of dia-
betic complications, such as nephropathy and macroangiopathy. Excessive accumulation
of AGEs is also observed in peripheral nerve tissue in diabetic neuropathy, which has
been shown to correlate with a decrease in the number of nerve fibers [10]. Impaired
axonal transport due to the modification of major axonal cytoskeletal proteins, such as
tubulin, by AGEs [11] and impaired axon regeneration due to modification of the basement
membrane protein laminin [12] are thought to contribute to the development of neural
lesions. In addition, in knockout mice lacking AGE receptors (AGEs: RAGE), the loss of
pain perception was prevented, demonstrating that RAGE expression is directly involved
in the onset of neuropathy [13]. Accumulation of AGEs in nerve tissue is considered to
be a major cause of the onset and progression of neuropathy in humans. However, the
measurement of AGEs in tissues is difficult in terms of the collection and quantification
of samples and does not seem to be suitable as a biomarker. On the other hand, reactive
dicarbonyls, such as methylglyoxal and α-oxoaldehyde (Figure 1), which are precursors of
AGEs, are receiving much attention as biomarkers for predicting the onset and progression
of diabetic neuropathy [14]. Bierhaus et al. [15] reported that methylglyoxal depolarizes
sensory nerves, causes post-translational modification of the voltage-gated sodium channel
Nav 1.8, and induces hyperalgesia. Furthermore, it was reported that the cold receptor
channel transient receptor potential cation channel A1 (TRPA1) was also activated, causing
temperature and mechanical hyperalgesia [16]. When methylglyoxal was administered to
mice, a decrease in nerve conduction velocity and promotion of the secretion of calcitonin
gene-related peptides from cutaneous nerve endings were observed, and hyperalgesia
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to heat stimulation and mechanical stimulation was induced. Similar changes were ob-
served in streptozotocin-induced and hereditary diabetic mouse models but not in Nav 1.8
knockout mice. Likewise, microinjection of methylglyoxal into the skin of healthy human
volunteers also induces chemical pain sensations and thermal hyperalgesia [17]. These
findings strongly suggest that the mechanism of hyperalgesia in diabetic neuropathy is due
to methylglyoxal itself. Furthermore, recent reports from animal experiments have shown
that both hyperalgesia and itching and hypoalgesia are induced by direct intradermal or
intrathecal injection [18]. Therefore, methylglyoxal can reproduce various symptoms of
diabetic neuropathy that resemble clinical symptoms. Hansen et al. reported no association
between serum methylglyoxal and the occurrence of diabetic peripheral neuropathy in a
cohort of well-treated patients with short-term type 2 diabetes [19]. On the other hand,
Andersen et al. [20] reported a significant association, suggesting that higher levels of
methylglyoxal are identified as risk factors for the development of diabetic neuropathy
Thus, there are discrepancies in the results depending on the length of the survey period,
and a detailed examination is awaited.
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2.1.2. Glyoxalase I (GLO I)

It is well known that there is a pathway for degrading reactive dicarbonyls such as
methylglyoxal in vivo by glyoxalase I (GLO I), the rate-determining enzyme [21]. Recently,
it has been shown that the expression of GLO I varies in sensory neurons from two inbred
strains of mice. Neuropathic symptoms, such as a decreased pain threshold and decreased
intraepidermal nerve fiber density, observed in diabetic conditions are significantly sup-
pressed in mice with high GLO I activity [22]. From these results, it can be assumed that the
presence or absence of GLO I gene polymorphism affects the onset of diabetic neuropathy
in humans. Multiple GLO I gene polymorphisms are known to exist, some of which have
decreased enzymatic activity, suggesting that there are individual differences in GLO I
activity [23]. A recent report showed a significant correlation between decreased GLO I
activity in serum samples and painful diabetic neuropathy [24]. In addition, Groener et al.
reported that the incidence of diabetic neuropathy was predominantly higher in type 2
diabetic patients with a mutant homozygous for C332C in the GLO I gene [25]. Thus, GLO
I activity may be a useful biomarker.

2.2. Molecules That Participate in the Progression of Inflammation
2.2.1. Toll-Like Receptor (TLR)

Toll-like receptors (TLRs) are receptors that play an important role in the innate
immune response [26]; among these, TLR4 is associated with many diseases of the immune
system [27]. On the other hand, in the peripheral nerves of diabetic humans and animals,
infiltration of inflammatory cells, such as macrophages and lymphocytes, is observed, and
the production of cytokines, such as tumor necrosis factor (TNF-α) and interleukin (IL), is
enhanced [28]. TLR2/4-knockout mice are less likely to develop neuropathy due to the
ingestion of a high-fat diet, suggesting a relationship with the pathogenic mechanism of
diabetic neuropathy [29].

Zhu et al. investigated the expression levels of TLR4 and its downstream genes in
human peripheral blood mononuclear cells collected from patients with type 2 diabetes [30].
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It was observed that the expression levels of TLR4 were increased in diabetic patients who
developed neuropathy compared to those in healthy subjects and diabetic patients who
did not develop neuropathy. Furthermore, the levels of TNF-α and IL-6 in serum were
also significantly increased in diabetic patients who developed neuropathy. These results
suggest that TLR4 may be a useful marker for diabetic neuropathy. However, this study
was conducted only on patients with type 2 diabetes, and the number of subjects was
relatively limited; therefore, further research is needed. Another group has also reported
elevated levels of TNF-α in the serum samples of patients with diabetic neuropathy [31].

There are multiple gene polymorphisms in TLR4; the TLR4 Asp299Gly gene polymor-
phism participates in the decrease in IL-8 production after LPS stimulation [32]. In patients
with type 2 diabetes with this polymorphism, the incidence of diabetic neuropathy was
reduced [33]. However, no consensus has been reached because such a correlation was not
found in reports from other groups [34].

2.2.2. Adiponectin

Adiponectin is an adipocytokine secreted by adipocytes and is a 30 kDa protein.
Adiponectin plays various roles in human metabolism, such as lipid regulation, glucose
metabolism, and increased insulin sensitivity [35]. Several studies have investigated the
relationship between serum adiponectin levels and diabetic nerve injury. Although there is
an association between them, corroborating results have not always been obtained. For
example, a cross-sectional study in India examined serum adiponectin in 487 patients
with type 2 diabetes and found that diabetic patients with neuropathy had significantly
higher levels of adiponectin than those without it [36]. Similarly, a study by Pradeepa et al.
reported that a high level of adiponectin was associated with an increased incidence of
neuropathy [37]. On the other hand, although serum adiponectin levels are associated
with diabetic neuropathy, the KORA F4/FF4 study reported that decreased, rather than
elevated, serum adiponectin levels were associated with diabetic peripheral neuropathy
incidence [38]. Therefore, these conflicting studies suggest that different genetic back-
grounds and target ages due to diversity in the ethnic composition of participants affect
adiponectin levels in serum. However, these results also suggest that there is a relationship
between serum adiponectin levels and the development of diabetic neuropathy. Therefore,
adiponectin remains one of the promising biomarkers for the future, and it is expected that
more standardized research will be conducted across different racial groups.

2.2.3. MicroRNAs (miRNAs)

miRNAs are non-coding single-stranded RNA, about 20–22 bases in length, which con-
trol gene expression by suppressing degradation or translation by complementarily binding
to the 3’ untranslated region of the target mRNA [39]. miRNAs are attracting attention as
new biomarkers, as their expression patterns are relevant to pathophysiological processes.

miR-146a is one of the miRNAs whose expression levels are reduced in the serum
samples of diabetic patients [40]. Wang et al. reported that hyperglycemia downregulated
miR-146a expression and elevated interleukin-1 receptor activated kinase (IRAK1) and
tumor necrosis factor receptor-associated factor 6 (TRAF6) levels in dorsal root ganglia
(DRG) neurons [41]. Furthermore, miR-146a has been shown to play an important role in
mediating DRG neuron apoptosis under hyperglycemic conditions.

Other candidate miRNAs that could be useful biomarkers are being explored. Massaro
et al. recently performed the miRNA expression profiling of peripheral blood mononuclear
cells collected from 63 diabetic patients, classified them according to the type of complica-
tion [42], and identified the miRNA groups that were specifically upregulated in the diabetic
neuropathy group (miR-125a-5p, miR-145-3p, miR-99b-5p, and miR-873-5p). Furthermore,
serum miR-518d-3p and miR-618 were upregulated in patients with diabetic peripheral
neuropathy compared to individuals without microvascular complications in a cohort study
of patients with type 1 diabetes [43]. These data suggest that circulating miRNAs may serve
as potential biomarkers for the diagnosis of diabetic neuropathy in the future.
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2.3. Molecules Associated with Nerve Damage
2.3.1. Neuron-Specific Enolase (NSE)

Nerve-specific enolase (NSE) is a glycolytic enzyme that exists specifically in nerve
tissue and shows a high positivity rate, especially in small-cell lung cancer and neuroblas-
toma. Therefore, NSE is widely used as a tumor marker for detecting these diseases [44–46].
Li et al. investigated the relationship between blood NSE levels and diabetic neuropathy
because the synthesis of these enzymes may be altered during the process of degenera-
tion and regeneration of peripheral nerves due to the oxidative stress caused by chronic
hyperglycemia [47]. The serum NSE levels were slightly higher in the type 1 and type 2
diabetic groups than in the control group. In particular, they increased in the group with
neuropathy. This relationship was independent of fasting blood glucose, HbA1c, duration
of illness, diabetic type, age, gender, renal function, and serum NSE levels, which were
associated with the degree of neuropathy. In addition, it has recently been reported that the
value decreased not only with the onset and progression but also with the improvement in
neuropathy in response to treatment [48]. This result suggests that NSE may be a marker
for predicting therapeutic effects as well as for early detection of diabetic neuropathy;
however, future studies, including large-scale clinical trials, are awaited.

2.3.2. Semaphorins

Semaphorins are a large family of proteins originally identified as axon guidance
factors of the developing nervous system. They are multifunctional proteins that play
important roles in various biological processes, such as immune responses, organogen-
esis, and angiogenesis [49–51]. Since these proteins are also involved in axon guidance
during the regeneration process after damage to peripheral nerves, they may be ideal
candidates as biomarkers for diabetic neuropathy. Several studies reported that these
proteins were induced in peripheral nerves distal to a transection or crush injury in a
ligation rat model [52,53]. In addition, the administration of recombinant Semaphorin
3A (Sema3A) protein attenuated mechanical allodynia and heat hyperalgesia in chronic
constriction injury (CCI) rats [54]. In line with these observations, Wu et al. reported that
higher Semaphorin 3A expression was accompanied by reduced intraepidermal nerve fiber
density in the skin of diabetic patients compared with that in control subjects [55].

Table 1. Biomarkers for diabetic neuropathy mentioned in this review.

Biomarker
Candidate Sample Source Quantitative

Method Function Changes during
Neuropathy Literature

(a) AGEs related

Methylglyoxal Human serum HPLC

Post-translational
modification of

voltage-gated sodium
channel Nav 1.8 causes

hyperalgesia. In addition,
it activates TRPA1 and

induces temperature and
mechanical hyperalgesia.

When administered to mice,
hyperalgesia due to

thermal and mechanical
stimulation is induced.

[14–20]

Glyoxalase I (GLO I) Mouse DRG
Human serum Colorimetric method

A rate-limiting enzyme
that decomposes reactive

dicarbonyls such as
methylglyoxal

The neuropathic symptoms
observed in diabetic

conditions are significantly
suppressed in mice with
high GLO I activity. In

humans, decreased GLO I
activity is also significantly

correlated with the
frequency of painful

neuropathy

[21–25]
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Table 1. Cont.

Biomarker
Candidate Sample Source Quantitative

Method Function Changes during
Neuropathy Literature

(b) Inflammation-related molecules

TNF-α Human serum ELISA

Expression of cell
adhesion molecules and
induction of apoptosis

Increased inflammatory
mediator

It is elevated in type 2
diabetic patients in the

control group and in the
diabetic and neuropathy
group compared to the

diabetic group

[28,29]

TLR4

Human
peripheral

blood
mononuclear cells

qPCR
Receptors involved in

innate
immunity

It is elevated in type 2
diabetic patients in the

control group and in the
diabetic and neuropathy
group compared to the

diabetic group

[30–34]

Adiponectin Human serum ELISA
Adipocytokines

produced and secreted by
adipocytes

There is a significant
difference between the
control group and the
diabetic group with

neuropathy compared with
the control group in type 2

diabetic patients (the
distinction differs

depending on the report).

[36–38]

miR-146a Human Serum
Mouse DRG qPCR Negative feedback on

inflammatory response

It is elevated in patients
with type 2 diabetes, but its

association with
neuropathy has not been
investigated. In diabetic

neuropathy mice, the
expression level in the DRG
is reduced, and the forced

expression in the DRG after
culture acquires resistance
to hyperglycemia-induced

apoptosis.

[40,41]

(c)Molecules associated with nerve damage

Nerve-
specificenolase

(NSE)
Human serum ELISA

Glycolytic enzymes
specific to nerve tissue
(Leakage due to nerve

damage)

It is elevated in type 1 and
type 2 diabetic patients
compared to the control
group, especially in the
group with neuropathy.

[47,48]

Semaphorin Mouse
sciatic nerve qPCR Nerve axon elongation

guidance factor

These mRNAs are induced
in the sciatic nerve in a rat

sciatic nerve
ligation model.

[52–55]

(d) Molecules involved in neuroprotection

NGF Human serum ELISA
Neurotrophic factors

involved in nerve
regeneration

It is lower in type 2 diabetic
patients in the control

group and in the diabetic
and neuropathy group than

in the diabetic group

[56–59]

HSP27 Human serum ELISA Cell protective factors in
the presence of stress

It is elevated in type 1 and
type 2 diabetic patients
compared to the control
group, especially in the
group with neuropathy.

[60–64]

However, there is no information about changes in the expression of these genes in
diabetic neuropathy animal models. Therefore, we investigated the expression levels of six
types of semaphorin molecules in diabetic neuropathy model mice. As the results indicate,
no statistically significant changes were observed in the expression levels of any of the
molecular species (unpublished data).
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2.4. Molecules Involved in Nerve Protection
2.4.1. Nerve Growth Factor (NGF)

Neurotrophic factors are growth factors that can promote the survival and growth
of neurons. In diabetic mice, decreased expression of neurotrophic factors, such as nerve
growth factor (NGF), in nerve tissue or surrounding tissues was observed at the onset of
neuropathy. Furthermore, the administration of exogenous nerve growth factor leads to an
improvement in diabetic neuropathy [56]. Therefore, neurotrophic factors are considered
to be candidates for biomarkers for diabetic neuropathy, but there are not many reports
of such studies in humans. To date, there have been three reports of significantly reduced
blood NGF levels in diabetic patients with neuropathy [57–59]. However, serum NGF
levels were not associated with neuropathy severity in patients with diabetic peripheral
neuropathy in some studies [59]. Therefore, it remains unknown whether NGF is useful
enough for predicting diabetic neuropathy and understanding its pathophysiology. Further
studies are required to clarify these points.

2.4.2. Heat Shock Protein (HSP27)

HSP27 is a small heat shock protein that plays an important role in cell protection
under stress. Increased levels of HSP27 have been observed in DRG cells of the spinal
cord in diabetic mice [60]. In addition, this protein plays a role in protecting Schwann
cells from apoptosis [61]. Although several studies have investigated the relationship
between serum HSP27 levels and patients with diabetic neuropathy [62–64], these results
are conflicting. One study reported a correlation between blood HSP27 levels in patients
and the occurrence of diabetic polyneuropathy. However, other reports for HSP27 were
not in agreement. Further investigation, such as prospective cohort studies, is necessary to
clarify this.

3. Current Status of Regenerative Medicine
3.1. Supplementation Therapy with Exogenous Cytokines

Since there is no effective therapy for diabetic neuropathic pain, symptomatic treat-
ment is the only option. In the case of diabetic neuropathy progress in which vascular
and nerve degeneration is complete, impaired nerve function cannot be restored by these
treatments. Regenerative medicine is an alternative method that has the potential to restore
nerve damage caused by diabetic neuropathy. It can be divided into two approaches:
(1) supplementation therapy with exogenous cytokines and (2) cell transplantation therapy.
In the former, several cytokines have been investigated for the treatment of diabetic neu-
ropathy. These proteins include vascular endothelial growth factor (VEGF) [65], hepatocyte
growth factor (HGF) [66], basic fibroblast growth factor (bFGF) [67], and NGF [56]. It
has been shown that the gene transfer of these factors or administration of recombinant
proteins elicits several limited therapeutic effects. Although most studies are limited to
animal experiments, improvements in nerve blood flow and nerve function through an-
giogenesis in perineural tissues have been observed. For VEGF, a phase II clinical trial
was conducted in humans using an expression plasmid [68]. Although no significant
difference was observed in the improvement of sensory function and nerve conduction
velocity 6 months after intramuscular injection, the subjective symptom score improved in
that study. The intramuscular administration of an engineered zinc finger protein activator
of endogenous VEGF-A showed improvement in the nerve function of the treated mice [69].
However, there are several problems with this therapy. Ectopic angioplasty cannot be
fully avoided using VEGF gene therapy. VEGF expression is associated with the onset of
diabetic retinopathy [70], and administration of VEGF may exacerbate retinopathy.

We have confirmed the therapeutic effect of VEGF and its homolog placental growth
factor 2 (PlGF-2) gene transfer by electroporation in diabetic mice [71,72]. We also found
that some isoforms (VEGF-121, PLGF-1) with angiogenic activity do not have the effect of
improving nerve function. This result suggests that vascular growth factor may improve
nerve function by a pathway different from the VEGF pathway, which is not relevant to
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angiogenesis. Therefore, if this putative mechanism can be elucidated, it will help in the
development of therapeutic agents for new strategies.

3.2. Cell Transplantation Therapy

Several cell lines have been reported as a source for cell transplantation therapy.
These cell lines include mononuclear cells [73], mesenchymal stem cells [74], endothelial
progenitor cells [75], etc. In these studies, restoration of nerve function was attributed to
several mechanisms induced by cell transplantation. It has been suggested that these cells
produce angiogenesis and nerve growth factors at the transplant site and may directly
affect tissue repair.

Supplementation therapy with cytokines has the problem of low expression efficiency
of the introduced gene vector, and the expression of the gene is transient. On the other hand,
cell transplantation therapy, a system that continuously expresses the factors necessary
for tissue regeneration, is very attractive, but there is concern about its safety because the
long-term continuous expression of biologically active substances may cause unexpected
side effects. It is important that data on clinical efficacy and safety be accumulated for
both therapies.

Exosomes are vesicles secreted by cells with a size of approximately 30–120 nm and
have a lipid bilayer structure [76]. When first discovered, exosomes were thought to be
garbage bags for discarding unnecessary cellular components. They include not only
lipids and proteins but also nucleic acids, such as miRNA and mRNA. Recent studies
have revealed that exosomes play an important role as signal mediators for cell–cell
communication. In addition, they have regenerative properties, which encourage their
application for therapeutic purposes. This approach, using exosomes, is considered to have
the advantages of both cytokine replacement and cell therapy.

The application of exosomes to therapy for diabetic neuropathy has recently been
reported. Lopez-Verrilli et al. observed that Schwann cell-derived exosomes (SC-exos) were
internalized by DRG axons and promoted axon regeneration [77]. Wang et al. reported
that SC-exos have the effect of increasing the density of intraepidermal nerve fibers in the
footpad and reduce myelin damage in the sciatic nerve, which are neuropathy symptoms
found in diabetic neuropathy mice [78]. On the other hand, SC-exos cultured under high-
glucose conditions tended to reduce epidermal nerve fibers and promote the development
of diabetic neuropathy. SC-exos contained miR-21, miR-27a, and miR-146a, but the miR-
27a-depleted exosomes lost their effect of promoting axonal growth and Schwann cell
migration in DRG neurons. Therefore, it is believed that miR-27a plays an important role
in the improvement of nerve function.

Like SC-exos, exosomes derived from mesenchymal stromal cells (MSCs) have also
been found to have a significant improvement effect on neuropathy symptoms after their
administration in mice [79]. This effect is believed to be due to inhibition of the inflamma-
tory response by MSC-exosomes and neurovascular remodeling.

As described above, the effectiveness of regenerative therapy for diabetic neuropathy
has been proven in animal studies as summarized in Table 2. However, several problems
need to be solved before medical application. In cytokine replacement therapy, a precise
gene delivery system is necessary for gene therapy, which sustains the effect of cytokines
at the target region. In addition, the efficacy of gene transfer is expected to have a limited
duration of action when compared with cell transplantation therapy.

Cell transplantation therapy presents several problems in clinical application, such
as tumorigenesis, immunological rejection, and ethical issues. Moreover, it is important
to ensure the safety and quality of cells that will be therapeutically effective. Compared
to the above two methods, therapy using exosomes seems to be more advantageous
because it contains microRNA, cytokines, and other biologically active molecules, which
are necessary substances for cell therapy itself. However, this approach also has several
challenges, such as establishing cell lines to produce enough exosomes and standardizing
the quality of exosomes.
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Table 2. Regenerative medicine mentioned in this review

Supplementation Therapy with Exogenous Cytokines

Method Clinical Significance Literature

hepatocyte growth factor (HGF) nonviral liposome-mediated
gene transfer

Improvement in nerve
conduction velocity [66]

basic fibroblast growth facto (bFGF) intramuscular injection of
recombinant bFGF protein

Improvement in the motor nerve
conduction velocity of the sciatic nerve

and in sciatic nerve blood flow
[67]

nerve growth factor (NGF) recombinant protein Improvement of thermal allodynia in
streptozotocin-induced diabetic rats. [56]

placental growth factor 2 (PLGF-2) intramuscular gene transfer of
plasmid DNA by electroporation

Improved hypoalgesia in diabetic mice
Restoration sensory nerve function [72]

Cell transplantation therapy
cell source Clinical Significance Literature

mononuclear cells bone marrow

Improvement of mechanical
hyperalgesia and cold allodynia in

streptozotocin-induced diabetic rats.
Improvement in sciatic motor nerve
conduction velocity, sensory nerve

conduction velocity

[73]

mesenchymal stem cells bone marrow

Improvement of mechanical
hyperalgesia in streptozotocin-induced

diabetic rats. Restoration of nerve
conduction velocity and sciatic nerve

blood flow

[74]

endothelial progenitor cells umbilical cord blood
Improvement in sciatic motor nerve

conduction velocity and sciatic nerve
blood flow

[75]

Exosome
exosome source Clinical Significance Literature

Schwann cell-derived exosomes Schwann cell

Improvement in sciatic nerve
conduction velocity and increasing

thermal and mechanical sensitivity in
diabetic mouse

[78]

Mesenchymal stromal
cell-derived exosomes bone marrow

Improvement of thermal and
mechanical sensitivity in diabetic

mouses. Improvement in sciatic motor
nerve conduction velocity,

sensory nerve
conduction velocity

[79]

Despite these challenges, the fact remains that regenerative therapy is a promising
treatment for patients with advanced disease stages. Thus, it is expected that data on
clinical efficacy and safety will be accumulated for each method.

4. Conclusions

Diabetic neuropathy reduces the quality of life of patients. Therefore, the development
of diagnostic methods for the early diagnosis of diabetic neuropathy is required. However,
as described in this review, although there have been multiple candidates for biomarkers,
none of them can be applied in full in clinical practice. One of the causes seems to be that
the etiology of this disease is multifactorial, and in addition, the pathological condition
differs depending on the course of a disease from the onset, making it difficult to approach
clinically. Therefore, in order to establish a biomarker for diabetic neuropathy, it is impor-
tant to select the pathological condition according to appropriate diagnostic criteria and
examine it using the same method for each stage. Fortunately, the progress of compre-
hensive analysis technology, represented by microarray analysis and mass spectrometry
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in recent years, is remarkable, and we hope that new biomarkers will be discovered by
utilizing these methods.
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