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Abstract: The hybrid particle–field molecular dynamics simulation method (MD-SCF) was applied
to study the self-assembly of Pluronic PEO20-PPO70-PEO20 (P123) in water/ethanol/turpentine oil-
mixed solvents. In particular, the micellization process of P123 at low concentration (less than 20%)
in water/ethanol/turpentine oil-mixed solvents was investigated. The aggregation number, radius
of gyration, and radial density profiles were calculated and compared with experimental data to
characterize the structures of the micelles self-assembled from P123 in the mixed solvent. This study
confirms that the larger-sized micelles are formed in the presence of ethanol, in addition to the
turpentine oil-swollen micelles. Furthermore, the spherical micelles and vesicles were both observed
in the self-assembly of P123 in the water/ethanol/turpentine oil-mixed solvent. The results of this
work aid the understanding of the influence of ethanol and oil on P123 micellization, which will help
with the design of effective copolymer-based formulations.

Keywords: hybrid particle–field molecular dynamics; block copolymer; self-assembly; P123; ethanol;
turpentine oil

1. Introduction

The self-assembly of amphiphilic block copolymers has attracted considerable attention for many
decades because they can form many novel structures, including spheres, cylinders, bicontinuous
phases, lamellae, vesicles, and many other complex or hierarchical assemblies [1–4]. Amphiphilic block
copolymers have been widely used in many industrial applications, such as detergents, dispersion
stabilizers, foaming agents, emulsifiers, and lubricants [5]. Triblock copolymers composed of
hydrophilic (polyethylene oxide)m −amphiphilic (polypropylene oxide)n− hydrophilic (polyethylene
oxide)m blocks are commercially known as Pluronics or Poloxamer [6]. By changing the relative
composition of the polyethylene oxide (PEO) and polypropylene oxide (PPO) blocks (general formula:
(PEO)m−(PPO)n−(PEO)m), it is possible to tune the hydrophilic–lipophilic balance (HLB), which
makes the main structural differences between Pluronics. Since the mid-1960s, Pluronics have been
widely and successfully used in biomedical applications, due to their biocompatibility and non-toxicity,
for example, micellar nanocarriers for drug delivery, biological reaction modifiers in chemistry,
non-viral gene therapy agents, and wound dressings for the treatment of thermal burns [7–13].
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Pluronics P123 (PEO20-PPO70-PEO20) is one of the most used block-copolymers for several applications.
For these reasons, the micellar assembly of P123 in water has been widely studied by a variety of
experimental techniques, such as static light scattering, fluorescence spectroscopy, and surface tension
measurements [13–16]. Furthermore, the effect of mixed solvents on the aggregation of P123 [17] and
the phase behavior of P123 in mixed ethanolic solvents has been the subject of several studies [18,19].
Very recently, Chat et al. successfully investigated the aggregation features of P123 in the presence
of lavender oil and ethanol using dynamic light scattering, small angle neutron scattering, and
rheology [20]. They showed that lavender oil assisted aggregation characteristics of Pluronic P123 in
the mixed solvents of ethanol and water [20]. Furthermore, Ganguly et al. studied tea tree essential oil
(TTO) on the properties of aqueous solutions of Pluronic P123 and the effect on micellar solubilization.
They showed that the solubilization of TTO brings about spherical-to-worm-like micelles-to-vesicular
structural transitions in aqueous solutions of Pluronic P123 [21].

Although experimental data can help with the understanding of the micellization mechanism
of P123 in mixed solutions, it is hard to obtain good information of the phenomenon at molecular
level. Meanwhile, using computer simulation methods to study the self-assembled structure and
properties of block copolymers in aqueous solution has gradually attracted scientists’ attention [21–24].
Computer simulations can not only explain the underlying self-assembly mechanism, but also offer a
route for designing and predicting future experiments. In particular, the standard all-atom molecular
dynamics (AAMD) method cannot be directly performed to investigate the self-assembly phenomenon
because of the time and length scale limits. Therefore, mesoscopic models, such as dissipative particle
dynamics (DPD) [25–30], MesoDyn [31], and the Monte Carlo method [32,33], which have access to
larger time and length scales, have successfully been used to investigate the micellization phenomenon.
For example, Huang et al. used DPD to simulate the entire phase diagram of Pluronic L64 and water.
Furthermore, they also proved that non-Newtonian behaviors can be predicted by non-equilibrium
DPD simulation [25]. Recently, a different computational approach, the hybrid particle–field MD
(MD-SCF) method, was developed, in which the MD and self-consistent field (SCF) method are
combined [34,35]. This hybrid particle–field MD method not only has similar accessibility to large
time and length scales of pure SCF methods, but also has a chemical specificity that is similar to
the MD method. In particular, in our previous works, we presented coarse-grained (CG) hybrid
particle–field models to study the phase behavior of the mixture of phospholipid-water [36], Triton
TX-100 surfactant [37,38], Pluronic-water [39], and nanocomposite systems [40,41]. However, to the
best of our knowledge, studying the effect of oil on the aggregation behavior of P123 in the mixed
solvents using a computer simulation method is still lacking.

In this paper, we present a study of the aggregation features of Pluronic P123 in the presence of
water, ethanol, and turpentine oil, using a MD-SCF simulation. This paper aims to understand the
self-assembly mechanism of micellization of the P123 in the mixed solvents at the molecular level.
Furthermore, the influence of turpentine oil on the aggregation behavior of P123 is also discussed.

2. Materials and Methods

2.1. Simulation Method

In 2009, a computer simulation method of hybrid particle–field molecular dynamics method
was developed [34,36,39]. The main feature of this method is to combine the molecular dynamics
method based on particle description with the average field theory of self-consistent field. That is, the
non-bonded interaction between particles of different molecules can be replaced by the evaluation
for each particle of those with an external potential that depends on the local density at position r,
and can solve the multi-body problem [35] using the molecular dynamics simulation method. In the
framework of the SCF theory, one chain is regarded to interact with the surrounding chains not directly
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but through a mean field. Its calculation method is as follows: the Hamilton operator consists with
two parts composed of M molecules, which can be expressed as:

Ĥ(Γ) = Ĥ0(Γ) + Ŵ(Γ) (1)

Ĥ0(Γ) is the Hamiltonian of a reference ideal system composed of M molecules but with all the bonded
and non-bonded interaction in the standard MD simulations. Γ specifies a point in the phase space,
and the hat symbol ∧ indicates that the relevant physical quantity is a function of the microscopic
states described by the phase space Γ. On the other hand, the deviation from the reference system,
which is induced by non-bonded interactions between molecules, is accounted for by the term Ŵ(Γ).

Then, the total partition function of the system is written as:

Z =
1

M!

∫
dΓexp

{
−β

[
Ĥ0(Γ) + Ŵ(Γ)

]}
(2)

where β = 1
kBT .

From the microscopical level, the density distribution of particles is defined as the sum of δ
functions centered at the center of mass of each particle as:

φ̂(r; Γ) =
M∑

P=1

S(p)∑
i=0

δ(r− ri
(p)) (3)

where ri
(p) is defined as the particles’ coordinate of the Pth molecule, S(p) is defined as the number

of particles contained in the Pth molecule, and M is the total number of molecules in the system.
We assume that the particle density of the phase space determines the external field:

Ŵ(Γ) = Ŵ(φ(r; Γ)) (4)

Here, we assume that Ŵ(φ(r; Γ)) depends on Γ only through the particle density φ(r; Γ). Then,
we can write the single-molecule partition function as:

Z =
1

M!

∫
D
{
φ(r)

}∫
D
{
w(r)

}
× exp

{
−β

[
−

M
β

ln Z + W[φ(r)] −
∫

V(r)φ(r)dr
]}

(5)

In this expression, Z is partition function of the single molecule, w(r) is a conjugate field of φ(r), and
V(r) is the external potential.

Next, we assume that the density dependent interaction potential W, where each species is
specified by the index K, takes the following form in Equation (6):

W
[{
φK(r)

}]
=

∫
dr

kBT
2

∑
KK′

χKK′φK(r)φK′(r) +
1

2κ

∑
K

φK(r) −φ0


 (6)

where φK(r) is the coarse-grained density of the species K at position r, and χKK′ represents the mean
field parameters for the interaction of a particle of type K with the density fields due to particles of
type K′. In particular, κ is the compressibility that is assumed to be sufficiently small to obtain the
relaxed incompressibility condition. Then, the external potential of type K can be given by:

VK(r) =
δW[(φK(r)]
δφK(r)

= kBT
∑
K′
χKK′φK′(r) +

1
κ
(
∑

K

φK(r) −φ0) (7)

Finally, the density derivatives of Equation (7) are required to calculate the forces, further details
can be found in [34]. Moreover, the values of the coarse-grained density at lattice points are not
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updated at every time step but only at every prefixed density update time. Between two updates,
the values of the densities on the lattice are used to interpolate density derivatives and, hence, forces.
Details concerning the OCCAM code used to perform the MD-SCF simulations are reported in [35].

In the hybrid particle–field molecular dynamics simulations, the box length of the system was
64.25 nm. The total number of particles in the system was 192,000, and the diameter of the particle
σ was set at 1.046 nm. The number density was 0.725. The time step used for the integration of the
equations of motion was set to 0.03 ps. The grid size was set to 2.1 nm, and the density field was
updated every 300 time steps (Update frequency has been tested in several of our previous papers
and guarantees reasonable results with respect to finer methods [35–39,41].) The NVT ensemble was
chosen, the temperature was kept constant at 303K, the same as in the experiments of Reference [20],
using the Andersen thermostat with a collision frequency of 20 ps−1. The total simulation step was
8 × 107 steps, which corresponds to the real time 2.4 µs. The detailed information of the simulation
systems is reported in Tables 1 and 2.

Table 1. The composition of systems including block copolymer P123 and water.

Volume Fraction
(vol %)

P123
No. of Atoms

Water
No. of Atoms

Particle
No. of Atoms

Box Length
(nm)

2 3834 188,166 192,000 64.25
5 9594 182,406 192,000 64.25
10 19,206 172,794 192,000 64.25
15 28,800 163,200 192,000 64.25
20 38,394 153,606 192,000 64.25

Table 2. The composition of systems including block copolymer P123, water, ethanol, and turpentine oil.

System P123
No. of Atoms

Water
No. of Atoms

Ethanol
No. of Atoms

Turpentine Oil
No. of Atoms

I 9576 (5%) 153,624 28,800 (15%) 0
II 9576 (5%) 134,424 48,000 (25%) 0
III 28,800 (15%) 115,200 48,000 (25%) 0
IV 9576 (5%) 150,744 28,800 (15%) 2880 (1.5%)
V 9576 (5%) 131,544 48,000 (25%) 2880 (1.5%)
VI 28,800 (15%) 112,320 48,000 (25%) 2880 (1.5%)

2.2. Coarse-Grained (CG) Model

The coarse-grained model was used in our simulations, in which the mapping scheme was similar
to our previous work [29,30]. According to the molecular weight and experimental bulk densities,
the monomer volumes were obtained. In particular, we took 20 water molecules and grouped them
together into one bead with a volume of 600 Å3. The same bead volume corresponds approximately to
9 PEO monomers, 5 PPO monomers, 6 ethanol monomers or 2 turpentine oil monomers. With the
proposed mapping scheme, a single chain of P123 could be represented by EO2PO14EO2. The mapping
scheme of the CG model used in this paper is reported in Figure 1.

According to our previous work [29], the bead-bead interaction parameters in the MD-SCF
simulation method can be obtained from the Flory–Huggins χ parameters, which can be calculated by
Equation (8):

χ12 =
Vbead
kBT

(δ1 − δ2)
2 (8)

where Vbead = 600 Å3 in our MD-SCF simulations. The Hildebrand solubility parameter is the square
root of the cohesive energy density. The cohesive energy density is the amount of energy needed to
completely remove a unit volume of molecules from their neighbors to infinite separation (an ideal
gas), which is equal to the heat of vaporization divided by the molar volume.
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Figure 1. Mapping scheme of the coarse-grained models of P123 (EO2PO14EO2), water (corresponds
to 20 H2O monomers), ethanol (corresponds to 6 ethanol monomers), turpentine oil (corresponds to
2 monomers).

As PEO is miscible with water at almost any concentrations, χ(PEO −Water) = 0.3 was
adapted [42–44]. In [44–46], corresponding to a bead volume of 150 Å3, the authors used the
group contribution method to estimate χ(PEO − PPO) = 3.0, and χ(PPO −Water) = 2.1. Thus,
χ(PEO − PPO) = 12.0, which can be deduced based on the bead volume of 600 Å3. According
to [47], χ(PPO−Oil) = 0.9, and χ(Oil−Water) = 16.8 can be deduced from their DPD simulations.

Furthermore, according to [48], the solubility parameters of PEO, PPO, and ethanol are 19.9 (J · cm−3
)1/2

,

18.5 (J · cm−3)
1/2, and 26.5 (J · cm−3)

1/2, respectively. Moreover, the solubility parameter of
turpentine oil is 16.6 (J · cm−3)

1/2, which can be obtained in the polymer handbook [49]. Thus,
χ(PEO − Ethanol) = 6.4, χ(PPO − Ethanol) = 10.0, and χ(Oil − Ethanol) = 14.3 can be calculated.
Then, the interaction parameters of each component are multiplied by RT in the MD-SCF simulations
and shown in Table 3.

Table 3. The interaction parameters χRT (kJ·mol−1) between different particles in the MD-SCF
simulation method.

PEO PPO Water Ethanol Turpentine Oil

PEO 0.0 30.3 0.76 16.0 21.0
PPO 30.3 0.0 21.2 25.4 2.3

Water 0.76 21.2 0.0 0.76 42.3
Ethanol 16.0 25.4 0.76 0.0 36.0

TurpentineOil 21.0 2.3 42.3 36.0 0.0

For the P123 model, the bonds between two successive beads are described by a harmonic potential:

Vbond(R) =
1
2

Kbond(R−Rbond)
2 (9)

where the equilibrium distance Rbond is equal to 1.12 nm for the block copolymer. Kbond = 10, 000 kJ ·mol−1
·

nm−2 is the bond force constant. The CG model of BCP contains no angular constraints between two
consecutive bonds. All the simulations were performed by OCCAM code, which was developed by
us [35]. The various analyses were computed from a single ensemble snapshot after the equilibration
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for each system of 2.4 µs. The calculated diffusion coefficient from the mean square displacement
(MSD) of the MD-SCF simulation is Dpolymer = 1.5 cm2

· s−1 for a polymer chain of 20 beads. This
value can be compared with experimental (or calculated by atomistic simulations) diffusion data from
different polymers that have a similar chain size. Therefore, we can consider an order of magnitude
difference in the time scaling factor~1000 from [41]. According to this, the simulations reported in our
paper can be considered on the timescale of 2.4 milliseconds.

3. Results and Discussion

3.1. Effect of Concentration on the Micelles Structure of P123 in Water

Firstly, we consider a binary system composed of P123 (with different volume concentrations)
in water. For each concentration, a certain number of P123 chains were randomly placed in the box,
previously filled with water CG beads (see Table 1). Then, the dilute aqueous solutions were simulated
at 303K with a parallel version of the OCCAM code [35].

For all systems, starting from approximately 200 ns, the formation of aggregates of P123 was
observed. In particular, the mean aggregation number < P >n of Pluronic micelles increased with
simulation time up to an equilibrium value (after 2 µs), as reported in Figure 2. In order to characterize
the composition of the micelles self-assembled from P123 dilute solution, the mean aggregation number
< P >n was calculated. In particular, < P >n was defined as: < P >n=

∑
i

Pini, where ni was the

fraction of the aggregates whose aggregation number equaled Pi and
∑
i

ni = 1 [50]. Figure 2 shows

the time evolution of < P >n for micelles formed by the P123 dilute aqueous solution with different
concentrations. As can be seen from Figure 2, the average composition of P123 micelles is the function
of the concentration of the P123 in water. In general, the P123 micelles contain from 5 to 22 P123 chains.Polymers 2018, 10, x FOR PEER REVIEW  7 of 16 
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Figure 2. The time evolution of < P >n of micelles self-assembled by P123 dilute aqueous solution with
different volume concentrations of 2%, 5%, 10%, 15%, and 20%, respectively.

To describe the morphology of the micelles, we calculated the eigenvalues of the radius of the
gyration tensor [50–52], as defined by

Sab =
1
n

n∑
i=1

(ai − acm)(bi − bcm) (10)

And
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Λ =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (11)

where a and b indicate x, y, or z components of the bead’s coordinates, respectively. Here n is the total
number of beads in the aggregate. acm and bcm are the centers of mass of the aggregate. The radius of
gyration Rg can be simply calculated by Equation (11):

Rg
2 = λ1 + λ2 + λ3 (12)

where the three eigenvalues λ1 ≤ λ2 ≤ λ3 can be obtained via diagonalization of the matrix in
Equation (11). Finally, the asphericity parameter Q is calculated through the formula as follows:

Q =
(λ2 − λ1)

2 + (λ3 − λ1)
2 + (λ3 − λ2)

2

2(λ1 + λ2 + λ3)
2 (13)

In Figure 3a,b, the mean radius of gyration <Rg> and the asphericity parameter <Q> of the overall
micelles of P123 (at the volume concentration of 2%, 5%, 10%, 15%, and 20%) are reported.

Moreover, we concentrated on the largest micelle of each system at the equilibrium state. Thus,
the radius of gyration Rg, the radius of gyration of the micellar core Rg,c, the asphericity parameter Q,
and the morphology of the largest micelle are shown in Figure 3c,d, respectively.Polymers 2018, 10, x FOR PEER REVIEW  8 of 16 
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parameter Q of the largest micelle (d) corresponds to the P123 dilute aqueous solution with the volume
concentration of 2%, 5%, 10%, 15%, and 20%, respectively.

In general, we observed an increase in the size of the micelles when the P123 concentration
increased (see the red curve in Figure 3a), which is in agreement with the experimental behavior [13,15].
In detail, by visual inspection of simulation trajectories, we found that for a low P123 concentration,
the micelles were almost spherical, while, for a higher concentration, the aggregates were much
more elongated. To quantify the qualitative observation, we computed the asphericity parameter
<Q> (in Figure 3b). We observed that for a low P123 concentration (up to 15%), <Q> was close to
0.5, confirming a spherical shape of the P123 aggregates, which is consistent with the experimental
observations [15,53] and previous simulation studies [29,39]. This indicates that our coarse-graining
procedure and our hybrid MD-SCF simulation method is appropriate for this P123 dilute solution
system. From Figure 3d, we can see that Q equals 0.0069 and 0.035 at 5% and 10% P123 dilute aqueous
solution, respectively, which means that the largest micelles at these two concentrations are closer to
the regular sphere. At higher concentration of 15% and 20%, anisometric micelles can be found with Q
values of 0.13 and 0.41, respectively. This can also be found in previous experiments [15], and is due to
the larger aggregation number of P123 and larger micellar cores of the micelles.
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3.2. Effect of Ethanol on the Micelles Structure of P123 in the Mixed Ethanol-Water Solvent

On the basis of the coarse-graining and mesoscale simulation strategy, we then consider the
self-assembly of P123 in the mixed water and ethanol solutions. The main goal of the study was to find
the effect of ethanol on the micellization of Pluronic P123. To compare the simulation results with the
experimental results of [20], the volume concentration of P123 was chosen by 5 % and the temperature
of systems was kept at 303K. Furthermore, ethanol, at the two different concentrations of 15% and 25%
was chosen, and the two different systems are shown in Table 2 (I), and (II), respectively.

The radial density profiles (ρ) of PPO, PEO, ethanol, and water in these two systems were
calculated in order to better describe the morphologies of the micelles self-assembled by P123 in the
mixed water–ethanol dilute solution. First, we calculated the center of mass (COM) of each micelle.
Then, the number density as a function of distance r to the COM was calculated. After that, the
number density of each component was divided by the shell volume. Finally, the mean radial density
profiles (ρ) were obtained by averaging the number density over all observed micelles, as shown in
Figure 4. From Figure 4, we can see that the peak of block PPO (red line) corresponds to the smallest r,
which means that block PPO chains form the core of the micelle. Moreover, the sequence of position r
corresponding to the main density peaks of different components is block PPO, block PEO, ethanol,
and water, respectively. This indicates that block PEO (green line) wraps block PPO as the shell of
the micelle, and most ethanol is outside the micelle. Most water is mixed with the ethanol due to the
similar peak location of water and ethanol. However, through comparing Figure 4b,d,f, we could
find the small density distribution points formed by water (blue line) and ethanol (yellow line) were
smaller than that of the block PEO, and larger than block PPO, which indicates that water and ethanol
molecules are in the corona of the micelles. Furthermore, the small density peak of ethanol (yellow line)
are shifted left in Figure 3f compared with Figure 3d, which means that increasing the concentration of
ethanol causes ethanol molecules to move inside the PEO block.
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Figure 4. The radial density profiles (ρ) of PPO, PEO, ethanol, and water correspond to the systems of
5% P123 in water in Table 1, (I) and (II) in Table 2. (a) the radial density profile of block PPO in system
of 5% P123 in water; (b) the radial density profile of block PEO and water in system of 5% P123 in
water; (c) the radial density profile of block PPO in system of 5% P123 and 15% ethanol; (d) the radial
density profiles of block PEO, ethanol, and water in the system of 5% P123 and 15% ethanol; (e) the
radial density profile of block PPO in the system of 5% P123 and 25% ethanol; (f) the radial density
profiles of block PEO, ethanol, and water in the system of 5% P123 and 25% ethanol. Block PEO: green;
block PPO: red; ethanol: yellow; and turpentine oil: purple.
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3.3. Effect of Turpentine Oil on the Micelles’ Structure of P123 in the Mixed Solvent

To evaluate the turpentine oil effect on the micelles’ structure of P123 in the presence of ethanol,
we studied three different complex systems including P123 block copolymer, ethanol, oil, and water by
hybrid particle–field molecular dynamics simulation method. The system composition are reported in
Table 2 (IV), (V), and (VI). In order to understand the effect of the turpentine oil on the self-assembly of
micelles, the size distribution of the micelles (5% P123 in pure water, 5% P123 in 15% ethanol and water,
5% P123 in 15% ethanol, 1.5% oil, and water mixed solvent) were calculated and compared, as shown
in Figure 5. Micellar Parameters of mean aggregation number <P>n, the mean radius of gyration<Rg>
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Figure 5. (a) The size distribution of the micelles corresponding to the number of beads in P123; (b) the
number of micelles corresponding to number of chains in P123; for three systems including 5% P123 in
pure water, 5% P123 in 15% ethanol and water mixed solvent (system I in Table 2), and 5% P123 in 15%
ethanol, 1.5% oil, and water mixed solvent (system IV in Table 2), respectively.

Table 4. Micellar Parameters of mean aggregation number <P>n, the mean radius of gyration <Rg>

and the asphericity parameter <Q> corresponding to the systems in Table 2.

System Component <P>n <Rg> (nm) <Q>

I 5% P123 + 15% Ethanol 6.890 2.304 0.1085
II 5% P123 + 25% Ethanol 8.876 2.451 0.1216
III 15% P123 + 25% Ethanol 16.80 3.463 0.1634
IV 5% P123 + 15% Ethanol + 1.5% Oil 6.095 2.462 0.1608
V 5% P123 + 25% Ethanol + 1.5% Oil 8.558 3.038 0.1241
VI 15% P123 + 25% Ethanol + 1.5% Oil 14.25 3.544 0.1899

For the systems of 5% P123 in water, the main result that we found is a broad distribution of
the micelle size. Most micelles were composed by 72 and 54 beads of P123, which corresponds to
four and three chains of P123, while, the largest micelle includes 306 P123 beads (17 chains of P123).
Adding 15% ethanol into the system caused a reduction of the size of micelles, and, at the same time,
an increase of the fraction of micelles composed of a smaller number of P123 beads. Unlike water,
ethanol is considered a good solvent for P123, as confirmed by the reduction of micelle’s radius of
gyration < Rg >= 2.304 nm (system (I)), compared with < Rg >= 4.129 nm calculated at 5% P123 in
water [18,20]. For the system (IV) of 5% P123, 15% ethanol and 1.5% oil, the percentage of free P123
chain is above 0.2. Furthermore, the mean aggregation number < P >n equals 6.095 (for the system
(IV)), which is smaller than < P >n= 6.89 of system (I). With the introduction of the turpentine oil
molecules, the main effect we observed was the increase of radius of gyration < Rg >= 2.462 nm
(system IV), of about 7% larger than that of system (I). This suggests that the turpentine oil molecules
are mainly solubilized in the micellar core and confirms the swelling of P123 micelles [52].
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In order to understand the influence of turpentine oil on the P123-mediated solubilization of
ethanol–water mixed solvent, we calculated the radius of gyration Rg and aspericity parameter Q for
each cluster corresponding to each system and reported in Figure 6. Through comparing the system
(I) and (IV) as shown in Figure 6a,b, a progressive increase in the number of clusters, Rg, and Q was
observed in the presence of turpentine oil (IV). The same situation was also found by increasing the
concentration of P123 and ethanol, as shown in Figure 6c,d. This effect is mainly due to the swelling
of micellar cores by turpentine oil molecules, were still wrapped only by PEO block molecules in
the presence of oil. The number of PEO block was not enough to protect larger cores composed of
PPO block and turpentine oil molecules, which prompted the formation of larger number of micelles.
In the meanwhile, the spherical micelles tended to form larger cylinder micelles or wormlike micelles
to obtain the PEO block’s protection, which could be observed from the larger number of Q > 0.5,
as shown in Figure 6b,d.
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Figure 6. The radius of gyration Rg and aspericity parameter Q for each cluster corresponding to the
number of cluster in the systems of 5% P123 and 15% ethanol (system I in Table 2); 5% P123, 15%
ethanol, and 1.5% turpentine oil (system IV in Table 2); 15% P123 and 25% ethanol (system III in Table 2);
and 15% P123, 25% ethanol, and 1.5% turpentine oil (system VI in Table 2), respectively.

The radial density profiles (ρ) of different components corresponding to 15% P123 in water, system
(III) and (VI) in Table 2 were calculated and are shown in Figure 7. The main peak of density profile of
the turpentine oil (purple line) shows the same position as that of block PPO, shown in Figure 7e,f,
which further confirms that turpentine oil has the effect of swelling the core formed by block PPO.
The morphologies of micelles and vesicles of system (VI) are shown in Figure 8. From the morphology
of the micellar core of system (VI) as shown in Figure 8d, we could confirm that the turpentine oil
molecules are mainly solubilized in the micellar core and block PPO chains are stretched. The same
scheme is schematically presented in [20]. In the experimental work [20], they found that micellar
cores are swelled significantly by the Lavender oil and results in the observed growth of the micelle.
Interestingly, the morphology of vesicle and core of vesicle in system (VI) is also observed and shown
in Figure 8e and f, respectively. In particular, the micelles and vesicles both exist in the systems of P123
in water/ethanol/turpentine oil mixed solvents (system (IV),(V), and (VI)).
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Figure 7. The radial density profiles (ρ) of PPO, PEO, ethanol, and water correspond to the systems
of 15% P123 in water in Table 1, (III) and (VI) in Table 2. (a) the radial density profile of block PPO
in system of 15% P123 in water; (b) the radial density profile of block PEO and water in system of
15% P123 in water; (c) the radial density profile of block PPO in system of 15% P123 and 25% ethanol;
(d) the radial density profiles of block PEO, ethanol, and water in the system of 15% P123 and 25%
ethanol; (e) the radial density profile of block PPO in the system of 15% P123, 25% ethanol and 1.5%
turpentine oil; (f) the radial density profiles of block PEO, ethanol, and water in the system of 15%
P123, 25% ethanol and 1.5% turpentine oil. Block PEO: green; block PPO: red; ethanol: yellow; and
turpentine oil: purple.
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Figure 8. (a) Morphologies of micelles and vesicles in system VI (5% P123, 25% ethanol, and 1.5%
turpentine oil), block PEO: green, block PPO: red, turpentine oil: purple, water and ethanol is omitted
for clarity; (b) morphologies of cores of micelles and vesicles in system VI (5% P123, 25% ethanol,
and 1.5% turpentine oil), block PPO: red, oil: purple, block PEO, water and ethanol is omitted for
clarity; (c) morphology of whole micelle in system VI, block PEO: green, block PPO: red, turpentine oil:
purple; (d) morphology of core of micelle surrounded by water and ethanol in system VI, block PEO:
green, block PPO: red, turpentine oil: purple, ethanol: yellow, water: blue; (e) morphology of whole
vesicle in system VI, block PEO: green, block PPO: red, turpentine oil: purple; (f) morphology of core
of vesicle surrounded by water and ethanol in system VI, block PEO: green, block PPO: red, turpentine
oil: purple, ethanol: yellow, water: blue.
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4. Conclusions

We adopt a simple coarse-grained model where several segments are coarse-grained into a single
bead to study the micellization of P123 in a water/ethanol/turpentine oil-mixed solvent by using the
hybrid particle–field molecular dynamics (MD-SCF) method. The interaction parameters between
beads of different components were estimated from Flory–Huggins parameters. Our simulations
show agreement with previous experiments. For less than 20% P123 in water, the transition from
sphere to cylinder micelles was observed and the micelles with larger sizes were obtained with the
increase in concentration. For 5% P123 in the mixed ethanol-water solvent, when the concentration of
ethanol was increased from 15% to 25%, larger sphere micelles were observed. Furthermore, in the
presence of ethanol, turpentine oil could swell the core of micelles self-assembled from Pluronic P123
at the molecular level. Specifically, not only spherical micelles but also vesicles could be found in
the 5% P123, 25% ethanol, and 1.5% turpentine oil dilute solution. The results in this work primarily
complement previous experiments in understanding the influence of turpentine oil and ethanol on
copolymer self-assembly, which will help to design effective copolymer-based formulations.
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