
RESEARCH ARTICLE

Cross-platform programming model for

many-core lattice Boltzmann simulations

Jonas LattID*, Christophe CoreixasID, Joël Beny

Computer Science Department, University of Geneva, Carouge, Switzerland

* jonas.latt@unige.ch

Abstract

We present a novel, hardware-agnostic implementation strategy for lattice Boltzmann (LB)

simulations, which yields massive performance on homogeneous and heterogeneous

many-core platforms. Based solely on C++17 Parallel Algorithms, our approach does not

rely on any language extensions, external libraries, vendor-specific code annotations, or

pre-compilation steps. Thanks in particular to a recently proposed GPU back-end to C++17

Parallel Algorithms, it is shown that a single code can compile and reach state-of-the-art per-

formance on both many-core CPU and GPU environments for the solution of a given non

trivial fluid dynamics problem. The proposed strategy is tested with six different, commonly

used implementation schemes to test the performance impact of memory access patterns

on different platforms. Nine different LB collision models are included in the tests and exhibit

good performance, demonstrating the versatility of our parallel approach. This work shows

that it is less than ever necessary to draw a distinction between research and production

software, as a concise and generic LB implementation yields performances comparable to

those achievable in a hardware specific programming language. The results also highlight

the gains of performance achieved by modern many-core CPUs and their apparent capabil-

ity to narrow the gap with the traditionally massively faster GPU platforms. All code is made

available to the community in form of the open-source project stlbm, which serves both as

a stand-alone simulation software and as a collection of reusable patterns for the accelera-

tion of pre-existing LB codes.

1 Introduction

1.1 Overview

A highly challenging aspect of High Performance Computing (HPC) is the need to reformulate

and restructure scientific algorithms to perform well on different types of parallel architec-

tures. In the current hardware landscape, a special focus is devoted to many-core platforms,

which include homogeneous systems like the AMD Zen processors investigated in this article,

or heterogeneous systems which use a many-core device as an accelerator, including GPUs or

Intel’s now discontinued Xeon Phi platform. Optimized simulation software can be developed

for given platforms using device specific programming languages or programming paradigms,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Latt J, Coreixas C, Beny J (2021) Cross-

platform programming model for many-core lattice

Boltzmann simulations. PLoS ONE 16(4):

e0250306. https://doi.org/10.1371/journal.

pone.0250306

Editor: Fang-Bao Tian, University of New South

Wales, AUSTRALIA

Received: October 21, 2020

Accepted: April 4, 2021

Published: April 29, 2021

Copyright: © 2021 Latt et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All software

presented in the manuscript is available in the

open-source repository https://gitlab.com/

unigehpfs/stlbm. All performance measurements

used to produce the curves and tables of the

manuscript have been submitted through a

Supporting information File. All data produced in

the article is available in a public Yareta deposit of

the University of Geneva, under the DOI 10.26037/

yareta:uoeloimkhjablexe6a2roh55xq.

Funding: JB was funded by the Swiss PASC

(https://www.pasc-ch.org/) project “An HPC

https://orcid.org/0000-0001-6627-5689
https://orcid.org/0000-0002-0711-9819
https://doi.org/10.1371/journal.pone.0250306
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250306&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250306&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250306&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250306&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250306&domain=pdf&date_stamp=2021-04-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250306&domain=pdf&date_stamp=2021-04-29
https://doi.org/10.1371/journal.pone.0250306
https://doi.org/10.1371/journal.pone.0250306
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/unigehpfs/stlbm
https://gitlab.com/unigehpfs/stlbm
https://doi.org/10.26037/yareta:uoeloimkhjablexe6a2roh55xq
https://doi.org/10.26037/yareta:uoeloimkhjablexe6a2roh55xq
https://www.pasc-ch.org/

including the use of multi-threading on many-core CPUs, or the use of dedicated languages

like OpenCL or Cuda on GPUs. In these cases, the obtained code can be very different from a

desirable code for scientific research, as a strong emphasis is put on meeting hardware con-

straints rather than express the actual numerical model or simulation algorithm. Furthermore,

this approach requires different code bases to be developed for different architectures, which

strongly limits its portability and long-term maintainability.

For this reason, multiple language extensions (such as OpenMP and OpenACC) or

completely new programming languages (such as Futhark) have been introduced, which pro-

pose to achieve notable performance improvements on parallel hardware in a platform-inde-

pendent manner, through the application of targeted directives or through the adoption of a

specific implementation model. In the recent literature, special attention is devoted to func-

tional paradigms, the principles of which are summarized by the so-called map-reduce formal-

ism. In this case, an algorithm to be executed on a collection of data elements is expressed in

terms of two element access functions, the “map” operation that applies a transformation to a

data element, and the “reduce” operation that expresses a global reduction over the trans-

formed elements. The actual, repeated execution of these operations is expressed by the frame-

work instead of the user, allowing for automatic adaptation and optimization of a code on

different devices.

This philosophy of automatic acceleration of functional code is embraced by the C++17

standard. It introduces execution policies for standard algorithms, which we will refer to as

Parallel Algorithms, that allow parallel and SIMD optimizations. Examples of algorithms that

are accounted for by execution policies are transform-reduce (the C++ equivalent of

map-reduce), for_each, which only addresses the “map” part of map-reduce, or problem-

specific functions like the sorting algorithm sort. Parallel Algorithms do not necessarily

exhibit better performance than traditional language extensions, as a given implementation of

the C++ standard library may for example decide to execute Parallel Algorithms with the help

of OpenMP directives. They do however offer an elegant formalism, as all parallel constructs

are expressed as an inherent part of the C++ language. They furthermore offer a strong guar-

antee of cross-platform compatibility and long-term maintainability. Indeed, the C++ language

is standardized by the International Organization for Standardization ISO and widely

embraced by the scientific community. In addition, the maintainability of a code written in C+

+ is guaranteed, because the language is known for its success in maintaining backward com-

patibility over several decades.

While the formalism of Parallel Algorithms is quite recent, it has been tested quite thor-

oughly on many-core CPU systems thanks to the available implementation through Intel’s

Threading Building Blocks, or its implementation in Visual C++. Only recently though, less

than three months before the initial submission of this manuscript, an implementation has

been made available that ports Parallel Algorithms to GPUs in form of the NVIDIA HPC SDK

C++ compiler, allowing to take profit of a truly cross-platform experience of this formalism.

In this manuscript, we propose a model for the implementation of lattice Boltzmann (LB)

codes within the framework of C++ standard algorithms, and show the potential for accelerat-

ing such codes with the help of execution policies. One of the challenges consists in the imple-

mentation of the streaming step, which is non-local and does therefore not fit naturally into

the framework of a repeated application of the “map” element access function to single ele-

ments. Instead, we take profit from the liberties allowed by the C++ standard to deduce the

global index within a data collection for certain types of iterators (including raw pointers), and

manipulate these indices further to achieve non-local data accesses. While this strategy incurs

the cost of added arithmetic operations, the numerical tests show that these do not impact the

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 2 / 29

framework for blood flow simulations in

vasculature and in medical devices”. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0250306

overall performance in a way that would be prohibitive for the use of this method in a HPC

environment.

The proposed modeling environment relies on the usual LB collision-streaming cycles but

expresses the local collision through a cell-independent scheme. This approach opposes the

frequently adopted strategy of adjusting the local collision scheme to implement boundary

conditions (see e.g. the Palabos software [1]). Instead, the streaming model is locally adjusted

to react to encounters with a wall and implement general Dirichlet boundary conditions, fol-

lowing the common, link-based bounce-back approach [2, 3]. This approach allows to build a

framework with the ability to treat both bulk and boundaries coherently across a large variety

of collision models, in a manner that is compatible with efficient many-core parallelism. The

presented validation case of a lid-driven 3D cavity shows that the selected boundary treatment

does not need to hide behind more sophisticated approaches, as the present framework shows

to produce stable and accurate results even with the notoriously unstable BGK collision model.

It is pointed out that, although this path is not further explored in this work, the link-based

bounce-back collision model can be extended to the treatment of general curved boundary

conditions while remaining entirely local (see e.g. [4]).

The result of our efforts is a framework that allows to freely combine six different memory

access schemes with nine different LB collision models and bounce-back based Dirichlet walls.

In all cases, efficient, platform agnostic many-core parallelism is available. The framework is

disseminated in form of the open-source C++ library stlbm, which offers an extensive collec-

tion of reusable codes and patterns for the acceleration of LB software. To enhance the educa-

tional value of the stlbm library, selected self-contained single-file codes are also provided,

which reduce the full software framework to a single memory access scheme and LB collision

model. They illustrate that it is possible to write a cross-platform, efficiently parallelized LB

application in a readable manner and with less than 500 lines of code, including all necessary

data analysis and post-processing functionalities.

The remainder of this introductory section provides a short overview of programming

models used to implement parallel software on many-core platforms, and specifically on strat-

egies used to accelerate LB programs on such platforms. Section 2 summarizes the method

used in this article to implement the LB algorithm and explains in some detail the six schemes

(with different data structures and memory access patterns) and nine collision models avail-

able in stlbm. It then explains the programming model of C++ Parallel Algorithms, and

explains the methodology used to fit the LB algorithm in this model. It finally lists the hard-

ware platforms used to test the performance of the stlbm library. Section 3 presents a valida-

tion case for the stlbm library (a flow in a lid-driven cavity) and performance measurements

for the various implementation schemes, collision models, and hardware platforms considered

in this article. Finally, conclusions are drawn in Section 4. Section 5 provides a link to the

repository containing the open-source stlbm library and to the detailed performance mea-

surements obtained with stlbm.

1.2 Programming models for many-core platforms

The present article investigates two types of many-core platforms, namely homogeneous sys-

tems, in the form of many-core CPUs, and heterogeneous systems, in the form of systems

accelerated with GPUs. In the latter case, the term “heterogenous” refers to the fact that the

program is initially executed on a host (the CPU) which handles the program setup and data

initialization, after which the computationally intensive tasks are typically offloaded to a large

extent to a device (the GPU). Other types of devices, which are not explicitly reviewed here,

include FPGAs and Neural Processing Units (NPUs).

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 3 / 29

https://doi.org/10.1371/journal.pone.0250306

Applications on many-core platforms can be programmed using low-level programming

models, which include threading mechanisms such as POSIX Threads [5] for homogeneous

systems. On heterogeneous systems, a strong standard is available in the form of OpenCL,

which offers a vendor-independent programming model. In practice however, the vendor spe-

cific Cuda programming language [6] has established itself as a de facto standard for heteroge-

neous GPU platforms, a fact which is sometimes attributed to the difficulty of achieving

optimal cross-vendor performances in view of the diversity of many-core architectures [7].

Higher-level programming models, which are the focus of this article, relieve the program-

mers from hardware specific details and allow an increased focus on the implemented algo-

rithm, and potentially a greater independence from the selected hardware platform. The two

reviewed approaches are

• Directive based programming models. This approach, based on extra-language directive

annotations, includes industry standards like OpenMP [8], which is mostly targeted at

homogeneous many-core systems, and OpenACC [9] for heterogeneous platforms. They

typically allow a code to run both on conventional platforms (on which the directives are

simply ignored) and on accelerator-supplied systems.

• Programming models based on C++ and on the C++ STL. C++-based programming mod-

els include DPC++ that is part of Intel’s OneAPI [10], C++ AMP which is based on

DirectX11, AMD’s GPU-oriented C++ API [11], and the unified PACXX programming

model [12] that allows to write both host and device code within the C++14 standard.

Recently, an increased interest is observed for programming models that are based on the

C++ Standard Template Library (STL) or on extensions thereof. For example, Thrust [13] is

a parallel template library in C++ inspired by the STL, which allows a hardware independent

programming style for both many-core CPUs and Nvidia GPUs. However, hardware inde-

pendent program development for many-core platforms is also possible within the strict lim-

its of the C++17 standard, which introduces the concept of Parallel Algorithms. This

concept is exploited by Intel’s Threading Building Blocks (TBB) [14], as well as by the STL

implementation of Visual C++, which provide a backend to C++ Parallel Algorithms for

homogeneous many-core systems. Finally, NVidia introduced very recently a version of the

NVidia HPC SDK which offers an NVidia GPU backend to C++ Parallel Algorithms. The

TBB and the NVidia HPC SDK backends are used in the present work to test the perfor-

mances of the proposed programming model for LB applications.

A more thorough review of programming models for homogeneous and heterogeneous

many-core platforms is found in [7].

1.3 Acceleration of lattice Boltzmann codes on many-core systems

The LB method has always been considered an excellent candidate for efficient parallelism,

most notably thanks to its convenient separation into a local collision step and a streaming

step with non-local memory accesses of limited extent. Without investigating the numerous

implementations and methodologies in detail, we point out the importance which has been

devoted, across various systems and platforms, to the reduction of the memory footprint, the

improvement of memory access patterns, and the definition of adequate and efficient data

structures. Pohl et al. [15] propose an implementation strategy which requires the allocation of

a single set of populations only (referred to as a compressed grid approach) and executes a colli-

sion and streaming step for all cells within a single memory traversal (referred to as a fused col-
lision-streaming step). This approach, which is at the heart of the open-source WaLBerla

library [16], stands at the beginning of a long list of subsequent, similar LB implementation

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 4 / 29

https://doi.org/10.1371/journal.pone.0250306

models. We mention in particular the swap algorithm [17], which is used in the open-source

Palabos library [1] and the AA-pattern [18], which was described specifically in the context of

GPU implementations of LB models, but has proved highly successful on CPU systems as well

[19].

With the advent of general-purpose GPU (GPGPU) computing, GPUs have quickly

become a target for LB implementations as well. An original proposition published in [20]

proved promising in spite of its fairly poor performance, and was further improved in form of

the 2D LB code proposed in [21]. Further performance improvements were exhibited over the

years, often by fine-tuning memory access patterns, as published for example in [22–25].

To a lesser extent, LB implementations using the cross-platform formalism OpenCL are

found in the literature, which document attempts to target GPUs of different vendors, but also

the now discontinued Xeon Phi architecture of Intel (see for example [26, 27]). We also point

out the attempts performed with the open-source Sailfish project [28] to use meta-program-

ming capabilities of Python to target multiple platforms through both a Cuda and an OpenCL

backend.

2 Materials and methods

2.1 LB algorithm

The Lattice Boltzmann method is a very specific (physical and numerical) discretization of the

Boltzmann equation that splits explicit time iteration into a collision and a streaming step.

Space is subdivided into Ntot cells that are in principle equally spaced with a distance δx along

the three principal Euclidean directions. Inhomogeneous cell arrangements can be achieved

through mesh refinement strategies [1, 29, 30], which are however not taken into account in

this work. The state of the system is defined on every cell by a certain amount of scalar values

fk(k = 0, . . ., Q − 1), hereafter called populations. Their number Q depends on the stencil cho-

sen to discretize the phase space (i.e., physical discretization of the Boltzmann equation). The

present work is based on the commonly used 19-velocity stencil D3Q19 [3, 31, 32], a choice

that limits the current scope of the implementation to isothermal flows. A time iteration takes

the populations from their state at time t to the next state t + δt, where δt is a constant discrete

time step:

Collision : f outk ðx; tÞ ¼ Okðf ðx; tÞÞ ð1Þ

Streaming : fkðx þ ckdt; t þ dtÞ ¼ f outk ðx; tÞ ð2Þ

The 19 discrete velocities ck, which connect lattice nodes with near neighbors in lattice units

(the components of the ck have integer values), are defined for example in [3]. The temporary

values f outi , sometimes called “outgoing populations”, may be stored either in a separate cell

array, or in the same array as the fk, using an in-place value replacement scheme (see Section

2.3).

With the link-wise bounce-back scheme used presently to implement Dirichlet boundaries,

populations that encounter a physical wall on the way from the original cell to the neighboring

one, revert direction and are assigned to the original cell, in opposite direction [3, 33]. The

adapted streaming step reads:

f�kðx; t þ dtÞ ¼ f outk ðx; tÞ� 6 tk rw ck � uw|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
momentum exchange

:
ð3Þ

Here, �k stands for the opposite direction of k (i.e., c�k ¼ � ck). In addition, uw is the velocity

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 5 / 29

https://doi.org/10.1371/journal.pone.0250306

imposed by the Dirichlet boundary condition, and ρw is the “wall density”. In the present

work, ρw = 1 because the flow runs in a quasi-incompressible regime and exhibits density fluc-

tuations around 1. This boundary condition scheme places the wall half-way between a fluid

node and the next solid node, although the exact wall location may be viscosity-depend for low

Reynolds number flows. This problem is circumvented through the use of the TRT collision

term [34] (one of the nine models implemented in this article), which should be the preferred

choice in pore-scale porous media flows and other high-viscosity flows that are sensitive to the

wall location.

The link-wise bounce-back (3) scheme only involves populations that originate from, or

move toward, fluid cells. Therefore, no storage of populations is required on solid cells. The

strategy chosen in stlbm to implement boundary conditions consists in allocating neverthe-

less a layer of wall cells in the solid domain, with 19 storage locations like common fluid cells.

These wall cells do not store populations, but are rather assigned pre-computed values of the

momentum exchange term appearing in Eq (3). Thus, the 19 storage locations popk of a cell

are utilized as follows:

pop
k
¼ fk on fluid cells in pre‐collision state ðexcept for the AA‐patternÞ; ð4Þ

pop
k
¼ � 6 tk rw ck � uw on solid cells: ð5Þ

As explained below, the situation is slightly more complex with one of the three implemented

memory access schemes, the AA-pattern, which obeys Eq (4) at even time steps only, but

retrieves pre-collision populations from neighboring fluid cells at odd steps instead. With the

compact storage scheme expressed in Eqs (4) and (5), the streaming step is expressed in a uni-

form manner as an access of neighboring cells to achieve two goals, namely, (1) to copy popu-

lations and execute conventional streaming, and (2) to read the pre-computed momentum

exchange term and sum it up with a reverted population. This latter possibility is expressed in

the rightmost column of Table 1.

Table 1. The algorithms executed for the three implemented schemes.

nb: neighbor, : assignment,$: swap
Collision Communication

nb is fluid nb is wall

Streaming: k runs over 18 values

2Pop popk Ok(pop) nb_outk popk out�k popk + nb_popk
Streaming: k runs over 9 values

Swap pop�k Ok(pop) pop�k $ nb_popk pop�k pop�k + nb_popk
AA/Even pop�k Ok(pop) Pull: k runs over 18 values

AA/Odd tmpk nb pop�k tmpk popk + nb pop�k

tmpk Ok(tmp) Push: k runs over 18 values

popk tmpk pop�k tmpk + nb_popk

This table summarizes the algorithm that must be executed on all fluid cells in each of the three schemes. Only in the

swap algorithm, wall cells are also included in the collision-streaming cycle, and apply the following operation to all

fluid cells among the 9 considered neighbors: nb_popk pop�k . The following notation is used: pop denotes the

19 variables of the local cell, at position x, and nb_pop the variables of the neighbor cell in direction k, at position x
+ ck (e.g. nb out�k denotes the variable of index �k of the cell at position x + ck). The double-population scheme uses

a duplicate array of cells which are denoted as out. Finally, the AA-pattern uses a temporary cell tmp which is

entirely local and does not require the allocation of a global cell-array like out.

https://doi.org/10.1371/journal.pone.0250306.t001

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 6 / 29

https://doi.org/10.1371/journal.pone.0250306.t001
https://doi.org/10.1371/journal.pone.0250306

Implementations of the LB algorithm can be found in the literature using both single-preci-

sion and double-precision floating point values. Single-precision implementations are particu-

larly popular on GPUs, which are usually substantially more efficient in single precision,

except on few high-end GPUs targeted at HPC platforms (which are not tested in the present

work). Single-precision computations in LB simulations carry however the risk of round-off

errors that are difficult to anticipate, especially in research codes, although mitigation strate-

gies exist (see e.g. [35]). To emphasize its goal, which is to be reused in the context of general-

purpose research and production codes, the stlbm library has been developed and tested

with double precision variables only (although an adaptation to single precision would be

easy).

2.2 LB collision models

In the present work, nine collision models are considered to evaluate the impact of the colli-

sion step (1) on the overall performance of the LB code. Every model is written based on the

unified framework proposed by Coreixas et al. [36, 37], which is particularly useful to derive

efficient formulations that do not rely on a matrix form.

More precisely, these collision models include standard operators such as the BGK operator

with a weighted second-order equilibrium (BGK-W2 [38]), a non-weighted fourth-order equi-

librium (BGK-NW4 [36, 39]), and the two-relaxation-time formulation (TRT [34, 40]). In

addition, multi-relaxation-time collision models based on raw (RM [41–43]), Hermite (HM

[44–47]), central (CM [39, 48–50]), central Hermite (CHM [51–53]) moment spaces, as well as

cumulants (K [54–57]), are further considered. Finally, a multi-relaxation-time formulation of

the recursive regularized (RR) collision model is included due to its interesting stability prop-

erty [58–62]. It is worth noting that most of these multi-relaxation time collision models have

been proposed for the D2Q9 and D3Q27 lattices, but in this work, we used non-weighted
D3Q19 formulations that are summarized in Appendix G of Ref. [36]. It was also made possi-

ble for the user to freely adjust the bulk viscosity, through an extra parameter, in order to fur-

ther increase the stability of the code when needed.

More details regarding the implementation of these collision models is provided in Section

2.6, whereas their impact on the performance is presented in Section 3.3.2.

2.3 Data structure and ordering of populations

To implement an LB scheme, the populations fk must be stored at a provided memory location.

This memory location can vary in time, and it may or may not be identical for pre- and post-

collision variables (fk and f outk respectively). A naive attempt to implement an in-place algo-

rithm, which is to rely on the same storage space for populations at time t and t + δt, would

lead to a conflict with the non-local nature of the streaming step. Indeed, as post-collision pop-

ulations are streamed to neighboring cells, they potentially overwrite populations that have not

yet completed their collision-streaming cycle, hence leading to erroneous results. In search of

a solution, additional constraints to consider are:

• Reduction of memory requirements. A low memory footprint is desirable because (1) mem-

ory may be a critical resource on a given system, and (2) the total amount of memory pro-

cessed by a system may impact its performance.

• Reduction of memory accesses. Although the actual picture is complicated by the presence

of cache mechanisms, performance is generally improved by limiting the number of read-

and write-accesses to the main memory.

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 7 / 29

https://doi.org/10.1371/journal.pone.0250306

• Thread safety. This feature is required to allow the multi-threaded execution models used in

this article. Thread safety is achieved without synchronization primitives or locks, by apply-

ing schemes that naturally avoid race conditions. A global synchronization is applied only

once per time iteration (or twice, in case of the swap algorithm). Within this context, achiev-

ing thread safety amounts to making sure that the collision-streaming algorithm is indepen-

dent of the order of traversal of the cells.

This article relies on three popular thread-safe schemes (double-population scheme, swap

algorithm, and AA-pattern), which are shortly described below. Their corresponding algo-

rithms are summarized in Table 1. All three schemes rely on an array of Ntot × 19 floating-

point variables pop. This amounts to 19 variables for each node location x, which are accessed

through the syntax popk(x). The actual memory layout of the poparray is discussed at the

end of this section.

2.3.1 Double-population scheme. Probably the simplest of the three algorithms, the dou-

ble-population scheme allocates a second array of size Ntot × 19, hereafter called out. While

this strategy doubles the total memory requirements, it simplifies the algorithm, as both the

fk(t) and f outk ðtÞ values are stored at the memory location popk, while the streamed variables

fk(t + 1) are kept separately in outk. Therefore, the collision and streaming steps can be fused

(i.e. they are executed within a single memory traversal), as any access conflicts are naturally

avoided. After a time iteration, an exchange of the arrays pop and out guarantees that the

streamed, temporary populations are reused for the subsequent cycle. While the large memory

footprint of this scheme may result in severe performance penalties on CPUs (due to a less effi-

cient use of cache memory), benchmark tests show that it performs quite well on GPUs (see

Section 3.1). It is also noted that the overall number of memory accesses is kept low in this

scheme, with a total of Ntot × 19 read accesses and Ntot × 19 write accesses per time iteration.

2.3.2 Swap algorithm. This approach relies on the observation that for every population

sent during streaming (from a cell to its neighbor), the cell also receives a population from the

same neighbor. Therefore, the two copy operations can be fused into a single value swap,

which prevents any value from being overwritten. Consequently, the algorithm is in-place and

relies on no further global memory than the pop array. Given that a swap operation includes

two copies of the streaming step, the loop executing the streaming operation on a cell spans

over nine populations only instead of the usual 18—with the understanding that the nine

opposite populations are taken care of by the swap operation of a neighboring cell. To guaran-

tee that the swapped variables are found in matching locations, post-collision populations

must be stored at a storage location associated to the opposite pre-collision population:

pop�k f outk . While it is memory efficient, this algorithm can unfortunately not at the same

time offer a fused collision-streaming cycle and offer thread safety. Indeed, while carrying out

a swap operation, it must be guaranteed that the populations of the neighbor involved in the

swap are already in post-collision state. In a fused collision-streaming scheme, this can be

enforced by adjusting the order of traversal of cells with the ordering of the discrete velocities,

as it is for example done in the Palabos code [1]. The dependence on the order of traversal

however violates the principle of threat safety. Instead, the version of the swap algorithm used

presently splits collision and streaming in two steps requiring each a traversal of the full set of

data in pop, and separated by a thread synchronization. Thus, the memory needs are half

those of the double-population scheme, but the number of memory accesses is doubled, with a

total of 2Ntot × 19 read accesses and 2Ntot × 19 write accesses per time iteration.

2.3.3 AA-pattern. This pattern combines the advantages of the double-population scheme

and the swap algorithm, as it offers (1) a fused collision-streaming step, and (2) a single-mem-

ory implementation (since it requires no other global data than the pop array). To achieve

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 8 / 29

https://doi.org/10.1371/journal.pone.0250306

this, the data is however stored in different locations at two subsequent time step, and the algo-

rithm must distinguish even and odd time steps. More precisely, the AA-pattern transfers the

streaming step performed at the end of an even iteration to the beginning of the next odd itera-

tion. Hence, two communication steps are incorporated at odd iterations, in terms of a “Pull”

operation that gathers the populations from the neighbor cells to a local and temporary array

for collision, before a “Push” operation that eventually writes the post-collision variables back

to the same locations at the neighbors. Thread safety is guaranteed by virtue of the fact that a

given cell (handled by a single thread) accesses the same non-local data during its read (Pull)

and write (Push) access. Going into more details, at even steps the populations are stored

locally, and the value of fk(x) is available at the location popk (x). Regarding post-collision val-

ues, they are also stored locally but at opposite locations, like in the swap algorithm:

pop�k f outk . At odd steps, the populations are available on neighboring nodes, with fk(x)

stored at pop�k (x + ck).
All in all, the AA-pattern is a compressed scheme which, like the swap algorithm, cuts the

memory requirements of the double-population scheme in half, but favorably maintains the

same number of memory accesses, with an average of Ntot × 19 read accesses and Ntot × 19

write accesses per time iteration. It should however also be mentioned that the AA-pattern is

more complex than the two other schemes, and introduces technical difficulties for the main-

tenance of an LB software framework, because of the separation into even and odd time

steps.

Finally, the data can be aligned in two different ways in memory, independently of the cho-

sen data structure. In the first layout, referred to as array-of-structure (aos), the populations of

a given cell are aligned consecutively in memory. In the second approach, which carries the

name of structure-of-array (soa), all populations corresponding to a given direction k are con-

secutive. The two following statements summarize the essence of the two data layouts using a

C-array syntax:

Array‐of‐structure : double pop½Ntot�½19�;

Structure‐of‐array : double pop½19�½Ntot�;

By combining these two data layouts with the three proposed LB implementation schemes, the

stlbm library offers a total of six implementation strategies for each collision model, which

produce identical results but exhibit different, platform-dependent performance figures, as

explored in this article.

2.4 STL and Parallel Algorithms

The C++ Standard Template Library (STL) supports a functional programming style, in which

algorithms are supplemented with element access functions which customize their behavior.

The algorithms apply these functions repeatedly to the elements of a data container, either

through function pointers or function objects. At the application programmer level, an explicit

loop is then replaced by a single call to an STL algorithm, hence leading to a programming

style that is sometimes considered to be more expressive. The machine codes generated by an

algorithm invocation or an explicit loop do not necessarily differ, as a compiler can take advan-

tage of the mechanisms of C++ templates to translate the algorithm to an identical or similar

loop as the hand-written one. This is especially true when the implementation of the element

access function is known by the compiler at the time of the algorithm instantiation, in which

case the function body can be efficiently inlined.

The following C++ code extract illustrates this concept with the STL algorithm for_each,

used to compute macroscopic variables in the manner of a typical C++ program:

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 9 / 29

https://doi.org/10.1371/journal.pone.0250306

using namespace std;
struct Cell {

array <double, 19> f;
double rho;
array<double, 3> u;

};
vector <Cell> cells(nCells);
array <int, 3>� c = . . .; // Lattice velocities
// . . . Initialize data, start principal time loop.
for_each(execution::par_unseq, begin(cells), end(cells),

[c](Cell const& cell)
{

cell.rho = 0.;
cell.u = {0., 0., 0.};
for(int k = 0; k < 19; ++k)

{
cell.rho += cell.f[k];
cell.u[0] += cell.f[k] � c[k][0];
cell.u[1] += cell.f[k] � c[k][1];
cell.u[2] += cell.f[k] � c[k][2];

}
});
In this example, the data layout follows the principles of an array-of-structure (aos), as all

variables related to a given cell are located at consecutive memory addresses. The element

access function provided to the for_each algorithm takes in this case the form of a lambda

expression (a lambda for short), which defines an anonymous function object. A lambda can

obtain access to variables from the surrounding scope, in a manner specified in the capture

clause. In this example, the clause [c] indicates that the variable c, which refers to the discrete

velocities, is captured by value. For reasons linked to limitations of the GPU backend of Paral-

lel Algorithms, as explained below, the stlbm library defines [c] as a raw pointer to a heap

array.

Finally, the code extract makes use of a parallel version of the for_each algorithm. Paral-

lel algorithms are available starting with the C++17 standard. They receive an execution policy
as an additional argument to indicate a parallelization strategy they may use to accelerate the

execution of the algorithm. The four possible strategies are

2.4.1 Sequenced. Requires that the algorithm’s execution may not be parallelized and that

the calls to the element access functions must be sequenced. The result is usually the same as in

a non-parallel version of the algorithm. The policy is usually invoked through execution::
seq.

2.4.2 Parallel. Indicates that the algorithm’s execution may be parallelized using multiple

threads. The policy is usually invoked through execution::par.

2.4.3 Unsequenced. Provided since C++20 (but available within the C++17 standard in

all tested compilers), the policy indicates that the algorithm’s execution may be vectorized, by

using for example instructions that operate on multiple data items. The policy is usually

invoked through execution::unseq.

2.4.4 Parallel and unsequenced. Indicates that the algorithm’s execution may be paralle-

lized in a multi-threaded fashion, and that vectorization is allowed within each thread. The

policy is usually invoked through execution::par_unseq.

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 10 / 29

https://doi.org/10.1371/journal.pone.0250306

In this article, only the execution::par_unseq policy has been applied, which

allowed to achieve best performance on both CPUs and GPUs.

The methodology proposed by C++ Parallel Algorithms faces a challenge on heterogeneous

systems. While the memories of the host and the device are often physically distinct on such

systems, the C++ standard does not provide any means to transfer data between different

memories. The Parallel Algorithms backend for NVidia GPUs circumvents this problem

thanks to a memory model called CUDA Unified Memory, which provides a single memory

address space to access data from both the host and the device. Through support in both the

CUDA device driver and the NVidia GPU hardware, a Unified Memory manager automati-

cally transfers data between the two physical memories based on usage. The model is extremely

convenient at the user programmer level who entirely avoids explicit data transfers, yet needs

to remain aware of the cost of implicit transfers. Current versions of CUDA Unified Memory

are however limited to sharing data allocated on the heap, and cannot share stack memory. On

NVidia GPU systems, pointers provided to the lambda capture of a parallel algorithm, or vari-

ables captured by reference, must necessarily reference heap data. For this reason, all shared

data, including the lattice constants, is allocated on the heap in the stlbm library.

While the above code listing efficiently parallelizes the computation of macroscopic vari-

ables (which is a fully local step), the same strategy cannot be applied directly to non-local

aspects of the LB algorithm. Indeed, STL algorithms provide only limited support to express

an interaction between container elements. This is done either through highly specialized algo-

rithms, such as the parallelized sorting algorithm, or in terms of reduction operations, imple-

mented for example in the transform_reduce algorithm. None of these are sufficient to

tackle the two following problems that are addressed in this manuscript:

1. Implementation of a structure-of-array (soa) data layout. In this case, the populations

needed for a collision are no longer consecutive in memory, and a cell can therefore no lon-

ger be treated as a single element of a C++ container.

2. Implementation of the streaming step, which requires access to nearby spatial neighbors.

STL algorithms do however not prohibit neighbor access from being implemented manu-

ally, as the full data container can be disclosed to an element access function through the cap-

ture. This strategy is further explained in the following section.

2.5 Parallel LB algorithm

The code extract of the previous section uses an anonymous lambda to express the element

access function of an STL algorithm, following standard practices in simple STL usage scenar-

ios. This strategy however forces the access function to be implemented at its point of usage,

which strongly limits the possibility to properly organize a larger code base. In the following,

function objects are therefore instantiated from named classes, both to encourage the reuse of

the proposed code in other projects, and to avoid misunderstandings linked to the implicit

syntax of lambda capture clauses.

The encapsulation of element access functions in named classes opens the possibility for

their instantiation (the function object) to be named and obtain an extended lifetime. It is even

possible for the data such as the LB populations to be owned and managed by the same object,

in which case the LB data and algorithms are unified under the same abstraction. In the pres-

ent manuscript, we prefer however to treat these objects as stateless algorithms, and to manage

data in a different scope. The purpose of this approach is again the ease of reuse of the pro-

posed codes which, in a considered frequent use scenario, should be applied to accelerate

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 11 / 29

https://doi.org/10.1371/journal.pone.0250306

selected parts of an existing code with a pre-existing memory management strategy. This LB

algorithm class adopts the following canonical shape:

struct LBM { // (1)
using CellData = array <double, 19>; // (2)
CellData�lattice; // (3)
array <int, 3>� c; // lattice velocities // (4)
double� t; // lattice weights
double omega; // relaxation parameter
Dim dim; // nx x ny x nz dimensions
void operator () (CellData& cell) { // (5)

// Implement collision-streaming for a cell.
}

};
The enumerated lines require the following clarifications:

(1). The class is declared with the struct keyword to provide public access to all data and

methods, as data encapsulation or any other elements of object-oriented programming

are outside the scope of the presented work.

(2). CellData names the type of a single data element provided to the for_each algo-

rithm, which must be chosen according to the data layout. Here, the example of an aos

layout with consequent cell data is chosen.

(3). The class variables of the five following lines are the articulated counterpart of a lambda

capture. A pointer to the full lattice is captured to allow access to the neighboring cells. In

the case of the soa data alignment, the full lattice is also required to gather all populations

of the current cell.

(4). We chose to capture the lattice constants (velocities and weights) by reference and the

relaxation time and lattice dimensions by value.

(5). To turn class instances into a function object, the function call operator is overloaded to

implement a collision-streaming cycle for a single mesh grid cell.

A canonical code for the application of an LBM instance to an LB lattice is expressed as

follows:

vector <LBM::CellData> lattice_vect(num_elements); // (1)
LBM::CellData� lattice = &lattice_container[0]; // (2)
LBM lbm{lattice, &c[0], &t[0], omega, {nx, ny, nz}]; // (3)
for_each (execution::par_unseq,

lattice, lattice + num_elements, lbm);
This extract is again commented at the enumerated lines:

(1). The number of elements equals the number of cells (aos) or 19 times the number of cells

(soa).

(2). The vector is simply used here for automatic management of heap data. The data can also

be allocated with the new operator and deleted manually.

(3). Just as in a lambda capture, any variable visible in the present scope can be provided to

initialize a LBM object.

Independently of the memory layout strategy (aos or soa), the data container

lattice_vect is required to allocate a number of floating point variables equal to 19

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 12 / 29

https://doi.org/10.1371/journal.pone.0250306

times the number of cells. Differences only appear in their usage pattern. In the algorithmi-

cally simpler case of aos, these variables are regrouped by cells, as the type CellData refers

to sequences of 19 floating point variables. The for_each algorithm is then simply applied

to the full data space, cell by cell. In the soa layout on the other hand, the cell data is non-

contiguous in memory, and the CellData type is chosen to refer to a single floating-point

variable. The for_each algorithm can consequently not be applied to the full data space –

as this would lead to too frequent invocations of a cell-level collision-streaming cycle– but

spans only over the elements of the first population f0. It is the responsibility of the methods

of LBM to compute the indices of the other populations inside the array lattice and

access them manually. Similarly, indices are computed to access neighboring cells for the

streaming step.

The index of the currently processed cell is not explicitly provided by the for_each algo-

rithm to its element access function. While the index could be reconstructed in a non-parallel

version of for_each by giving up the stateless nature of LBM and incrementing an internal

index at each function call, such an approach would be in obvious violation with a multi-

threaded or unsequenced execution of the algorithm. Instead, we choose to rely explicitly on

the fact that the iterators in this invocation of for_each are raw pointers, and deduce the

index from the difference of memory address between the current and first element of the lat-

tice. While it is clear that such an approach could not be extended to other types of C++ con-

tainers and iterators, it should also be mentioned that this limitation to the scope of raw data

arrays is rather expected in the context of massive HPC. It is further pointed out that the pro-

posed code preserves a consistent high-level structure. Violations of the safety of data types

and memory bounds are limited to a small group of data access function which encapsulate

the cases of pointer-based arithmetic operations. Consequently, the data types and data access

functions are defined as follows in a array-of-structure respectively a structure-of-array layout:

// Implementation for array-of-structure layout
struct LBM {

using CellData = array<double, 19>;
double & f (int i, int k) {

return lattice[i][k];
}
// . . . implementation of collision models

};
// Implementation for structure-of-array layout
struct LBM {

using CellData =double;
double & f (int i, int k) {

return lattice[k � dim.nelem + i];
}
// . . . implementation of collision models

};
Based on these access functions, the collision models can then be defined in an identical

manner for both data layouts. Furthermore, the strategy for evaluating the index value and

manipulating 3D indices is layout independent:

struct LBM {
// . . . data definitions
// Function i_to_xyz transforms a linear index
// into a Cartesian coordinate triplet
auto i_to_xyz (int i) {

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 13 / 29

https://doi.org/10.1371/journal.pone.0250306

int iX = i / (dim.ny � dim.nz);
int i_yz = i % (dim.ny � dim.nz);
int iY = i_yz / dim.nz;
int iZ = i_yz % dim.nz;
return std::make_tuple(iX, iY, iZ);

};
void operator() (CellData& cell)

{size_t i = &cell—lattice;
// . . . implementation of collision-streaming

}
}
The complete source code of the stlbm can be accessed under the terms of an open-source

license under S1 Source Code.

2.6 Minimization of number of instructions

Two major strategies for improving the efficiency of an HPC code consist in (1) optimizing

memory accesses (which we do by testing six different data access strategies), and (2) reducing

the number of instructions executed by the code. In LB applications, the latter is typically

achieved by unrolling the loops over populations, and regrouping and eliminating terms in the

resulting arithmetic expressions. In the present work, two versions of the second-order BGK

(BGK-W2) and TRT collision models were implemented. The first, referred to as the educa-
tional version, uses only few superficial optimizations and relies on the capabilities of the com-

piler for further in-depth improvements, in order to encourage readability and re-use of the

code. The second, referred to as the unrolled version uses aggressive loop unrolling and

regrouping of terms to achieve manual performance gains. Interestingly, while the unrolled

code versions systematically yield substantially better performance than the educational ones

on GPUs, the flagship AMD CPU used in the tests obtained better results with the educational

code for the BGK model.

In the educational code versions, loop unrolling was applied to the computation of the mac-

roscopic variable density and velocity, to eliminate the frequent multiplications with zero-val-

ued components of the discrete velocities ci. Furthermore, partial sums that were shared by the

expressions for density and velocity were regrouped. While the loops for the computation of

equilibrium and for executing the collision models were not unrolled, the similarity of the

equilibrium term for opposite populations was explicitly exploited. For example, as the sec-

ond-order weighted equilibrium (BGK-W2) for a direction k is written as

Ek ¼ r tkð1þ 3 ck � uþ 4:5 ðck � uÞ
2
� juj2Þ; ð6Þ

the equilibrium value in the opposite direction �k, defined by the relation c�k ¼ � ck, can be

computed from Ek through the equation

E�k ¼ Ek � 6 r tk ck � u: ð7Þ

In the unrolled code, all loops in the collision term were additionally unrolled, and redundant

terms eliminated.

Regarding more complex collision models, their implementation relies on the computation

of post-collision moments of interest, which are converted back to raw moments (RMs) in

order to compute post-collision populations f outk . This methodology allows for a drastic reduc-

tion of the number of instructions since it naturally (1) discards multiplication by zero-valued

terms, and (2) highlights existing symmetries between opposite post-collision populations. By

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 14 / 29

https://doi.org/10.1371/journal.pone.0250306

taking advantage of the latter property, one can reduce the number of instructions required to

compute f out�k by first computing f outk –as already done for E�k in Eq (7). For instance,

f out
0
¼
r

2
ð� ux þM

�

200
þM�

120
þM�

102
� M�

220
� M�

202
Þ; ð8Þ

f out
10
¼
r

2
ðux þM

�

200
� M�

120
� M�

102
� M�

220
� M�

202
Þ; ð9Þ

with c0 = (−1, 0, 0) = −c10 based on the velocity ordering convention used in the accompanying

codes. Hence,

f out
0
¼ f out

10
� rðux � M�120

� M�
102
Þ; ð10Þ

whereM�pqr (p; q; r 2 N) are post-collision RMs defined as

M�pqr ¼ ð1 � opqrÞMpqr þ opqrMeq
pqr: ð11Þ

ωpqr are adjustable relaxation frequencies, andMeq
pqr only depend on ρ and u (their full expres-

sion can be found for all types of moment, e.g., in Ref. [36]). In addition, the computation of

RMs

Mpqr ¼
X

k

cpkxc
q
kyc

r
kzfk; ð12Þ

as well as other types of moments, is of paramount importance since it drastically impacts the

performance of the code. As a matter of fact, the performance can be divided by a factor two

or three if their general formulation is used. Consequently, aggressive optimizations (loop

unrolling and regrouping of terms) were also applied to increase the performance of these col-

lision models. For all models other than BGK-W2 and TRT, no “educational” version was

produced.

As a sidenote, the multi-relaxation-time formulations considered in this study could be fur-

ther optimized by limiting their generality in part, e.g. by imposing ωpqr = 1 in Eq (11). The lat-

ter value is commonly used in the LB community for high-order (p + q + r� 3) post-collision

moments, as well as those related to bulk viscosity, as it leads to an increased stability for high-

Reynolds number flow simulations and/or in under-resolved conditions. Such a choice would

allow us to discard the computation of the corresponding moment (12) which remains time

consuming despite our optimizations. More quantitative investigations regarding performance

gains induced by the equilibration of high-order moments (and those related to the bulk vis-

cosity) will be discussed in a future study. The interested reader may also refer to Refs. [39, 63]

for a brief discussion of this aspect in the context of multiphysics flow simulations based on

CM-LBMs.

Finally, an extra parameter has been added to all multi-relaxation-time formulations, so

that the bulk viscosity can be freely adjusted. This is done by modifying the relaxation of sec-

ond-order moments as follows [36, 64]

M�
200
¼ M200 � oþðM

eq
200 � M

eq
200Þ � o� ðM

eq
020 � M

eq
020Þ � o� ðM

eq
002 � M

eq
002Þ; ð13Þ

M�
020
¼ M020 � o� ðM

eq
200 � M

eq
200Þ � oþðM

eq
020 � M

eq
020Þ � o� ðM

eq
002 � M

eq
002Þ; ð14Þ

M�
002
¼ M002 � o� ðM

eq
200 � M

eq
200Þ � o� ðM

eq
020 � M

eq
020Þ � oþðM

eq
002 � M

eq
002Þ; ð15Þ

where o� ¼ ðonb
� onÞ=3 and ω+ = ω− + ων. The kinematic viscosity ν, and its bulk

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 15 / 29

https://doi.org/10.1371/journal.pone.0250306

counterpart νb, are related to these relaxation parameters through n ¼ ð1=on � 0:5Þc2
s and

nb ¼ ð1=onb
� 0:5Þc2

s . The lattice constant cs is defined as cs ¼ 1=
ffiffiffi
3
p

[3].

2.7 Hardware platforms and compilers

The computers used to carry out the benchmark simulations are listed below, along with the

compiler and compiler options that were used.

AMD Ryzen Threadripper ð8 coresÞ

Model AMD Ryzen Threadripper 1900X 8� Core Processor

Cores 8 Cores; 16 Threads ðSMT onÞ; 1 Socket

Compiler CLang 10:0:0 � 4 = � std¼cþþ17 � O3

Intel Xeon ð8 coresÞ

Model Xeon E5 � 2637 v4 @ 3:50GHz

Cores 8 Cores; 8 Threads ðHyperthreading offÞ; 2 Sockets

Compiler GCC=gþþ 9:3:0 = � std¼cþþ17 � O3 � march¼native

Intel Xeon ð48 coresÞ

Model Intel Xeon Gold 6240R @ 2:40GHz

Cores 48 Cores; 48 Threads ðHyperthreading offÞ; 2 Sockets

Compiler GCC=gþþ 9:3:0 = � std¼cþþ17 � O3 � march¼native

AMD EPYC ð64 coresÞ

Model AMD EPYC 7742 64� Core Processor @ 2:24 GHz

Cores 64 Cores; 64 Threads ðSMT offÞ; 1 Socket

Compiler CLang 10:0:1 = � std¼cþþ17 � O3

NVIDIA GTX 1080 Ti

Model GP102 ½GeForce GTX 1080 Ti�

Compiler nvcþþ 20:7� 0 = � stdpar � O1 � std¼cþþ17

NVIDIA RTX 2080 Ti

Model TU102 ½GeForce RTX 2080 Ti�

Compiler nvcþþ 20:7� 0 = � stdpar � O1 � std¼cþþ17

NVIDIA V100

Model GV100 ½Tesla V100� PCIE� 32GB�

Compiler nvcþþ 20:7� 0 = � stdpar � O1 � std¼cþþ17

The compiler and compiler options were selected in informal comparative tests designed to

identify the most efficient candidates. Except for the GPU versions compiled with nvc++, all

binaries were linked with the -ltbb option to link with Intel’s Threading Building Blocks.

3 Results and discussion

3.1 Benchmark case and code validation

The code of this article is applied to the benchmark case of a 3D flow in a lid-driven, cubic cav-

ity, under the conditions of a steady, a laminar unsteady, and a turbulent regime. This test is

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 16 / 29

https://doi.org/10.1371/journal.pone.0250306

used both to demonstrate the correctness of the code and to explore its efficiency on different

hardware platforms depending on the implementation strategy and the LB collision model.

This benchmark case, which can be found in numerous articles (see e.g. [67]), is defined as fol-

lows. An incompressible, non-thermal, viscous, Newtonian, and homogeneous fluid, the

dynamics of which is described by the Navier-Stokes equations, is enclosed in a cubic domain.

The 3D fluid-domain is defined by the open interval (] − L/2, + L/2[)3, and the boundaries con-

sist of the closure of this domain. The velocity vector has three components u = (ux, uy, uz),
and the space positions are given by x = x, y, z. A Dirichlet boundary condition for the velocity

is enforced on the boundaries, consisting of a no-slip condition on all walls except on the mov-

ing lid at x = + L/2. The velocity on the lid is constant with a value u(x = + L/2, y, z) = (0, U, 0).

It should be pointed that this problem is mathematically not strictly well defined given the

velocity discontinuities in the edges and corners of the lid. For this reason, a smoothly increas-

ing profile is sometimes defined in these regions. This issue is however ignored in the present

study because, as the subsequent results show, the LBM copes with this discontinuity without

problem. The Reynolds number is defined as Re = UL/ν. For illustrative purposes, the flow

field obtained by our solver in a steady and in a turbulent regime is shown in Fig 1.

The problem is numerically solved with a homogeneous mesh of N × N × N nodes, which

includes a wall node on all extremities of the domain. Thus, the cell spacing is δx = L/(N − 2).

The time discretization was fixed by setting the reference lattice velocity uLB� U(δt/δx) to a

constant value of 0.06. The Mach number, which in the present context of incompressible flow

has a purely numerical significance, is therefore of Ma ¼ 0:06
ffiffiffi
3
p
� 0:1. The discrete time

step is consequently defined as δt = (uLB/U)δx. The dimensionless time elapsed after Niter

iterations is t = Niter δt(U/L) = Niter tc, with the dimensionless characteristic time being tc =

δt(U/L) = uLB/(N − 2).

In spite of the simple setup, this problem poses some challenges due to the velocity disconti-

nuity between the top lid and lateral walls, and because of the complexity of the flow field and

boundary layers that develop at higher Reynolds numbers. This case is sometimes argued to

Fig 1. Visualization of simulation results for the lid-driven cavity. Left image: velocity norm and streamlines of the steady-state results at Re = 1000, on the plane

defined by z = 0. Right image: vorticity norm on a selected surface at an instantaneous time step for the fully developed flow at Re = 10000.

https://doi.org/10.1371/journal.pone.0250306.g001

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 17 / 29

https://doi.org/10.1371/journal.pone.0250306.g001
https://doi.org/10.1371/journal.pone.0250306

pose substantial issues of accuracy and numerical stability for the LB method, which are for

example overcome in [65] with help of a sophisticated boundary condition scheme. The results

in this section show however that the LB framework of the stlbm project is sufficient to

achieve satisfying results in all regimes, using either the standard BGK-W2 or the RR collision

model.

Fig 2 plots the y-component of the velocity uy along the center line y = z = 0 against the

non-dimensionalized coordinate 2x/L, and the x-component of the velocity ux along the center

line x = z = 0 against the coordinate 2y/L. On the left image, at Re = 1000, the flow is steady.

The flow is measured at an instantaneous time step after reaching stationary state and com-

pared against simulation data of a spectral code. On the middle image, at Re = 3200 the flow is

laminar and unsteady. The profile is averaged between dimensionless time values of t = 50 and

t = 250 and is compared against experimental data published in [66]. On the right image, at

Re = 10000 the flow is turbulent. The profile is averaged between dimensionless time values of

t = 150 and t = 500 and is again compared with [66]. Excellent agreements are achieved in all

three cases.

3.2 Parallel performance on different platforms

The case of a lid-driven cavity has been executed on different platforms to compare the perfor-

mances. The for_each loops over the cells were executed with the par_unseq execution

policy. Furthermore, reported values correspond to a median computed over 30 measure-

ments, the latter being distributed other three days to reduce the impact on the benchmark of

potential special events in the tested hardware or operating system. Each measurement con-

sisted of 1000 warm-up iterations without time measurement, followed by 1000 benchmarked

time steps. Finally, all test cases were first executed with a BGK-W2 collision model at a resolu-

tion of N = 128. A comparative study of the impact of the collision model on performances is

also proposed in Section 3.3.2. As conventional in the field of LB, the performance is measured

in terms of million lattice node updates per second (MLups), a value that identifies the number

of lattice nodes, divided by one million, that are driven through a collision-streaming cycle in

a second. To transpose this measurement in terms of time required to update one grid point

Fig 2. Profile of cubic cavity flow for two Reynolds numbers. Simulation results (solid lines) in a cubic lid-driven cavity along two center lines. Left

image: Re = 1000, resolutionN = 256, collision model BGK-W2, comparison of the results with reference values (circles) from spectral simulations

provided in [67]. Middle image: non-stationary laminar flow at Re = 3200 simulated with a resolutionN = 256 and collision model BGK-W2, averaged

between a dimensionless time t = 50 and t = 250. Right image: turbulent flow at Re = 10000 simulated with a resolutionN = 400 and RR collision model,

averaged between a dimensionless time t = 150 and t = 500. The curves of the middle and right image are compared with experimental data extracted

from figures in [66].

https://doi.org/10.1371/journal.pone.0250306.g002

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 18 / 29

https://doi.org/10.1371/journal.pone.0250306.g002
https://doi.org/10.1371/journal.pone.0250306

per iteration (which is more commonly used in the Computational Fluid Dynamics commu-

nity [68]), one simply needs to take the inverse of the number of lattice node update per sec-

ond. As an example, a performance of 10 MLups corresponds to 0.1 μs/pt/ite.
The benchmark test was first executed on conventional CPUs with a modest core count.

Fig 3 shows the performance obtained using the six different data structures on a 8-core AMD

and a 8-core Intel CPU. The results should not be used to set up a competitive comparison

between the involved CPU models, which differ in the year of market release, the clock rate,

and other parameters. All in all, the results show overall comparable performance across mod-

els. The Intel CPU yields consistently best performances with an aos layout, while best perfor-

mances on the AMD CPU are most frequently obtained with the soa approach, in agreement

with the many-core AMD and the GPU architectures presented further down. This difference

is mostly explained by the fact that the multi-core scaling performance of the code depends on

the CPU and on the data structure. As shown below, the aos implementation strategy has bet-

ter single-core performance than soa across architectures, but loses its edge over soa at a larger

core count. While the AMD CPU reaches its best results with the AA-pattern, it is interesting

to note that the swap-aos approach is the optimal choice on the Intel CPU, in spite of its appar-

ent disadvantage due to the separated collision and streaming steps.

In Fig 4, the performances obtained on five many-core platforms are compared, namely a

64-core AMD EPYC, a 48-core Intel Xeon, two consumer-class GPUs and a data-center GPU.

It is not typical to include GPUs and CPUs on a same comparison plot, as CPUs are often

shown to perform one or two orders of magnitude worse than GPUs. In this case, the common

comparison is motivated by the fact that they are measured with the exact identical code, but

also by the fact that in our comparison, and if the best performing implementation scheme is

selected for each platform, the faster of the two consumer-class GPUs outpaces the CPUs by

Fig 3. Performance of CPUs with a modest core count. All simulations are executed with the BGK-W2 collision

model and N = 128. On both CPUs, best performance was quite unpredictably obtained sometimes with and

sometimes without loop unrolling. The plotted value shows therefore always the best of the two.

https://doi.org/10.1371/journal.pone.0250306.g003

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 19 / 29

https://doi.org/10.1371/journal.pone.0250306.g003
https://doi.org/10.1371/journal.pone.0250306

only roughly a factor four. To achieve best performance, the loops were unrolled on the GPUs

and on the Intel Xeon, but were used without unrolling on the AMD CPU. Best performances

are systematically obtained with the soa data layout, and the AA-pattern is the clear winner

across all CPU and GPU platforms. For this reason, and also because of its lower memory

needs, the AA-pattern (combined with the soa data layout) can be considered the most gener-

ally well performing choice for many-core platforms.

The real life implications of the performance metrics of the code are illustrated for the case

of the turbulent cavity flow, which is run with the RR collision model at N = 400 up to a

dimensionless time of t = 500 (to gather sufficient statistics), thus requiring a total of 3.3 mil-

lion iterations. The simulation does not make use of any subgrid-scale turbulence model, but it

is stabilized by adjusting the relaxation parameter associated to the bulk viscosity to a value of

1. On the 48-core Intel Xeon CPU, the execution time without outputs is of 7 days and 15

hours, while the RTX 2080 Ti completes the same task in 2 day and 15 hours, and the V100

PCIE in just 1 day and 3 hours.

Table 2 shows the numerical values of the performances obtained on the two CPUs with the

aos and the soa implementation. The performances obtained if the program uses only a single

core are also shown. It can be seen that on both CPUs, the aos implementation is more perfor-

mant on a single core, but the soa approach is preferable when all cores are exploited. It can be

hypothesized that although in general, the aos approach makes better use of memory caching

mechanisms, this advantage is lost when multiple cores compete for access to shared memory

space, and cache coherence must be guaranteed. It is further remarked that both CPUs exhibit

a comparable parallel efficiency, and that the Intel CPU compensates the lower core count

with a stronger single-core performance.

Fig 4. Performance of many-core CPU and GPU architectures. All simulations are executed with BGK-W2 collision model

andN = 128. For best overall performance, the simulations on the 64-core Epyc CPU were executed without loop unrolling,

while the 48-core Intel CPU and the two GPUs used loop unrolling.

https://doi.org/10.1371/journal.pone.0250306.g004

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 20 / 29

https://doi.org/10.1371/journal.pone.0250306.g004
https://doi.org/10.1371/journal.pone.0250306

Table 3 provides the numerical values of the performances obtained on the two GPUs with

the double-population implementation and the AA-pattern and compares them with a refer-

ence performance obtained on the same GPUs with a code extracted from the CuBoltz code,

an open-source library that evolved from the work described in [69]. Written in the Cuda lan-

guage, this code is written by one of the authors of the article and is carefully optimized for

performance. The extracted code has been reshaped to solve the exact same problem as the

present stlbm tests, as verified through comparative regression tests. The comparison shows

that the generic stlbm code ends up only 21% (GTX 1080 Ti) respectively 17% (RTX 2080

Ti) below the performance of a hardware-specific, carefully optimized code. It can be con-

cluded that the formalism of C++ Parallel Algorithms allows to achieve performances adequate

for high performance computing, while at the same time offering an elegant and generic pro-

gramming style.

On GPUs, it is useful to compare these performance values against a theoretical peak per-

formance obtained under the assumption that computations are negligible and the overall per-

formance is limited solely by optimally coalesced accesses to central memory. With the two-

population scheme and the AA-pattern, all populations need to be read and written once per

iteration, which in double-precision representation requires two memory transactions of an

8-byte floating-point number per population and iteration (with the Swap algorithm, the num-

ber of memory transactions is doubled). For these two implementation schemes, the peak per-

formance p (measured in LUPS) is therefore established by the formula

p ¼ bw=ð2 � 19 � 8Þ; ð16Þ

where bw is the memory bandwidth (in bytes per second). On Table 3, the ratio of measured

performance over the theoretical peak performance is indicated in parentheses. It can be seen

that the stlbm code reaches performances close to, and in some cases even distinctly superior

to, 50% of the theoretical peak performance that can be expected on the respective GPUs. It is

worth noting that these performances are obtained for lightly loaded GPUs, i.e., N = 128. By

further increasing the load to N = 400, e.g., for the data-center GPU V100 PCIE, the ratio of

measured performance is increased to 84%, 63% and 72% for CuBoltz, the two-population

Table 2. Performance and speedup of AMD and Intel CPU with large core counts. Detailed performance figures (in MLups) are provided for the cavity benchmark case

withN = 128, BGK collision, and AA-pattern implementation, for the 64-core AMD EPYC CPU and the 48-core Intel Xeon CPU, for program executions using 1 core or

all cores. The speedup is the ratio between these two values, and the efficiency is a measure of the scaling performance (100% efficiency stands for an ideal speedup).

Performance of 1 core Performance of full CPU Speedup (Efficiency)

64-core Epyc / AA aos 11.68 199.0 17.0 (26.6%)

64-core Epyc / AA soa 7.42 322.7 43.5 (68.0%)

48-core Xeon / AA aos 12.32 216.9 17.6 (31.9%)

48-core Xeon / AA soa 10.13 323.7 36.7 (66.6%)

https://doi.org/10.1371/journal.pone.0250306.t002

Table 3. Performance values of stlbm and the reference Cuda code CuBoltz for the lid-driven cavity at N = 128,

with the BGK-W2 collision model. Performance is indicated in MLups, followed in parenthesis by the ratio between

this performance and the theoretical peak performance, computed for a memory bandwidth of 480 GB/s (GTX 1080

Ti), 616 GB/s (RTX 2080 Ti), and 900 GB/s (V100 PCIE).

CuBoltz stlbm (2Pop) stlbm (AA)

GTX 1080 Ti 877.7 (56%) 499.7 (32%) 770.1 (49%)

RTX 2080 Ti 1415.8 (70%) 1084.9 (54%) 1124.8 (56%)

V100 PCIE 1823.6 (62%) 1422.6 (48%) 1723.7 (58%)

https://doi.org/10.1371/journal.pone.0250306.t003

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 21 / 29

https://doi.org/10.1371/journal.pone.0250306.t002
https://doi.org/10.1371/journal.pone.0250306.t003
https://doi.org/10.1371/journal.pone.0250306

scheme and the AA pattern respectively. In any case, this study demonstrates both the quality

of the stlbm algorithm, and the suitability of LB codes for GPU platforms.

3.3 Analysis of performance-impacting features

3.3.1 Loop unrolling. Fig 5 compares the performance of the educational and the

unrolled codes on the five tested many-core platforms for the BGK-W2 collision model. The

results show that the GPUs experience substantial speed improvements from loop unrolling

(the improvement is of 72%, 66%, and 34% on the GTX 1080 Ti, the RTX 2080 Ti, and the

V100 PCIE respectively), while the AMD EPYC performs better with the educational code,

which presumably allows more targeted compiler optimizations. Interestingly, when the edu-

cational code is used, and thus, readability is emphasized over hand-tuned optimizations, the

consumer-class GPUs seem to lose their clear-cut performance edge over CPUs, as they are

only 39% (GTX 1080 Ti) respectively 110% (RTX 2080 Ti) faster than the AMD CPU. The

data-center GPU V100 PCIE on the other hand remains substantially faster even for this ver-

sion of the code, with a speed up of 298% over the AMD.

3.3.2 Collision model. Hereafter, the performance obtained with different LB collision

models are investigated on the fastest consumer-level platform, the RTX 2080 Ti GPU. In all

cases, the optimized codes with loop unrolling were used, and multi-relaxation-time formula-

tions of collision models were considered.

Generally speaking, Fig 6 shows that the speed difference between the slowest and the fast-

est collision model remains within a factor two. This means that adopting modern collision

models, e.g. to simulate high-Reynolds number flows in a stable and accurate manner, does

not come at the expense of a drastic performance loss. Hence, LBMs based on these collision

models remain particularly competitive as compared to Navier-Stokes solvers. Quantitatively

Fig 5. Influence of loop unrolling. All simulations are executed with the BGK-W2 collision model, with the AA-soa

scheme, and withN = 128.

https://doi.org/10.1371/journal.pone.0250306.g005

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 22 / 29

https://doi.org/10.1371/journal.pone.0250306.g005
https://doi.org/10.1371/journal.pone.0250306

speaking, single-relaxation-time formulations (BGK-W2 and BGK-NW4) are the fastest. For

the latter model, more redundant terms can be pre-computed, hence its better performance.

Regarding collision models based on multiple relaxation times, it seems clear that increasing

the number of moment space transitions automatically increases the number of floating point

operations, hence a decrease of performance. As an example, the CHM-LBM requires two

intermediate moment transformations before computing post-collision populations from

their RMs, i.e. transformations from CHMs to HMs and from HMs to RMs. The same goes for

the K-LBM, whereas the HM-LBM only requires a single moment transformation (from HMs

to RMs). In addition, even if the RR-LBM is also based on a collision applied in the HM space,

it is faster than the HM-LBM. This is explained by the fact that it only requires the computa-

tion of second-order HMs, and recursive computations of high-order HMs only add a few

floating point operations.

In the end, the present study confirms that the good performances obtained with the

stlbm implementation strategy are consistent across all collision models.

3.3.3 Domain size. Fig 7 shows the performance achieved by stlbm on the fastest con-

sumer-level hardware platform, the RTX 2080 Ti GPU, using different domain sizes, with

increments of 1 for the number of cells N in every direction. The performance figures are

shown for the AA-soa and double-population-soa implementation strategies, and for the

BGK-W2 and RR collision models, to test both a simple and a complex model. In general, the

performance increases up to a resolution of roughly 100 × 100 × 100, and stays roughly con-

stant afterwards. The double-population implementation further shows a drop of performance

close to N = 90, which is not further explained at this point. This investigation finally leads to

the conclusion that the performances of the double-population scheme and the AA-pattern

are very similar, and that the slight superiority of the double-population approach observed in

Sec 3.2 would be less clear-cut or even inexistent at a different domain size or with a different

collision model.

Fig 6. Performance of different LB models. All simulations are executed with the AA-soa data structure at N = 128

on the RTX 2080 Ti GPU.

https://doi.org/10.1371/journal.pone.0250306.g006

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 23 / 29

https://doi.org/10.1371/journal.pone.0250306.g006
https://doi.org/10.1371/journal.pone.0250306

4 Conclusion

This article presents an implementation approach for multi-threaded LB applications which is

hardware agnostic, relies exclusively on standard C++ language features, yet exhibits very

interesting performances on many-core CPUs and on GPUs. It is presented and disseminated

in form of the open-source C++ library stlbm. While the computational kernels are kept

very simple to serve as templates in general-purpose LB codes, and use a descriptive program-

ming style to serve an educational purpose, the stlbm library targets a broad scope, as it offers

six different implementation strategies, and nine LB collision models, which can be combined

without restrictions.

The article presents performance metrics of the code for different implementation choices

and on different platforms for the test case of a 3D lid-driven cavity flow. The results of these

benchmarks show that the proposed framework leads to excellent performance on both CPUs

and GPUs. In the latter case, very similar performances are obtained compared to those of an

optimized code written in a domain-specific language, with a performance loss of only approx-

imately 20%.

The results of these benchmarks also lead to an interesting conclusion that appears to ques-

tion common prejudice regarding the use of CPUs vs. GPUs in computational science. While

it is traditionally thought that GPU development is substantially more time consuming than

CPU development, but more rewarding thanks to performance gains of one to two orders of

magnitude, the stlbm library presented in this article paints rather the opposite picture.

Indeed, the same effort leads to a code that compiles to a CPU and a GPU binary without

changes. As for the performance, the two consumer-level GPUs (which, like the CPUs, were

deployed within desktop computers) outperform the CPUs by roughly a factor 4 (or a factor 2

if the more readable version of the code is considered), while the data-center GPU achieves a

factor of more than 5 (or a factor 4 for the educational code version).

The achieved performances are barely affected by the use of sophisticated collision terms.

More precisely, the speed difference between standard and more sophisticated collision mod-

els remains within a factor two, which means the most robust collision models remain compet-

itive (despite their increased complexity) as compared to Navier-Stokes solvers.

The numerical tests also allow to single out two implementation strategies that exhibit the

best performances across the tested high-performance platforms, namely the double-

Fig 7. Dependence of domain size on performance on GPU. Left: BGK-W2; Right: RR. Simulations are run on an RTX

2080 Ti GPU.

https://doi.org/10.1371/journal.pone.0250306.g007

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 24 / 29

https://doi.org/10.1371/journal.pone.0250306.g007
https://doi.org/10.1371/journal.pone.0250306

population scheme and the AA-pattern, both used in combination with a structure-of-array

data layout. Among these two, the AA-pattern appears to be more versatile thanks to its consis-

tently good performances across different platforms. It furthermore stands out because of its

reduced memory needs. While the third tested approach, the swap scheme, performed poorly

on GPU and AMD CPU hardware, it produced good performance on the 8-core Intel CPU,

combined with an array-of-structure layout. We therefore retain also this approach as an inter-

esting candidate, which has a low memory footprint like the AA-pattern. It furthermore pro-

poses an algorithm that fits more easily into complex LB applications, as it does not require a

separation into even and odd time steps.

As a consequence of these observations, the stlbm library offers, additionally to its full

software framework, three standalone, single-file codes based on the two-population soa, the

AA-pattern soa, and the swap aos strategies respectively. Each of these standalone files con-

tains less than 500 lines of code and allows to understand the philosophy of LB simulations

with Parallel Algorithms with fewer hurdles than the full code basis. They are written for the

BGK-W2 collision model, which is however easily replaced by any of the other models by

inserting corresponding code portions for the stlbm library.

We finally point out that the conclusions regarding the best performing implementation

scheme appear not to be universal, and rather linked to the specificity of the presently tested

hardware. The generic version of the stlbm code serves therefore an important purpose,

allowing all implementation strategies to be rapidly tested on future many-core systems.

Supporting information

S1 Source Code. STLBM software library. The stlbm software library is released as an

open-source project and can be used under the terms of an MIT license. The source code is

available at https://gitlab.com/UniGeHPFS/stlbm. All performance measurements presented

in this article were executed with the version of the code identified through the Git tag

benchmarks_plosone.

(TXT)

S1 File. Performance measurements. This spreadsheet contains the detailed performance

measurements used to produce the median values on the graphs and in the tables of this arti-

cle.

(XLSX)

Acknowledgments

We would like to thank Orestis Malaspinas for useful discussions regarding the role of func-

tional programming styles (in relationship with Futhark) in hardware-agnostic multi-threaded

program development, and for supplying testing hardware for this article. We would further

like to thank Christos Kotsalos and Anthony Boulmier for providing advice and help on hard-

ware installation and configuration.

Author Contributions

Conceptualization: Jonas Latt, Christophe Coreixas, Joël Beny.

Data curation: Jonas Latt.

Formal analysis: Jonas Latt, Christophe Coreixas.

Investigation: Jonas Latt, Christophe Coreixas, Joël Beny.

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 25 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0250306.s001
https://gitlab.com/UniGeHPFS/stlbm
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0250306.s002
https://doi.org/10.1371/journal.pone.0250306

Methodology: Jonas Latt, Joël Beny.

Project administration: Jonas Latt.

Software: Jonas Latt, Christophe Coreixas, Joël Beny.

Supervision: Jonas Latt.

Validation: Jonas Latt, Christophe Coreixas.

Visualization: Jonas Latt, Christophe Coreixas.

Writing – original draft: Jonas Latt, Christophe Coreixas.

Writing – review & editing: Jonas Latt, Christophe Coreixas, Joël Beny.

References
1. Latt J, Malaspinas O, Kontaxakis D, Parmigiani A, Lagrava D, Brogi F, et al. Palabos: Parallel Lattice

Boltzmann Solver. Computers & Mathematics with Applications. 2021; 81: 334–350. https://doi.org/10.

1016/j.camwa.2020.03.022

2. Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part

1. Theoretical foundation. Journal of Fluid Mechanics. 1994; 271: 285–309. https://doi.org/10.1017/

S0022112094001783

3. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The Lattice Boltzmann Method:

Principles and Practice. Springer International Publishing; 2017.

4. Marson F, Thorimbert Y, Chopard B, Ginzburg I, Latt J. Enhanced single-node boundary condition for

the Lattice Boltzmann Method. Physical Review E. Forthcoming. Available from: https://arxiv.org/abs/

2009.04604

5. Alfieri RA. An efficient kernel-based implementation of POSIX threads. In: Proceedings of the USENIX

Summer 1994 Technical Conference on USENIX Summer 1994 Technical Conference—Volume 1.

USTC’94. USA: USENIX Association; 1994. p. 5.

6. NVIDIA CUDA Toolkit. Available from: https://developer.nvidia.com/cuda-toolkit

7. Fang J, Huang C, Tang T, Wang Z. Parallel programming models for heterogeneous many-cores: a

comprehensive survey. CCF Trans HPC. 2020; 2: 382–400. https://doi.org/10.1007/s42514-020-

00039-4

8. The OpenMP API specification for parallel programming. Available from: https://www.openmp.org/

9. The OpenACC API specification for parallel programming. Available from: https://www.openacc.org/

10. Intel’s OneAPI. Available from: https://software.intel.com/en-us/oneapi

11. HCC: An open source C++ compiler for heterogeneous devices. Available from: https://github.com/

RadeonOpenCompute/hcc

12. Haidl M, Gorlatch S. PACXX: Towards a Unified Programming Model for Programming Accelerators

Using C++14. In: 2014 LLVM Compiler Infrastructure in HPC; 2014. p. 1–11. https://doi.org/10.1109/

LLVM-HPC.2014.9

13. Bell N, Hoberock J. Thrust: A productivity-oriented library for CUDA. In: GPU computing gems Jade edi-

tion. Elsevier; 2012. p. 359–371. https://doi.org/10.1016/B978-0-12-385963-1.00026-5

14. Kim W, Voss M. Multicore Desktop Programming with Intel Threading Building Blocks. IEEE Software.

2011; 28(1): 23–31. https://doi.org/10.1109/MS.2011.12

15. Pohl T, Kowarschik M, Wilke J, Iglberger K, Rüde U. Optimization and profiling of the cache perfor-

mance of parallel lattice Boltzmann codes. Parallel Process Lett. 2003; 13(04): 549–560. https://doi.org/

10.1142/S0129626403001501

16. Bauer M, Eibl S, Godenschwager C, Kohl N, Kuron M, Rettinger C, et al. waLBerla: A block-structured

high-performance framework for multiphysics simulations. Computers & Mathematics with Applications.

2020; 81: 471–501. https://doi.org/10.1016/j.camwa.2020.01.007

17. Mattila K, Hyväluoma J, Rossi T, Aspnäs M, Westerholm J. An efficient swap algorithm for the lattice

Boltzmann method. Computer Physics Communications. 2007; 176(3): 200–210. https://doi.org/10.

1016/j.cpc.2006.09.005

18. Bailey P, Myre J, Walsh SDC, Lilja DJ, Saar MO. Accelerating Lattice Boltzmann Fluid Flow Simulations

Using Graphics Processors. In: 2009 International Conference on Parallel Processing. Vienna: IEEE;

2009. p. 550–557.

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 26 / 29

https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1017/S0022112094001783
https://doi.org/10.1017/S0022112094001783
https://arxiv.org/abs/2009.04604
https://arxiv.org/abs/2009.04604
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1007/s42514-020-00039-4
https://doi.org/10.1007/s42514-020-00039-4
https://www.openmp.org/
https://www.openacc.org/
https://software.intel.com/en-us/oneapi
https://github.com/RadeonOpenCompute/hcc
https://github.com/RadeonOpenCompute/hcc
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1109/MS.2011.12
https://doi.org/10.1142/S0129626403001501
https://doi.org/10.1142/S0129626403001501
https://doi.org/10.1016/j.camwa.2020.01.007
https://doi.org/10.1016/j.cpc.2006.09.005
https://doi.org/10.1016/j.cpc.2006.09.005
https://doi.org/10.1371/journal.pone.0250306

19. Mohrhard M, Thäter G, Bludau J, Horvat B, Krause MJ. Auto-vectorization friendly parallel lattice Boltz-

mann streaming scheme for direct addressing. Computers & Fluids. 2019; 181: 1–7. https://doi.org/10.

1016/j.compfluid.2019.01.001

20. Ryoo S, Rodrigues CI, Baghsorkhi SS, Stone SS, Kirk DB, Hwu WmW. Optimization principles and

application performance evaluation of a multithreaded GPU using CUDA. In: Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and practice of parallel programming. PPoPP ‘08. New York,

NY, USA: Association for Computing Machinery; 2008. p. 73–82. https://doi.org/10.1145/1345206.

1345220

21. Tölke J. Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture

developed by nVIDIA. Comput Visual Sci. 2010; 13(1): 29–39. https://doi.org/10.1007/s00791-008-

0120-2

22. Kuznik F, Obrecht C, Rusaouen G, Roux JJ. LBM based flow simulation using GPU computing proces-

sor. Computers & Mathematics with Applications. 2010; 59(7): 2380–2392. https://doi.org/10.1016/j.

camwa.2009.08.052

23. Obrecht C, Kuznik F, Tourancheau B, Roux JJ. A new approach to the lattice Boltzmann method for

graphics processing units. Computers & Mathematics with Applications. 2011; 61(12): 3628–3638.

https://doi.org/10.1016/j.camwa.2010.01.054

24. Mawson MJ, Revell AJ. Memory transfer optimization for a lattice Boltzmann solver on Kepler architec-

ture nVidia GPUs. Computer Physics Communications. 2014; 185(10): 2566–2574. https://doi.org/10.

1016/j.cpc.2014.06.003

25. Tran NP, Lee M, Hong S. Performance Optimization of 3D Lattice Boltzmann Flow Solver on a GPU.

Scientific Programming. 2017; 2017: 1–16. https://doi.org/10.1155/2017/1205892

26. McIntosh-Smith S, Curran D. Evaluation of a performance portable lattice Boltzmann code using

OpenCL. In: Proceedings of the International Workshop on OpenCL 2013 & 2014—IWOCL ‘14. Bristol,

United Kingdom: ACM Press; 2014. p. 1–12. https://doi.org/10.1145/2664666.2664668

27. Obrecht C, Tourancheau B, Kuznik F. Performance Evaluation of an OpenCL Implementation of the

Lattice Boltzmann Method on the Intel Xeon Phi. Parallel Process Lett. 2015; 25(03): 1541001. https://

doi.org/10.1142/S0129626415410017

28. Januszewski M, Kostur M. Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann

method. Computer Physics Communications. 2014; 185(9): 2350–2368. https://doi.org/10.1016/j.cpc.

2014.04.018

29. Lagrava D, Malaspinas O, Latt J, Chopard B. Advances in multi-domain lattice Boltzmann grid refine-

ment. Journal of Computational Physics. 2012; 231(14): 4808–4822. https://doi.org/10.1016/j.jcp.2012.

03.015

30. Astoul T, Wissocq G, Boussuge JF, Sengissen A, Sagaut P. Analysis and reduction of spurious noise

generated at grid refinement interfaces with the lattice Boltzmann method. J Comput Phys. 2020; 418:

109645. https://doi.org/10.1016/j.jcp.2020.109645

31. Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Illustrated edition ed. Oxford:

New York: Clarendon Press; 2001.

32. Chopard B. Cellular Automata Modeling of Physical Systems. In: Meyers RA, editor. Computational

Complexity: Theory, Techniques, and Applications. New York, NY: Springer New York; 2012. p. 407–

433. https://doi.org/10.1007/978-1-4614-1800-9_27

33. Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part

1. Theoretical foundation. J Fluid Mech. 1994; 271: 285–309. https://doi.org/10.1017/

S0022112094001783

34. Ginzburg I, Verhaeghe F, d’Humières D. Two-relaxation-time Lattice Boltzmann Scheme: About

Parametrization, Velocity, Pressure and Mixed Boundary Conditions. Communications in Computa-

tional Physics. 2008; 3(2): 427–478. Available from: https://www.global-sci.org/oldweb/cicp/issue/

FULLPDF/3/427/paper.pdf.

35. Skordos PA. Initial and boundary conditions for the lattice Boltzmann method. Phys Rev E. 1993; 48(6):

4823–4842. https://doi.org/10.1103/PhysRevE.48.4823 PMID: 9961167

36. Coreixas C, Chopard B, Latt J. Comprehensive comparison of collision models in the lattice Boltzmann

framework: Theoretical investigations. Phys Rev E. 2019; 100: 033305. https://doi.org/10.1103/

PhysRevE.100.033305 PMID: 31639944

37. Coreixas C, Wissocq G, Chopard B, Latt J. Impact of collision models on the physical properties and the

stability of lattice Boltzmann methods. Phil Trans R Soc A. 2020; 378(2175): 20190397. https://doi.org/

10.1098/rsta.2019.0397 PMID: 32564722

38. Qian YH, D’Humières D, Lallemand P. Lattice BGK Models for Navier-Stokes Equation. Europhys Lett.

1992; 17(6): 479. https://doi.org/10.1209/0295-5075/17/6/001

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 27 / 29

https://doi.org/10.1016/j.compfluid.2019.01.001
https://doi.org/10.1016/j.compfluid.2019.01.001
https://doi.org/10.1145/1345206.1345220
https://doi.org/10.1145/1345206.1345220
https://doi.org/10.1007/s00791-008-0120-2
https://doi.org/10.1007/s00791-008-0120-2
https://doi.org/10.1016/j.camwa.2009.08.052
https://doi.org/10.1016/j.camwa.2009.08.052
https://doi.org/10.1016/j.camwa.2010.01.054
https://doi.org/10.1016/j.cpc.2014.06.003
https://doi.org/10.1016/j.cpc.2014.06.003
https://doi.org/10.1155/2017/1205892
https://doi.org/10.1145/2664666.2664668
https://doi.org/10.1142/S0129626415410017
https://doi.org/10.1142/S0129626415410017
https://doi.org/10.1016/j.cpc.2014.04.018
https://doi.org/10.1016/j.cpc.2014.04.018
https://doi.org/10.1016/j.jcp.2012.03.015
https://doi.org/10.1016/j.jcp.2012.03.015
https://doi.org/10.1016/j.jcp.2020.109645
https://doi.org/10.1007/978-1-4614-1800-9_27
https://doi.org/10.1017/S0022112094001783
https://doi.org/10.1017/S0022112094001783
https://www.global-sci.org/oldweb/cicp/issue/FULLPDF/3/427/paper.pdf
https://www.global-sci.org/oldweb/cicp/issue/FULLPDF/3/427/paper.pdf
https://doi.org/10.1103/PhysRevE.48.4823
http://www.ncbi.nlm.nih.gov/pubmed/9961167
https://doi.org/10.1103/PhysRevE.100.033305
https://doi.org/10.1103/PhysRevE.100.033305
http://www.ncbi.nlm.nih.gov/pubmed/31639944
https://doi.org/10.1098/rsta.2019.0397
https://doi.org/10.1098/rsta.2019.0397
http://www.ncbi.nlm.nih.gov/pubmed/32564722
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1371/journal.pone.0250306

39. De Rosis A, Coreixas C. Multiphysics flow simulations using D3Q19 lattice Boltzmann methods based

on central moments. Phys Fluids. 2020; 32: 117101. https://doi.org/10.1063/5.0026316

40. d’Humières D, Ginzburg I. Viscosity independent numerical errors for Lattice Boltzmann models: From

recurrence equations to “magic” collision numbers. Comput Math Appl. 2009; 58(5): 823–840. https://

doi.org/10.1016/j.camwa.2009.02.008

41. d’Humières D. Generalized lattice-Boltzmann equations. Prog Astronaut Aeronaut. 1992; 159: 450–

458. https://doi.org/10.2514/5.9781600866319.0450.0458

42. Lallemand P, Luo LS. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Gali-

lean invariance, and stability. Phys Rev E. 2000; 61: 6546–6562. https://doi.org/10.1103/PhysRevE.61.

6546 PMID: 11088335

43. d’Humières D. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos Trans R

Soc London, Ser A. 2002; 360(1792): 437–451. https://doi.org/10.1098/rsta.2001.0955 PMID:

16214687

44. Latt J, Chopard B. Lattice Boltzmann Method with Regularized Pre-collision Distribution Functions.

Math Comput Simul. 2006; 72(2-6): 165–168. https://doi.org/10.1016/j.matcom.2006.05.017

45. Shan X, Chen H. A general multiple-relaxation-time Boltzmann collision model. Int J Mod Phys C. 2007;

18(04): 635–643. https://doi.org/10.1142/S0129183107010887

46. Adhikari R, Succi S. Duality in matrix lattice Boltzmann models. Phys Rev E. 2008; 78: 066701. https://

doi.org/10.1103/PhysRevE.78.066701 PMID: 19256975

47. Chen H, Gopalakrishnan P, Zhang R. Recovery of Galilean invariance in thermal lattice Boltzmann

models for arbitrary Prandtl number. Int J Mod Phys C. 2014; 25(10): 1450046. https://doi.org/10.1142/

S0129183114500466

48. Geier M, Greiner A, Korvink JG. Cascaded digital lattice Boltzmann automata for high Reynolds num-

ber flow. Phys Rev E. 2006; 73: 066705. https://doi.org/10.1103/PhysRevE.73.066705 PMID:

16907021

49. Ishida T. Aerodynamic Simulations of a High-Lift configuration by Lattice Boltzmann Method with Block-

Structured Cartesian Grid. In: AIAA Scitech 2019 Forum; 2019. p. 2306. https://doi.org/10.2514/6.2019-

2306

50. Chávez-Modena M, Martı́nez JL, Cabello JA, Ferrer E. Simulations of Aerodynamic Separated Flows

Using the Lattice Boltzmann Solver XFlow. Energies. 2020; 13(19): 5146. https://doi.org/10.3390/

en13195146

51. Mattila KK, Philippi PC, Hegele LA Jr. High-order regularization in lattice-Boltzmann equations. Phys

Fluids. 2017; 29(4): 046103. https://doi.org/10.1063/1.4981227

52. Shan X. Central-moment-based Galilean-invariant multiple-relaxation-time collision model. Phys Rev

E. 2019; 100: 043308. https://doi.org/10.1103/PhysRevE.100.043308 PMID: 31771023

53. Hosseini SA, Darabiha N, Thévenin D. Compressibility in lattice Boltzmann on standard stencils: effects

of deviation from reference temperature. Phil Trans R Soc A. 2020; 378(2175): 20190399. https://doi.

org/10.1098/rsta.2019.0399 PMID: 32564724

54. Geier M, Schönherr M, Pasquali A, Krafczyk M. The cumulant lattice Boltzmann equation in three

dimensions: Theory and validation. Comput Math Appl. 2015; 70(4): 507–547. https://doi.org/10.1016/j.

camwa.2015.05.001

55. Gehrke M, Janßen CF, Rung T. Scrutinizing lattice Boltzmann methods for direct numerical simulations

of turbulent channel flows. Comput Fluids. 2017; 156: 247–263. https://doi.org/10.1016/j.compfluid.

2017.07.005

56. Sitompul YP, Aoki T. A filtered cumulant lattice Boltzmann method for violent two-phase flows. J Com-

put Phys. 2019; 390: 93–120. https://doi.org/10.1016/j.jcp.2019.04.019

57. Nishimura S, Hayashi K, Nakaye S, Yoshimoto M, Suga K, Inamuro T. Implicit Large-Eddy Simulation

of rotating and non-rotating machinery with Cumulant Lattice Boltzmann method aiming for industrial

applications. In: AIAA Aviation 2019 Forum; 2019. https://doi.org/10.2514/6.2019-3526

58. Malaspinas O. Increasing stability and accuracy of the lattice Boltzmann scheme: Recursivity and regu-

larization. arXiv:150506900 [Preprint]. 2015. Available from: https://arxiv.org/pdf/1505.06900.

59. Coreixas C, Wissocq G, Puigt G, Boussuge JF, Sagaut P. Recursive regularization step for high-order

lattice Boltzmann methods. Phys Rev E. 2017; 96: 033306. https://doi.org/10.1103/PhysRevE.96.

033306 PMID: 29346972

60. Brogi F, Malaspinas O, Chopard B, Bonadonna C. Hermite regularization of the lattice Boltzmann

method for open source computational aeroacoustics. J Acoust Soc Am. 2017; 142(4): 2332–2345.

https://doi.org/10.1121/1.5006900 PMID: 29092578

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 28 / 29

https://doi.org/10.1063/5.0026316
https://doi.org/10.1016/j.camwa.2009.02.008
https://doi.org/10.1016/j.camwa.2009.02.008
https://doi.org/10.2514/5.9781600866319.0450.0458
https://doi.org/10.1103/PhysRevE.61.6546
https://doi.org/10.1103/PhysRevE.61.6546
http://www.ncbi.nlm.nih.gov/pubmed/11088335
https://doi.org/10.1098/rsta.2001.0955
http://www.ncbi.nlm.nih.gov/pubmed/16214687
https://doi.org/10.1016/j.matcom.2006.05.017
https://doi.org/10.1142/S0129183107010887
https://doi.org/10.1103/PhysRevE.78.066701
https://doi.org/10.1103/PhysRevE.78.066701
http://www.ncbi.nlm.nih.gov/pubmed/19256975
https://doi.org/10.1142/S0129183114500466
https://doi.org/10.1142/S0129183114500466
https://doi.org/10.1103/PhysRevE.73.066705
http://www.ncbi.nlm.nih.gov/pubmed/16907021
https://doi.org/10.2514/6.2019-2306
https://doi.org/10.2514/6.2019-2306
https://doi.org/10.3390/en13195146
https://doi.org/10.3390/en13195146
https://doi.org/10.1063/1.4981227
https://doi.org/10.1103/PhysRevE.100.043308
http://www.ncbi.nlm.nih.gov/pubmed/31771023
https://doi.org/10.1098/rsta.2019.0399
https://doi.org/10.1098/rsta.2019.0399
http://www.ncbi.nlm.nih.gov/pubmed/32564724
https://doi.org/10.1016/j.camwa.2015.05.001
https://doi.org/10.1016/j.camwa.2015.05.001
https://doi.org/10.1016/j.compfluid.2017.07.005
https://doi.org/10.1016/j.compfluid.2017.07.005
https://doi.org/10.1016/j.jcp.2019.04.019
https://doi.org/10.2514/6.2019-3526
https://arxiv.org/pdf/1505.06900
https://doi.org/10.1103/PhysRevE.96.033306
https://doi.org/10.1103/PhysRevE.96.033306
http://www.ncbi.nlm.nih.gov/pubmed/29346972
https://doi.org/10.1121/1.5006900
http://www.ncbi.nlm.nih.gov/pubmed/29092578
https://doi.org/10.1371/journal.pone.0250306

61. Jacob J, Malaspinas O, Sagaut P. A new hybrid recursive regularised Bhatnagar-Gross-Krook collision

model for Lattice Boltzmann method-based Large Eddy Simulation. J Turb. 2018; 19(11-12): 1051–

1076. https://doi.org/10.1080/14685248.2018.1540879

62. Wissocq G, Coreixas C, Boussuge J. Linear stability of athermal regularized lattice Boltzmann methods.

Phys. Rev. E. 2020; 102(5): 053305. https://doi.org/10.1103/PhysRevE.102.053305 PMID: 33327122

63. De Rosis A, Huang R, Coreixas C. Universal formulation of central-moments-based lattice Boltzmann

method with external forcing for the simulation of multiphysics phenomena. Phys Fluids. 2019; 31(11):

117102. https://doi.org/10.1063/1.5124719

64. Fei L, Luo KH, Li Q. Three-dimensional cascaded lattice Boltzmann method: Improved implementation

and consistent forcing scheme. Phys. Rev. E. 2018; 97(5): 053309. https://doi.org/10.1103/PhysRevE.

97.053309 PMID: 29906988

65. Hegele LA, Scagliarini A, Sbragaglia M, Mattila KK, Philippi PC, Puleri DF, et al. High-Reynolds-number

turbulent cavity flow using the lattice Boltzmann method. Phys Rev E. 2018; 98(4): 043302. https://doi.

org/10.1103/PhysRevE.98.043302

66. Prasad AK, Koseff JR. Reynolds number and end-wall effects on a lid-driven cavity flow. Physics of Flu-

ids A: Fluid Dynamics. 1989; 1(2): 208–218. https://doi.org/10.1063/1.857491

67. Albensoeder S, Kuhlmann HC. Accurate three-dimensional lid-driven cavity flow. Journal of Computa-

tional Physics. 2005; 206(2): 536–558. https://doi.org/10.1016/j.jcp.2004.12.024

68. Manoha E, Caruelle B. Summary of the LAGOON solutions from the Benchmark problems for Airframe

Noise Computations-III Workshop. In: 21st AIAA/CEAS Aeroacoustics Conference; 2015. p. 2846.

https://doi.org/10.2514/6.2015-2846

69. Beny J, Latt J. Efficient LBM on GPUs for dense moving objects using immersed boundary condition.

In: Ibrahimbegovic A, Mattos Pimenta PD, editors. CILAMCE 2018 Proceedings of XXXIX Ibero-Latin

American Congress on Computational Methods in Engineering; 2018. Available from: https://arxiv.org/

pdf/1904.02108.

PLOS ONE Lattice Boltzmann on CPUs and GPUs

PLOS ONE | https://doi.org/10.1371/journal.pone.0250306 April 29, 2021 29 / 29

https://doi.org/10.1080/14685248.2018.1540879
https://doi.org/10.1103/PhysRevE.102.053305
http://www.ncbi.nlm.nih.gov/pubmed/33327122
https://doi.org/10.1063/1.5124719
https://doi.org/10.1103/PhysRevE.97.053309
https://doi.org/10.1103/PhysRevE.97.053309
http://www.ncbi.nlm.nih.gov/pubmed/29906988
https://doi.org/10.1103/PhysRevE.98.043302
https://doi.org/10.1103/PhysRevE.98.043302
https://doi.org/10.1063/1.857491
https://doi.org/10.1016/j.jcp.2004.12.024
https://doi.org/10.2514/6.2015-2846
https://arxiv.org/pdf/1904.02108
https://arxiv.org/pdf/1904.02108
https://doi.org/10.1371/journal.pone.0250306

