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Abstract: Epigenetic marks the genome by DNA methylation, histone modification or non-coding
RNAs. Epigenetic marks instruct cells to respond reversibly to environmental cues and keep the
specific gene expression stable throughout life. In this review, we concentrate on DNA methylation,
the mechanism often associated with transgenerational persistence and for this reason frequently used
in the clinic. A large study that included data from 10,000 blood samples detected 187 methylated
sites associated with body mass index (BMI). The same study demonstrates that altered methylation
results from obesity (OB). In another study the combined genetic and epigenetic analysis allowed
us to understand the mechanism associating hepatic insulin resistance and non-alcoholic disease in
Type 2 Diabetes (T2D) patients. The study underlines the therapeutic potential of epigenetic studies.
We also account for seemingly contradictory results associated with epigenetics.
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1. Introduction

Epigenetics is often broadly defined and vaguely used [1]. According to the definition
more frequently cited, epigenetics is the study of hereditable changes in gene function
that occurs without altering the DNA sequence [2]. The view that epigenetic markers
are transmitted to the next generation via the germline is not generally accepted: first,
because epigenetic changes have not yet been detected in germ cells [3]; second, because
in mammalian germ cells and somatic cells are separated by the Weisman barrier [3]. At
present, the hypothesis prevails that transmission of epigenetic changes occurs through
long-lived RNA molecules that can pass through the Weisman barrier [4]. Epigenetics
marks the genome by DNA methylation, histone modification, or non-coding RNAs.
Epigenetic marks instruct cells to respond reversibly to environmental cues and—at the
same time—keep the specific gene expression programs stable throughout life [5]. Estimates
of hereditability of complex diseases (such as OB or T2D) generally account for a small
fraction of the genetic variability [6]. We can explain this conclusion by pointing out that
many of these studies have ignored the epigenome. To better understand the phenotypic
differences characterizing single patients, mapping the epigenome may be as informative
as mapping the genome [6].

Clinical epigenetics is a promising approach for the diagnosis of several complex
diseases, including OB and T2D [7]. Specifically, the detection of epigenetic biomarkers
represents an appealing practice, both in clinical and research. In this regard, sophisticated
techniques are rapidly evolving. To study histone modifications or chromatin conformation,
are commonly used chromatin immunoprecipitation (ChIP) or chromatin conformation
capture (3C)-derived assay [8]. Instead, quantitative measurement of DNA methylation (re-
quiring DNA conversion by bisulfite or DNA digestion by methylation-specific restriction
endonucleases) [9] represents a valid method to analyze DNA methylation profiles. How-
ever, limitations in the use of epigenetic biomarkers remain, due to epigenetic plasticity [7].

The study of epigenetic traits requires the distinction between intergenerational and
transgenerational inheritance [10]. Intergenerational epigenetic traits occur when the
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exposure to the maternal womb (F0) influences the developing fetus and its germline,
leading to an altered phenotype of the child (F1) and possibly, of the grandchild (F2);
exposure to the paternal environment can affect the germ cells that will generate the child
(F1). Instead, a true transgenerational epigenetic trait is transmitted across generations:
to the F2 generation in case of exposure to the paternal line, or to the maternal line if
exposure occurs before conception; to the F3 and the following generations, if exposure
occurs during pregnancy and in absence of a new environmental exposure or germline
mutations (Figure 1).
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to the maternal womb influences the developing fetus and its germline, leading to an altered phenotype of the child.
(B) Transgenerational inheritance occurs when exposure to the maternal womb influences the developing fetus and its
germline and is transmitted to the F2 or F3 generation.

For a long time, high levels of methylation were associated with gene silencing. It
is now known that generally DNA methylation of promoters or enhancers is associated
with gene silencing, while methylation in the rest of the gene is associated with active gene
expression [11]. Finally, in the majority of the methylation studies, level and phenotype
(such as T2D or OB) are measured at the same time. This procedure is a major obstacle to
ascertain whether DNA methylation is the cause or effect of the disease [11].

Epigenetic changes occur early in life and pass on to the next generation prevalently
via intergenerational inheritance [12]. Early expression of epigenetic marks contributes to
keeping constant the gene expression patterns of distinct cell types. During the intrauterine
life, an excess or scarcity of nutrients may induce epigenetic changes in the child and
increase the risk of OB, T2D, or cardiovascular disease (CVD) in the adult [13–17]. How an
excess or scarcity of nutrients may induce epigenetic changes, at present is still not clear.
Nutritional reprogramming of neural, endocrine or metabolic cells can be potential causal
mechanisms [18].

Animal studies have demonstrated that insufficient nutrition during intrauterine
life induces epigenetic changes in the offspring [19]. These results agree with a study
carried out on children whose mothers—during World War II—suffered prolonged food
deprivation. The children—once adults—displayed reduced methylation of the gene
IGF2 [20], OB or glucose intolerance, depending upon the length of starvation [21].



Biomedicines 2021, 9, 977 3 of 11

This study is a review of epigenetics in OB and T2D. We focus on DNA methylation,
the mechanism often associated with transgenerational persistence and for this reason
frequently used in clinic, ecology and evolution studies [11].

2. T2D and OB: Risks, Prevalence, and Genetics

T2D and OB are complex diseases associated with numerous risk factors (cancer,
retinopathy, nephropathy, myocardial infarction) [22–25]. The recent COVID-19 pandemic
displayed one more risk factor: actually, patients with T2D or OB are at high risk of death
in case of COVID-19 infection [19]. The prevalence of T2D and OB has rapidly increased
during the last three decades, due to consumption of high-calorie foods, increased number
of people aged 80 years or more and sedentary lifestyle. The rapid and global spread of
these diseases indicates that environmental factors markedly contribute to these diseases.
In addition, the majority of obese people are also diabetic, while minority groups are obese
but not diabetic or with T2D and lean. Thus, T2D and OB patients are phenotypically
heterogeneous [26]; in addition, the diagnosis of OB and T2D rely upon a single marker:
BMI for OB and hyperglycemia for T2D. Thus, patients with the same disease may be
largely different.

Genome-wide association studies (GWASs) have identified about 700 genes associated
with OB [27] and 400 with T2D [28]. A large part of the genes associated with OB is regu-
lated by the central nervous system [29], while those associated with T2D predominantly
perturb the β cell function [30]. These results have encouraged the belief that a genetic test
for the early diagnosis of patients at risk of developing OB or T2D would soon be available.
However, given the complexity of these diseases, and the numerous associated risk factors,
it is difficult that genes alone will ever be able to predict these diseases [26] (Figure 2).
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Instead, preliminary results suggest that genes can contribute to better patient stratifi-
cation. So far there have been five subgroups of T2D patients described. Two subgroups
both display β-cell dysfunction, but one subgroup exhibits high and the other low levels
of proinsulin (the prohormone precursor to insulin). Of the remaining three subgroups,
one is characterized by obesity caused by insulin resistance, another by irregular body
fat distribution, and the remaining one by an altered metabolism of liver fat [26]. Genes
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have also identified a highly interesting subgroup of patients predisposed to obesity but
resistant to cardiometabolic disease (known as metabolically health obese phenotype) [31].

3. Epigenetics and OB

Global methylation indicates the level of methylcytosine expressed as a percent of
total cytosine. The majority of studies—including a very large one [32]—did not find an
association between OB and global methylation. Instead, two more studies reported an
association between OB and global methylation [32–34]. Since many factors may influence
global methylation (age, gender, alcohol, diet and many more), this approach was replaced
with more specific methods.

Genome-wide studies investigate DNA methylation across a large number of genes.
One of these studies reported that the DNA methylation level of peripheral blood leucocytes
was higher in obese cases than in lean controls [35]. A later study detected five hyper-
methylated sites in peripheral blood; three of these sites were located in the HIF3A gene that
regulates the response to low oxygen. Interestingly, the same sites were highly methylated
also in the adipose tissue [36]. A large study that included data from 10,000 blood samples
detected 187 methylated sites associated with BMI. Using Mendelian randomization, the
authors demonstrated that altered methylation—in the blood and the adipocytes—in the
majority of cases results from obesity [37]. The DNA profile of isolated fat cells from
women 2 years after a gastric bypass was compared with the profile of fat cells isolated
from weight-matched but not obese women. Of the 8504 differently methylated CpG sites,
27% were associated with adipogenesis. This result explains the very high number of fat
cells detected in obese and post-obese individuals [38].

Studies on methylated candidate genes focus on genes already known to be associated
with OB. These studies have identified reduced methylation of tumor necrosis factor-
alpha (TNFα) in peripheral blood [39], PPARg coactivator 1 alpha (PGC1α) in muscle [40],
pyruvate dehydrogenase (PDK4) in muscle [40], and leptin in whole blood [41]. The more
frequently confirmed association was that between IGF2/H19 and adiposity [42].

4. Epigenetics of T2D

The first study [43] showed that the DNA methylation profiles of T2D patients and
non-diabetic controls were different, suggesting that epigenetics might have a role in T2D.
Later studies analyzed the methylation level of genes known to be associated with insulin
resistance: INS, PDX1 and PPARGC1A. Pancreatic islets from T2D patients displayed
increased levels of DNA methylation and decreased expression of the above genes [43,44].
Dayed et al. [45] analyzed the methylation and transcription levels of genes in the pancreatic
islets from T2D patients and non-diabetic controls. The authors detected 1649 CpG sites
attributable to 853 genes. The 102 differently methylated genes—which included CDKN1A,
PDE7B, SEPT9, and EXOC3L2—were differently methylated also in the islets of T2D
patients. Functional analysis demonstrated that the above candidate genes affect insulin
secretion, exocytosis in pancreatic β-cells, and glucagon secretion in α-cells (Figure 3).

In T2D, hepatic insulin resistance is associated with non-alcoholic fatty liver disease
(NAFLD). To disclose the mechanism associating hepatic insulin resistance and NAFLD,
the authors of this study [46] compared the methylome and transcriptome of livers from
patients with T2D with the methylome and transcriptome of livers from individuals with
normal plasma glucose levels. The livers from obese individuals displayed hypomethy-
lation at a CpG site of the gene, encoding the platelet-derived growth factor α (PDGFA).
PDGFA dimerizes forming the PDGF-AA homodimer. The livers of obese individuals—in
addition to hypomethylation at the CpG site in the gene PDGFA—displayed overexpres-
sion of the same gene and increased synthesis of the PDGF-AA protein that contributes
to insulin resistance through decreased expression of the insulin receptor. Interestingly,
neutralization of the PDGF-AA excess with anti-PDGF-AA antibodies re-established hep-
atic insulin sensitivity and the associated NAFLD. The study underlines the therapeutic
potential of epigenetic studies.
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The case study that we now outline shows how epigenetics sometimes discerns what
genetics misses. Transgenic mice overexpressing the ped/pea-15 gene in the pancreatic β

cells modulate insulin secretion [47]. Thus, this gene can actually be assumed associated
with T2D. However, several independent case-control studies failed to detect this associ-
ation. Instead, the same authors [48,49] demonstrated that diets causing obesity in mice
and in humans alter the acetylation level of the histone H3 in the promoter of ped/pea-15
and enhance the transcription of this gene. These studies explain the negative effect of
diets on glucose tolerance and show that epigenetics is crucial to understand phenotypic
differences characterizing single patients.
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EXOC3L2, INS, PDX1 and PPARGC1A regulate insulin, exocytosis in pancreatic β cells and glucagon
secretion in α cells in T2D patients.

5. Interaction between Genetics and Epigenetics in T2D and OB

The identification of the single nucleotide polymorphism (SNP) that alters the mela-
tonin receptor (TCF7L2)—a gene associated with T2D [50]—was made possible by combin-
ing epigenome annotation and genetic mapping. Pancreatic cells, enteroendocrine cells,
and adipocytes all express this gene. The use of a humanoid mouse model overexpressing
TCF7L2 showed that the extra copy added to TCF7L2 induces insulin resistance. Then,
exploiting gene editing, the same authors could establish that one single nucleotide change
in the risk allele rs7,903,146 of TCF7L2 is sufficient to repress adipogenesis and produce hy-
pertrophic cells. These results clearly show that only the comprehensive knowledge of the
underlying genetic and epigenetic mechanisms of genes can lead to the full understanding
of a disease.

The prevalent human gut microbiota phyla are Bacteroidetes, Firmicutes, and Pro-
teobacteria. Microbiota and its metabolites influence genomic reprogramming [51]. Fir-
micutes produce butyrate, which modifies gene expression by histone modification [51].
Lipopolysaccharide (LPS)—also a microbial factor—induces inflammation, a risk factor
for cardiovascular disease (CVD) [52]. The purpose of the study we are describing is to
know if the host-microbiota interaction during the sensitive period of pregnancy poses
to the host the risk of developing OB or other diseases later in life. Sequencing of DNA
methylation from eight pregnant women (four with a microbiota enriched in Bacteroidetes
and Proteobacteria; four with a microbiota enriched in Firmicutes) displayed differential
methylation patterns: 245 genes displayed a lower level of methylation in the mothers
with a higher level of Firmicutes than in those with higher levels of Bacteroidetes and Pro-
teobacteria [47]. The epigenetically regulated genes included USF1 (a regulator of fatty acid
synthesis and lipogenesis), and LMNA (associated with CVD) [53]. These results agree with
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independent studies reporting that high levels of Firmicutes are associated with OB [54],
T2D [55] and CVD [56]. The study clearly shows how microbiota, epigenetics, and disease
risks are interdependent and identifies microbiota as a new target to prevent CVD.

Necrotizing enterocolitis (NEC) is an inflammatory bowel disease affecting premature
infants. The disease—often lethal—develops in the absence of microbiota in the intestine
of preterm infants, a condition that favors the infection by pathogens. However, a causal
pathogen has not yet been isolated. Since a decrease in Firmicutes precedes the development
of NEC [57], the authors of the case study that we are describing [58] speculated that the
causal factor of the disease may be the absence of intestinal microbiota, rather than a
pathogenic infection. This hypothesis finds support in the notion that epigenetic changes
occurring during fetal life influence the composition of the intestinal microbiota [58].
Further—aware that dexamethasone often given to women in preterm labor to favor the
lung maturation of the preterm infant can also alter the DNA methylation—the authors
used a mouse model of prenatal exposure to dexamethasone to demonstrate that antenatal
treatment with glucocorticoids alters the epigenome of offspring. Five candidate genes
associated with inflammation displayed DNA methylation changes. Antenatal exposure
to dexamethasone reduced also the Clostridia number in the gut of offspring compared
to control offspring. Clostridia are essential to maintain the gut immune homeostasis [59].
This study and the previous one demonstrate that epigenetic changes occurring during the
intrauterine life may alter the microbiota and predispose infants to diseases later in life.
We add that a variety of dietary components and metabolites synthesized de novo by the
host influence the epigenome and cause diseases. The identification of these factors is a
huge challenge, but also the key to assess risk and stratify heterogeneous disease, leading
the way to precision medicine.

6. Role of Aging in T2D and OB

T2D and OB display higher prevalence in older populations [60] and involve both
men and women. In old patients, T2D is associated with typically old age comorbidities,
such as urinary incontinence, sarcopenia and cognitive impairment. OB increases the
risk of the above conditions, insulin resistance, and altered β cell function, which in turn
promote T2D [61]. Aging is also characterized by an altered metabolism and production of
reactive oxygen species (ROS), which damage cellular and mitochondrial proteins, lipids
and DNA [62].

7. Intermittent Fasting, Epigenetics and Aging

While biological aging causes age-related diseases, such as metabolic, cardiovascular,
and neurodegenerative diseases [63], there is growing evidence that intermittent fasting
(IF) has anti-aging effects, as confirmed by several studies carried out in animal models
and in humans [64]. IF (based on a fasting period between two meals) was shown to shift
metabolism from lipid synthesis and fat storage to fat mobilization through fatty acid
oxidation [65]. In addition, it increases autophagy, reduces inflammation, and modulates
gut microbiota [66].

Obese women—who changed their diet from multiple daily meals to alternate-day
energy restriction—reached a significant reduction of TNF-α and Il-6 levels [67]. The results
observed with IF and the related approach of caloric restriction rely on two important
properties of epigenetic markers: one is of being reversible; the second of being modulated
by environmental factors, including the diet [68].

8. Discussion

In this section, we revisit the multiple roles of epigenetics and try to account for the
seemingly contradictory results associated with epigenetics.

Worldwide, the overweight or obese subjects are about 1.5 billion [37]. Approximately,
this is also the number of people potentially exposed to the risk of developing T2D and other
complications associated with T2D. A large epigenome-wide association study showed
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that BMI—the canonical biomarker of OB—is associated with changes in DNA methylation
(p < 10−7; n = 10,261 samples) [37]. This result demonstrates that altered DNA methylation
is the consequence of adiposity, rather than the cause. This conclusion is in line with the
independent evidence that in obese subjects, loss of weight leads to a partial remission of
obesity-associated methylation sites [40].

Further, the same study [31] shows that 62—out of the detected 187 methylated sites—
are associated with T2D (p < 2.7 × 10−4) and predict the future development of T2D. The
strongest association detected in the study is with ABCG1, the gene regulating insulin
secretion and cell function of pancreatic β-cells [69].

This outstanding study shows that genetics and epigenetics are complementary, rather
than antagonistic: used together they offer the possibility to distinguish between association
and causality. Even more important is the possibility to predict the development of T2D.
Early detection of T2D is “vital” [26] since can reduce long-term complications, such as
retinopathy: there is no cure for this disease, but the sooner the treatment starts, the better
are the results [70]. Further, the chance of achieving reversal of T2D decreases with the
increasing duration of the disease [71]. Early diagnosis may also prove very useful for the
stratification of patients and personalized medicine [26].

Generally, genetics and lifestyle are the two factors called into question to explain
metabolic diseases, T2D and OB in particular. However, there is convincing evidence
that unfavorable conditions during intrauterine life (deficient or excessive nutrient intake
by the mother [19]; microbiota enriched in Firmicutes [53]; prenatal exposure to dexam-
ethasone) [58] can induce metabolic adaptations. These adaptations (insulin resistance,
low rate of anabolic hormones, and deviation of glucose from ATP production to aerobic
glycolysis to increase the production of glucose for vital organs) permit the survival of the
fetus in unfavorable prenatal conditions. However, these adaptations come at the cost of
predisposing the newborn baby—once adult—to T2D under conditions of abundant food.
One can pose the question, is this the best solution that natural selection can find? The
short answer is yes. Natural selection does not select for health, but only for reproductive
success. If a gene implements reproduction—by any means—it will increase its frequency
in the population [72]. Furthermore, T2D usually is not harmful before age forty, therefore
the fact that someone will develop T2D after age forty cannot influence how many children
he planned to have.

Epigenetics controls differentiation [73] development [74], and gene regulation [75].
Furthermore, integration of epigenetics and genetic data show us how environmental
factors contribute to T2D [76] and OB [77]; locus-specific epigenetic targeting is expected
to lead to new therapies against T2D and OB [50]. At the same time, epigenetics caused
cancer [78], T2D, OB, and CVD [13]. How can we rationalize the contrasting roles of
epigenetics?

Organisms look optimally designed but often are sub-optimal. Furthermore, the
optimally and sub-optimally designed traits come all at a cost (tradeoff), which is often
expressed in terms of disease [72]. The human body—as any living organism—has com-
promises, each providing an advantage and its corresponding tradeoff. The randomness of
the evolutionary process contributes to the organization of genes in clusters: one cluster
common to several diseases [79] or to the single disease [80,81] or multiple polymorphisms
of the same gene for a single disease [82].

This last paragraph outlines the role of epigenetics in the context of evolution, be-
yond metabolic diseases. The concept of molecular evolution rests on genes and their
random mutations, with the latter creating the genetic variation on which natural selection
works [83]. The limit of this theory resides on the too low frequency of advantageous ge-
netic mutations [83] and the too high frequency of the phenotypic mutation [84]. A unified
theory of molecular evolution that includes genetics and epigenetics explains the above dis-
cordance and several facts that otherwise remain without a convincing explanation. (1) For
example, the case of identical twins that share the same genotype but display discordant
diseases [85]. (2) Diseases—such as T2D and OB—that have increased their frequency very
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fast to be attributable to gene mutations. (3) The hundreds of environmental contaminants
that do not alter DNA frequency, but later in life display epimutations that predispose
to diseases [86]. (4) The rapid evolution of certain traits [87]. Epigenetics explains all the
above findings in the context of Darwinian evolution; in addition, it describes how the
environment contributes to evolution.

9. Conclusions

In conclusion, how can we promote a better understanding of T2D and OB? Progress
will require studying these diseases at population and individual levels. Population studies
will identify interactions between genetics and epigenetics and differences between genes at
the expression level and those between single SNP frequency. The studies at the individual
level will clarify why people with the same disease respond differently to the same therapy
and permit us to stratify patients into more homogeneous subgroups; the first step toward
precision medicine.
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