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Abstract: Throughout the process of carcinogenesis, cancer cells develop intricate networks to adapt
to a variety of stressful conditions including DNA damage, nutrient deprivation, and hypoxia. These
molecular networks encounter genomic instability and mutations coupled with changes in the gene
expression programs due to genetic and epigenetic alterations. Histone deacetylases (HDACs) are
important modulators of the epigenetic constitution of cancer cells. It has become increasingly known
that HDACs have the capacity to regulate various cellular systems through the deacetylation of
histone and bounteous nonhistone proteins that are rooted in complex pathways in cancer cells to
evade death pathways and immune surveillance. Elucidation of the signaling pathways involved
in the adaptive responses to cellular stress and the role of HDACs may lead to the development of
novel therapeutic agents. In this article, we overview the dominant stress types including metabolic,
oxidative, genotoxic, and proteotoxic stress imposed on cancer cells in the context of HDACs, which
guide stress adaptation responses. Next, we expose a closer view on the therapeutic interventions
and clinical trials that involve HDACs inhibitors, in addition to highlighting the impact of using
HDAC inhibitors in combination with stress-inducing agents for the management of cancer and to
overcome the resistance to current cancer therapy.

Keywords: HDACs; cellular stress; immune modulation; HDAC inhibitors

1. Introduction

The deep-rooted understanding of cancer development and the dense complexity of
tumorigenesis have been abbreviated into multiple hallmark capabilities of cancer cells.
This includes selective support of growth and proliferation, stress response manipulation to
drive vascularization, invasion and metastasis, metabolic repairing, an aggressive microen-
vironment, and immune modulation that facilitates apoptosis evasion. Cancer cells are
exposed to multiple types of intracellular and extracellular stresses, which challenge their
ability to proliferate and survive. It’s firmly established that stressed cells are normally
eliminated by activation of cell death pathways to protect the whole tissue. However,
these stress-induced cell death mechanisms are less active in tumor cells. A cellular stress
phenotype is one of the dominant hallmarks of carcinogenesis, which can be triggered
in cancer cells by different stressors, such as lack of nutrients and oxygen supply, DNA
damage, and endoplasmic reticulum stress. These stress conditions are usually induced
by diverse changes in the cancer cells and the harsh conditions of the surrounding en-
vironments as well as by extrinsic factors such as chemotherapeutic agents, resulting in
shifts in the cellular homeostasis. Cellular responses to different stressors could involve
re-establishment of cellular homeostasis or adaptation to stress or, in some conditions,
induction of autophagy or cell death [1]. This involves an increase in genomic instability
and mutation coupled with changes in signaling pathways and gene expression programs,
creating a sophisticated network that researchers have been trying to disclose in recent
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years. The functional mutations in oncogenes and loss of function of tumor suppressor
genes during malignant transformation resulted in a disturbance in the cell regulatory
function that is associated with exacerbations in cellular stress phenotypes [2]. These
phenotypes are derived by genomic and non-genomic changes which could create an
intricate network by incorporating pathways/proteins unrelated to the typical cellular
stress response pathways to drive the adaptive and protective phenotypes to a variety of
environmental stressful conditions such as oxidative, metabolic, proteotoxic, and genotoxic
stress. Uncovering the underlying molecular mechanisms by which cancer cells respond to
both extracellular and intracellular stress will provide a deeper view to guide the design of
more effective targeted therapeutic strategies for cancer. Both tumor location and type can
guide the category of stress that the cells are subjected to. Therefore, based on the level and
mode of stress, different defense and survival strategies are mounted. To further illustrate,
solid tumors occupying restricted space are at higher risk to experience insufficient oxygen
and nutrient supply in addition to physical compression forces [3]. In an overall scenario,
cancer cells harbor a vast number of genetic and epigenetic alterations including point
mutations, deletions, rearrangements, translocations, and transcriptional silencing. In
recent years, epigenetics is the most rapidly expanding field in cancer biological research.
Epigenetics refers to the heritable changes in gene expression patterns that do not involve
alterations in the DNA genetic code itself. Epigenetic remodeling is characterized by two
contradictory hallmarks: reversibility and stability. This upgrades the importance of cancer
epigenetics due to its reversible nature, which makes it a captivating tool for novel thera-
peutic strategies and medication design. Different regulatory epigenetic mechanisms have
been identified, which are DNA methylation, histone modification, and non-coding RNA
mediated processes [4].

DNA methylation is the covalent addition or removal of a methyl group to the cytosine
nucleotide in CpG islands of the DNA sequence, which exist in most of the gene’s promoter
regions. This modification is mainly regulated by a family of specialized enzymes known as
DNA Methyltransferases (DNMTs) [4]. On the other hand, several epigenetic mechanisms
modulate the compaction of DNA into a higher order assembly called chromatin. Chro-
matin is comprised of nucleosomes that are composed of DNA wrapped around an octamer
containing cores of DNA packaging proteins called histones. Currently, several histone
post-translational modifications are identified involving ubiquitination, phosphorylation,
methylation, and finally acetylation. Such modifications can have a deep impact on the
interaction between DNA and histones, thus affecting the gene transcription pattern, DNA
repair or replication, and chromosomal organization [4,5].

Recent studies have demonstrated that the histone code represents a molecular watch-
tower for the chromatin landscape in the regulation of transcription factors to switch gene
expression on and off. Acetylation of lysine residues is one of the most robust patterns of
histone regulation. Histone acetylation neutralizes the positive charge of lysine residue
in the histone tail to reduce the binding strength between the histone and the DNA and
subsequently unwind the DNA–histone complex. This modification is implemented by
a family of enzymes called histone acetyltransferase (HATs), which results in the ease of
the accessibility of the transcription factors and consequently activates gene transcription.
On the other hand, the function of HATs is counteracted by another group of enzymes
called histone deacetylase (HDACs), which are implicated in removing the acetyl groups
from histones, resulting in increased ionic interaction between the negatively charged DNA
and the positively charged histones. This DNA–histone complex arrangement yields a
more compact chromatin which represses the transcription process. In addition to gene
transcription, the function of HATs and HDACs is not only limited to histone proteins; they
can also target a wide range of non-histone proteins that are involved in different biological
processes such as cell-cycle progression, differentiation, and apoptosis [6].

The results of genome-wide analysis revealed a global alteration in histone acetylation
in cancer cells, which is due to impairment in the balance between the acetylation and
deacetylation of histone and nonhistone proteins. These alterations can be raised from
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the aberrant functions of HATs and HDACs, resulting from mutations or translocation
or from the dysregulation in the expression pattern of HATs and HDACs [7]. Therefore,
recent research is progressively unraveling the correlation between the abnormal function
of HATs and/or HDACs with the incidence of different types of human cancers. Overall,
histone acetylation patterns are being investigated as a therapeutic target because of their
significant role in gene expression regulation. The entanglement of chromatin modifica-
tions in cancer cells is remarkable and is still an ongoing field of profound investigation.
This review encapsulates and highlights the current interpretation and importance of
the chromatin remodeler HDACs family in the response of cancer cells to cellular stress
and in carcinogenesis.

2. Histone Deacetylases (HDACs)
2.1. HDACs Classification

In the human genome, the HDACs superfamily consists of 18 members organized
into four major classes (Table 1). The classification can be based on structure, function,
and subcellular localization, as well as their homology with yeast HDACs and co-factors.
Classes I, II, and IV are zinc-dependent metalloproteins in which a zinc molecule is required
in the active site as a cofactor. Class III HDACs are nicotinamide adenine dinucleotide
(NAD+)-dependent enzymes that require NAD+ instead of Zn2+ as a cofactor and have a
structural homology to yeast sir2 proteins [8,9]. Class III HDACs are resistant to HDAC
inhibitors (HDACIs) and their exact function in the cell cycle and carcinogenesis is currently
dubious. While some have been shown to function as oncoproteins, others have been
described as tumor suppressors [10]. Class I HDACs are highly identical to yRPD3, a yeast
transcriptional regulator. This class includes HDACs 1, 2, 3, and 8 and is present most
abundantly in the nucleus. Class II is related to the yeast Hda1 deacetylase enzyme, and it
includes HDACs 4–7, 9, and 10. The class II HDACs determine the status of non-histone
substrate acetylation, therefore the class is further subdivided into Class IIa (HDACs 4, 5, 7,
and 9) that constantly travels between the cytoplasm and the nucleus and Class IIb (HDACs
6 and 10) that is localized mainly in the cytoplasm and is characterized by possessing two
deacetylase domains [11]. Class III HDACs are comparable to yeast SIR2 and include seven
members of the Sirtuins (SIRT) family. This class of HDACs has the ability to target proteins
in the nucleus, cytoplasm, and mitochondria for posttranslational modifications such as
acetylation or ADP ribosylation [12]. Finally, Class IV HDACs includes only HDAC 11,
which is mainly localized in the nucleus and has a structural similarity to both class I and
II, especially to HDACs 3 and 8 [13].

Table 1. Classification of Histone deacetylases (HDACs) according to the down-target substrates and
their cellular localization.

Class Member Location Substrates Inhibitors References

Class I

HDAC 1
HDAC 2
HDAC 3
HDAC 8

Nuclear Histones

• Belinostat
• Vorinostat
• Panobinostat
• Entinostat
• Valproic acid
• Romidepsin

[14]

Class IIa

HDAC4
HDAC5
HDAC7
HDAC9

Nuclear/cytoplasmic Histones

• Belinostat
• Vorinostat
• Panobinostat
• Entinostat
• Valproic acid

[15]

Class IIb HDAC 6
HDAC 10 Nuclear/cytoplasmic Histones;

α-tubulin; Hsp90

• Belinostat
• Vorinostat
• Panobinostat

[16]
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Table 1. Cont.

Class Member Location Substrates Inhibitors References

Class III Sirtuins Sir2 Nuclear/cytoplasmic Mitochondrial Histones;
Tubulin; p53; TAF • Nicotinamides [17]

Class IV HDAC 11 Nuclear Rpd3 protein

• Belinostat
• Vorinostat
• Panobinostat
• Entinostat
• Romidepsin

[18]

2.2. Dysregulation of HDACs in Cancer

The regulatory function of HDACs in gene transcription and protein activity make
these proteins an essential player in a wide array of critical cellular signaling pathways
through modulating the acetylation of histone and nonhistone substrates. As shown in
Figure 1, the aberrant function of HDACs was described to either regulate the oncogenic cell
signaling pathway (Figure 1A) or repress tumor suppressor gene activity (Figure 1B) [16,19].
It was reported that the aberrant expression of HDACs can affect the function of proteins
involved in the cell cycle, proliferation, differentiation, angiogenesis, invasion, metastasis,
and apoptosis [16,20–24]. The overexpression of HDACs becomes well-established in
different types of cancer. This is evident with HDAC1 overexpression in prostate cancer and
HDAC2 overexpression in gastric, colorectal, and endometrial sarcomas, which is correlated
with decreased expression of p21 [25]. In addition, HDAC4 overexpression was investigated
in esophageal carcinoma and was found to be significantly correlated with a higher rate of
cell proliferation and tumor migration and lymph node metastasis, resulting in a higher
tumor pathological grade and lower survival rate [26]. Moreover, Halkidou et al. reported
that a high level of HDAC4 is associated with hormone-resistant cases of prostate cancer
patients [25,26]. In line with this, the knockdown of HDAC4 in several cancer cell lines
was found to stimulate p21 expression and consequently inhibit tumor cell proliferation
in vitro and tumor growth in vivo [27,28]. In addition, studies revealed the potential role
of the abnormal recruitment of HDACs to specific promoters through the interaction with
fusion proteins in hematological malignancies [6,29]. Abnormal recruitment and function
of HDACs can be raised from dysregulation in the expression pattern of HDACs. [28,30,31].
Collectively, the inhibition of critical growth suppressive genes by the upregulation of
HDACs is a dominant underlying mechanism in the promotion of cancer cell development
and proliferation that can be counteracted by the inhibition of HDACs.

Despite the broad range of anticancer effects of HDACIs that propose an oncogenic
role of HDACs in tumor development, it has been found that the genetic downregulation
of HDACs might have tumorigenic effects. The overexpression of HDAC6 in breast cancer
patients at mRNA and protein levels was reported to result in a better prognosis than
for those with low levels in terms of survival rates [32]. Another study reported that the
reduction in the expression of class II HDAC genes, HDACs 5 and 10, in lung cancer patients
was associated with a poor prognosis in which HDAC10 was the strongest predictor of
a poor prognosis [33]. Altogether, the dysregulated function of HDACs in cancer can
contribute to either tumor promotion or suppression.
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Figure 1. HDACs as tumor promoters and suppressors. (A) HDACs are overexpressed in cancer,
which promotes cellular proliferation and suppresses apoptosis and cell cycle arrest. (A1) Some
HDACs (e.g., HDAC2) stabilize the beta-catenin complex, boosting cell survival and proliferation.
(A2) HDACs are involved in the disruption of cell cycle checkpoints by obstructing the expression
of tumor suppressor genes such as p53 and p21. (A3) Certain HDACs, such as HDAC1, reduce the
transcription activity of estrogen receptor-α (ER-α), resulting in growth promotion. (A4) HDACs
(e.g., HDAC6) increase the activation of MAPK through inducing the production of reactive oxygen
species (ROS) via NADPH oxidase, thus promoting cell proliferation and survival. (A5) Under
hypoxia, HDACs (e.g., HDAC1) stabilize HIF-1α through deacetylation, which, in turn, activates the
transcription of genes involved in oxygen delivery, energy metabolism, angiogenesis, and apoptosis.
(A6) The deacetylation of cell motility proteins (tubulin and cortactin) by HDACs (e.g., HDAC6) drives
the progression of a primary tumor to invasion and metastasis. (A7) In hematological malignancies,
PML-RAR oncofusion proteins act as altered transcription factors, which aberrantly recruit HDACs
to the promoter site of retinoic acid (RA) genes, thus suppressing myeloid differentiation and causing
malignant transformation. (B) Some HDACs have tumor suppressor activities and they are genetically
downregulated in cancer. (B1) HDACs suppress tumor growth through activating JNK-mediated
Beclin1 dissociation from Bcl-2 to induce caspase-independent autophagy death. (B2) HDACs (e.g.,
HDAC10) inhibit invasion and metastasis through reducing the histone acetylation level at the
promoter sites of the matrix metalloproteinases (MMP2 and MMP9) genes, thereby suppressing
their expression. Additionally, HDACs (e.g., HDAC2) suppress cancer metastasis through inhibiting
expression of LncRNA H19, a miR-22-3P sponge that upregulates the expression of MMP14, by
histone H3K27 deacetylation at its promoter site. (B3) Some HDACs (e.g., HDAC1) are involved
in cell cycle regulation by forming a complex with E2F and RB that represses cell cycle progression
genes. Mutations in HDAC1 reduce its recruitment and binding to E2F-regulated promoters, thereby
reducing their interaction with retinoblastoma protein (Rb). This results in preventing the repression
of cell cycle genes by retinoblastoma (Rb). Abbreviations: APC, adenomatous polyposis coli; TSG,
tumor suppressor gene; ER, estrogen receptor; ERE, estrogen response element; ROS, reactive oxygen
species; MAPK, mitogen-activated protein kinase; HIF-1α, hypoxia-inducible factor-1; HRE, hypoxia-
response element; VEGF, vascular endothelial growth factor; RAR, retinoic acid receptor; PML,
promyelocytic leukemia; HAT, histone acetyltransferase; JNK, c-Jun N-terminal kinases; Bcl-2, B-cell
lymphoma 2; MMP, matrix metalloproteinases; miR, microRNA; Rb, retinoblastoma.
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3. Role of HDACs in Cellular Stress Response

The dependency of cancer cells on divergent pathways in response to different envi-
ronmental stresses has been well established. This is through triggering various molecular
mechanisms that promote genomic instability and mutations, reprogram different metabolic
systems, and alter gene expression patterns to escape the growth inhibitory signals and the
body’s immune system inspection. A better understanding of the underlying molecular
pathways involved in the adaption of cancer cells to different stressors might open a new
avenue for more efficacious strategies for cancer therapy [3]. Nowadays, intense research
has been directed towards the role of the HDACs family in facilitating tumor cell survival
and proliferation under stress conditions through modulation of the acetylation patterns
of histones and nonhistone proteins. Interestingly, HDACs were massively recognized as
potential therapeutic targets as they can contribute to the abnormal epigenetic conditions
associated with the cellular stress response in order to preserve cancer development and
overcome apoptotic pathways. The type and the magnitude of cellular response to stress
depends mainly on the level and the type of insult. Additionally, the interplay between
these response pathways determines the fate of the stressed cell [34]. The HDACs family
plays a significant role in the adaptive stress responses that involve genotoxic, proteotoxic,
oxidative and metabolic stresses. Below is a discussion of the different types of cellular
stress and pathways involved in the response of cancer cells to each type with emphasis on
the role of the HDACs family of enzymes.

3.1. Genotoxic Stress (DNA Replication Stress, DNA Damage Response, and DNA Repair Pathways)

DNA damage is a crucial factor in the development and progression of cancer. Cancer
cells undergo genotoxic stress when they encounter endogenous or exogenous DNA-
damaging agents that have a direct or indirect impact on the integrity of their DNA. In the
presence of DNA damage, cancer cells respond by activating biochemical repair machinery
that leads to either enhancing cell survival or inducing cell death. Thus, incompetent
DNA repair is a predominant driving force behind cancer establishment, progression,
and evolution [35].

Ataxia-telangiectasia mutated (ATM) protein has a leading role in the DNA damage
response. ATM stimulates the activation of the BRCA1, CHK2, and p53 genes, leading to
cell cycle arrest and DNA repair through the activation of the CDKN1A (p21), GADD45A,
and RRM2B genes [36]. Over-activation of ATM promotes the adaptation of cancer cells
to genotoxic stress. Conversely, impaired ATM function exhibits chromatin exposure and
augments genomic instability, which enhances sensitivity to DNA-damaging modalities
(e.g., irradiation, and chemotherapeutics) [37]. It was demonstrated that selective depletion
of HDAC1 and HDAC2 was sufficient to reduce ATM activation, thus toning down the
subsequent phosphorylation of BRCA1, CHK2, and p53 and increasing the susceptibil-
ity to DNA break induction in several tumor types [36]. Interestingly, the silencing of
HDAC4 by RNA interference downregulated the level of 53BP1 protein, a well-known
tumor suppressor protein that participates in the early steps of the DNA-damage-signaling
pathways, which abrogated the DNA-damage-induced G2/M checkpoint arrest and in-
creased the radiosensitivity of HeLa cells (Figure 2A). Thus, HDAC4 was proposed to
have a prominent role in cell cycle regulation after ionizing radiation [38]. Furthermore,
yeast SIR3 has been shown to be prominently recruited at various sites of DNA damage.
The accumulation of this type of deacetylase has been hypothesized to facilitate DNA
repair and to protect the unrepaired DNA ends through induction of compact chromatin
alignment [39]. In a similar manner, SIRT1 has been identified as a major player in the DNA
damage response, acting as a deacetylase of proteins involved in DNA repair at sites of
DNA damage [40]. Moreover, SIRT1 functions as an enhancer of DNMT1, DNMT3B, and
zeste homologue 2 (EZH2). These proteins are recruited at sites of DNA double strand
breaks and induce histone repressive modifications such as hypoacetylation of H4K16,
H3K9me2/me3, and H3K27me3. These histone modifications help in the establishment
of the compact chromatin around the damaged site by forming a silencing complex with
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DNMT3b, polycomb, and a repressive complex of four components (SIRT1 and EZH2) that
pairs with γH2AX, forming DNA-damage-induced foci (Figure 2A) [41]. In addition to
H4K16 deacetylation, SIRT1 was reported to deacetylate a member of the HAT family called
hMOF (human MOF), which consequently affected its recruitment at sites of DNA damage
and caused downregulation of DNA double strand break repair genes such as BRCA2,
RAD50, and FANCA in human colorectal cancer cells (HCT116) [42]. On the other side,
SIRT1, along with E2F1 transcription factor, are stimulated among the signaling cascade
initiated by DNA single strand break molecular sensor PARP1 to guide the transcription
of ADP-ribosylation factor (ARF), which is one of the crucial genes that are modulated in
response to continuous DNA breaks (Figure 2B) [43,44].

Figure 2. Role of HDACs in the modulation of DNA repair machinery. (A) After DNA double
strand breakage, (A1) SIRT1 is directed towards the DNA damage site to induce chromatin reorgani-
zation by recruiting epigenetic machinery including DNMT1, DNMT3B, and EZH2. These epigenetic
modifiers induce histone repressive modifications, such as hypoacetylation of H4K16 and methylation
of H3K9 and H3K27, that help to establish the compaction of chromatin around the damaged site.
(A2) HDAC1 and HDAC2 contribute to ATM activation in several tumor types, thereby enhancing
the subsequent phosphorylation of BRCA1, CHK2, and p53, which decreases the susceptibility of
DNA breakage. (A3) HDAC4 increases the expression of the tumor suppressor gene 53BP1, a protein
involved in the early stages of DNA damage signaling. This signaling cascade facilitates the phospho-
rylation and activation of p53 protein, which promotes cell cycle arrest to allow DNA repair and/or
apoptosis. (B) Upon induction of single stand breaks, poly(ADP-ribose) synthesis is catalyzed by
PARP1 at unrepaired single break sites, which reduces the activity of NAD+-dependent deacetylase
SIRT1 through decreasing the cellular concentration of NAD+. Consequently, the acetylation of E2F1
is maintained, which activates the transcription of ARF, which inhibits MDM2, a negative regulator
of p53. This allows p53 to exert its tumor suppressor transcriptional regulation or/and to induce
apoptosis. Abbreviations: DNMT, DNA methyltransferase 1; DNMT3B, DNA methyltransferase
3B; EZH2, enhancer of zeste homolog 2; ATM, ataxia-telangiectasia mutated; BRCA1, breast can-
cer gene 1; CHK2, checkpoint kinase 2; 53BP1, p53-binding protein 1; ATR, ataxia-telangiectasia
and Rad3-related; ATRIP, ATR interacting protein; PARP1, poly(ADP-ribose) polymerase 1; NAD+,
nicotinamide adenine dinucleotide; E2F1, E2F transcription factor 1; ARF, alternative reading frame;
MDM2, mouse double minute 2.
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In addition to the significant role of HDACs in the DNA damage response, they partici-
pate in the regulation of replication and S-phase progression. It was suggested that HDACs
operate the progression of the replication fork by inducing global changes in chromatin
structure that affect the functions of DNA polymerase. Dysregulation of the chromatin
structure results in uncontrolled origin firing and replication fork collapse, which promotes
DNA damage and genomic instability, leading to cell death [45,46]. Previously, it was
demonstrated that treatment of cutaneous T cell lymphoma (CTCL) cell lines (HH and
Hut78) with a selective HDAC3 inhibitor caused a 50% reduction in DNA replication fork
velocity and remarkable cell growth arrest [47]. These results were consistent with another
study conducted by Srividya et al., which showed that genetic deletion of HDAC3 in mouse
embryonic fibroblasts (MEFs) triggered apoptosis and yielded very early embryonic lethal-
ity. They attributed these effects to inefficient removal of acetyl residues from the histones,
which causes a flaw in chromatin assembly accompanied with persistent DNA damage
accumulation that usually occurs during DNA replication and impairs the progression to
the G2 phase [48]. The critical role of HDACs in the adaptation to genotoxic stress supports
the potential approach of targeting them in rapidly proliferating tumor cells while being
nondestructive to the surrounding nonmalignant cells.

3.2. Proteotoxic Stress (Heat Shock Response and Endoplasmic Reticulum Stress)

Dysregulated protein homeostasis is one of the emerging processes involved in tumor
progression. The rate of protein formation is influenced by transcription, translation, and
degradation processes; all of them are regulated by the chromatin arrangement state. Dys-
regulation in proteostasis results in impaired protein synthesis or misfolded proteins. This
triggers endoplasmic reticulum (ER) stress, which could result in an overall degeneration
in cellular function [49–51]. The ER is the main area for monitoring protein products, where
only the correctly posttranslational folded proteins can exit the ER to the Golgi apparatus to
be delivered to their distinct destination. Interestingly, a group of proteins called chaperones
exist in the ER and cytosol to maintain protein homeostasis by programming the folding
of newly synthesized proteins and partially folded proteins and prevents the misfolded
protein aggregates [52]. In the tumor microenvironment, hypoxia and nutrient deprivation
states induce ER stress. Therefore, cancer cells depend on an interconnected network of
proteostasis signaling pathways, such as the unfolded protein response (UPR), to sustain
protein stability. The UPR pathway modulates the rate of protein synthesis mainly through
interacting with proteasomal systems such as the macroautophagic (autophagy-lysosome)
system, aggresomal pathway and heat shock chaperone protein system, to correct impaired
protein clearance and folding or to induce apoptosis in persistent ER stress [53].

Cytoplasmic HDAC6 was found to represent a master chief in the regulation of the
cytoprotective response to proteotoxic stress through association with proteasomal proteins
(Figure 3). For instance, HDAC6 forms a complex with p97/VCP and UFD3/PLAP, which
are involved in controlling the ubiquitin/proteasome system. P97/VCP is a chaperone that
facilitates the degradation of misfolded proteins when the ubiquitin-dependent proteaso-
mal turnover of proteins is overwhelmed and paralyzed (Figure 3A) [54,55]. In addition,
HDAC6 induces the expression of dominant chaperons in response to the accumulation
of ubiquitinated protein aggregates. Initially, HDAC6 senses the abnormal accumulation
of ubiquitinated misfolded proteins via its ubiquitin-binding activity. Consequently, it
promotes the dissociation of a repressive HDAC6/heat-shock factor 1 (HSF1)/heat-shock
protein 90 (HSP90) complex, where the liberated HSF1 activates HSP gene expression to
induce cell survival (Figure 3B) [20,56,57]. Accordingly, HDAC6 inhibition has been shown
to increase the acetylation of HSP90 and suppress its function as a molecular chaperon,
which increases the number of misfolded proteins in the cell (Figure 3C). When the rate
of misfolded proteins exceeds the processing or folding capacity of protein chaperones,
it will result in chronic unresolved ER stress and subsequent apoptosis induction in can-
cer cells [20]. In addition to HSP90, HDACIs increased the acetylation levels of other
chaperones such as regulated protein 78 (GRP78), which causes the induction of protein
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misfolding and proteotoxic stress, leading to the suppression of cellular proliferation and
subsequent apoptosis. On the other hand, HDACIs can induce ER stress in cancer cells
indirectly through the upregulation of the reversion-inducing cysteine-rich protein with
Kazal motifs (RECK) gene, which is a well-known member of the metastasis suppressor
genes that was found to modulate tumor cell invasiveness and metastasis. The upregula-
tion of RECK was found to sequester GRP78, which releases ER transmembrane sensor
proteins to eventually induce ER stress and activate apoptosis [52,58–61]. Collectively, these
studies present a new HDAC-targeted approach in limiting metastasis and angiogenesis
and in increasing the susceptibility of cancer cells to ER stress through induction of the
intracellular proteotoxic environment [62].

Figure 3. HDAC6 regulates the response to misfolded protein aggregates. Under proteotoxic stress,
cancer cells evolve an intricate set of signaling to allow the cell to respond to the presence of misfolded
proteins within the endoplasmic reticulum (ER). HDAC6 is considered a master regulator in misfolded
protein processing through three different pathways: (A) HDAC6 forms a complex through its ZnF-
UBP domain with proteasomal proteins such as p97/VCP that binds to polyubiquitinated proteins,
facilitating their proteasomal degradation; (B) In unstressed cells, HDAC6 usually exists in complex
with an inactive HSF1 and HSP90. Upon ER stress, this complex is dissociated and the liberated
HSF1 activates the expression of heat shock genes (HSP70 and HSP27). These heat shock proteins
are essential components of the cell machinery that are required for the proper folding of proteins
and the degradation of damaged proteins to protect against the adverse effects of proteotoxic stress;
and (C) HDAC6 deacetylates HSP90, enhancing its chaperone activity, and facilitates the recruitment
of other chaperones to reduce the level of unfolded proteins. At the end, upgrading the chaperone
capacity in processing misfolded proteins by HDAC6 promotes cell survival. Abbreviations: Ub,
ubiquitin; VCP, valosin-containing protein; HSF1, heat shock transcription factor 1; HSP90, heat shock
protein 90; HSP70, heat shock protein 70; HSP27, heat shock protein 27.
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3.3. Oxidative Stress

Reactive oxygen species (ROS) are byproducts of the normal oxygen metabolism,
which serve a critical role in several biological functions, signaling pathways and redox
homeostasis. However, the strict regulation of ROS by scavenging systems is compulsory
because of their possible toxic impact on cellular structures. Indeed, the impairment that
ROS can impose on the cell does not solely depend on their intracellular levels, but also
on the equilibrium between ROS and the endogenous antioxidant species. When such
an equilibrium is disturbed, oxidative stress is provoked, resulting in severe damage to
intracellular biological components such as DNA, RNA, and proteins, which is a recognized
hallmark of cancer.

Cancer cells usually exist in a hypoxic microenvironment, which further boosts their
metabolic activity and oncogenic stimulation that in turn generates a high level of ROS [63].
Strikingly, cancer cells use several mechanisms, such as activation of ROS-scavenging
systems, suppression of cell death factors, and generation of lactate instead of employing
aerobic respiration, to adapt to the massive ROS accumulation without disturbing the
energy demand of cancer cells to support their proliferation and survival [3,64,65]. There
are many antioxidant genes that are associated with cellular responses to oxidative stress
including superoxide dismutases (SODs), glutathione peroxidases (GPXs), glucocorticoid
receptors, heme oxygenase (HMOXs), and hypoxia-inducible factor-1α (HIF-1 α). Many
of these genes have been reported to be regulated by epigenetic mechanisms. One of the
most powerful and well-known examples of cellular defense machinery against oxidative
damage is the KEAP1-NRF2 pathway, which includes the transcription factor nuclear
factor erythroid 2-related factor 2 (Nrf2) and its negative cytoplasmic regulator kelch-
like ECH-associated protein 1 (Keap1). Under oxidative and electrophilic stress, Keap1
allows Nrf2 phosphorylation and translocation into the nucleus. In the nucleus, Nrf2
activates the expression of a wide range of antioxidative detoxifying enzymes by binding
to the antioxidant response element (ARE) in their regulatory regions that rescues the
cell from oxidative injury [66]. Surprisingly, HDACs regulate Nrf2 activity and ARE-
dependent gene expression through the direct modulation of Nrf2 acetylation. This was
evident by the increased acetylation level of Nrf2 by selective inhibitors of Sirtuin 1 (SIRT1),
such as EX-527 and nicotinamide, which results in enhancing the binding of Nrf2 to
ARE and thereby stimulating Nrf2-mediated gene expression. In the same line, SIRT1
activators (such as resveratrol), have been shown to deacetylate Nrf2 and to suppress
Nrf2 signaling (Figure 4A) [67]. In addition, HDACs and their inhibitors were reported
to regulate the Nrf2 pathway via the adjustment of histone acetylation at the promoter
regions of antioxident genes. Liu et al. reported that HDAC3 is a negative regulator of
the Nrf2 pathway through the function of the p65 subunit of NF-κB, which enhances the
interaction of HDAC3 with MafK, a known dimerization partner with Nrf2. This interaction
causes the recruitment of HDAC3 to ARE that consequently promotes the maintenance
of the histone hypoacetylation state and hence represses ARE-dependent gene expression
(Figure 4B) [68]. HDAC1 was reported to work as a corepressor of the transcription factor
basic leucine zipper transcription factor 1 (Bach1), which has an important role in repressing
the oxidative stress response through forming a complex with p53 and HDAC1 and the
nuclear corepressor N-CoR, inhibiting cellular senescence of murine embryonic fibroblasts
in response to oxidative stress (Figure 4C) [63,69].
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Figure 4. HDACs coordinate the cellular response to oxidative stress. HDACs coordinate the
cellular response to oxidative stress. As a defense mechanism against oxidative stressors, Nrf2 acts
as a redox-sensitive transcription factor. Under homeostatic conditions, Keap1 sequesters Nrf2 in
the cytoplasm, resulting in its degradation by proteasome. When the cells are subjected to oxidative
stress, Nrf2 is activated through its dissociation from the Keap1 complex. Then, the Nrf2 protein
is transported to the nucleus, where it is acetylated and dimerized with the MAF protein at the
antioxidant reactive element (ARE) site in the promoters of antioxidant genes. Through this process,
antioxidant genes are activated to scavenge excess reactive oxygen species (ROS) and maintain
mitochondrial function. In response to oxidative stress, HDACs act as a negative regulator of the
Nrf2 pathway. (A) SIRT1 inhibits Nrf2 acetylation, which reduces its binding to ARE and thereby
obstructs Nrf2-mediated gene expression. (B) HDAC3 is recruited to the ARE site and induces a
histone hypoacetylation state, hence repressing ARE-dependent gene expression. (C) HDAC1 forms
a complex with Bach1, which competes with Nrf2 for the binding to transcription cofactor MAF in
oxidative-stress-response genes. Bach1 acts as a functional inhibitor of Nrf2 by forming a complex
with nuclear co-repressor NCoR. Abbreviations: Nrf2, NF-E2–related factor 2; Keap1, Kelch-like
ECH associated protein 1; ROS, reactive oxygen species; MAF, musculoaponeurotic fibrosarcoma;
ARE, antioxidant responsive element; Bach1, BTB domain and CNC homolog 1; NCoR, nuclear
receptor corepressor 1.

Additionally, the functional role of HDACs in regulating oxidative stress response was
demonstrated through HIF-1. HIF-1 is one of the dominant modulators of genes responsive
to hypoxia, a common event in solid tumors, that causes an excessive production of ROS,
leading to oxidative stress. HIF-1 is composed of two subunits: the hypoxia-regulated
HIF-1α and the oxygen-insensitive HIF1ß subunits, which form a heterodimer and bind to
hypoxia responsive elements (HREs) in oxygen-regulated genes including VEGF. These
genes are involved in cellular biological processes such as angiogenesis and augment
oxygen delivery to tumor hypoxic regions. In both human and mouse cell lines, it was
reported that class I HDACs, in particular HDAC1 and HDAC3, directly interact with the
HIF-1α protein and induce its deacetylation, which enhances its stability and transactivation
function under hypoxic conditions. These results actively indicate that the stabilization
of HIF-1α protein is accelerated through direct interaction with HDAC1 and HDAC3,
leading to enhanced tumor angiogenesis [70]. Similarly, a positive crosstalk was established
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between HDAC1, HIF-1α, and metastasis-associated protein 1 (MTA1) in which HDAC1
participates in the MTA1-induced stabilization of HIF-1α. It was suggested that hypoxia
induces the expression of MTA1, which inhibits the acetylation of HIF-1α by recruiting
HDAC1, resulting in the stabilization of HIF-1α and inhibiting its degradation. These
findings were further confirmed using the potent HDACs inhibitor Trichostatin A (TSA),
which reduced the stability of HIF-1α in breast cancer cell lines. This establishes a close
connection between MTA1-associated metastasis and HIF-1-induced tumor angiogenesis
through the activity of HDAC1 [71]. In addition to HDAC1 and HDAC3, HDAC7 was
reported to be co-translocated with HIF-1α to the nucleus under hypoxic conditions, where
it subsequently increases the transcriptional activity of HIF-1α through the formation
of a complex composed of HIF-1α, HDAC7, and p300 [72]. However, the underlying
mechanism of transcriptional regulation of HIF-1α by HDAC7 is still not fully understood.

For NAD-dependent deacetylases, SIRT1 was reported to modulate different angiogenesis-
related genes under oxidative stress, such as membrane-anchored matrix metalloproteinase
MMP14 (MT1-MMP), Flt1, CXCR4, Pdgf, and EphB2 [73,74], while SIRT3 loss was associ-
ated with an increase in the production of ROS, causing the stabilization of HIF1α. Similarly,
in human breast cancer, the reduction in the expression of SIRT3 results in upregulation of
the HIF-1α target genes. These findings highlight the role of SIRT3 in the hypoxic response
of tumor cells, exposing a potential area for therapeutic intervention [75,76]. To sum up,
HDACs have ab influential role in many oxidative stress pathways, including both sensing
and coordinating the cellular response to oxidative stress pathways, and HDACIs might be
certified candidates for targeting oxidative stress pathways.

3.4. Metabolic Stress (Hypoglycemia and Hypoxia)

Metabolic stress is a common phenomenon in human tumors. It results from insuffi-
cient nutrient supply to tumors, which is caused by angiogenesis deficiency and elevated
metabolic demands due to aggressive, uncontrolled cellular proliferation. While normal
tissues have restricted cell division that is strictly regulated by growth factors and nutrient
availability, tumor cells lack this control of cell division. Nevertheless, they proliferate inde-
pendently of restricted nutrient supply by relying on the incompetent glycolysis process
as an energy supply source, which further exaggerates their metabolic stress status [77].
Under normal conditions, these stressful factors drive the normal cells to metabolic catas-
trophe, leading to the termination of cell proliferation and growth. On the other hand,
cancer cells acquire some genomic and metabolic phenotypes that help them to grow
and escape the apoptotic pathways stimulated as a result of modifications in the tumor
microenvironment [78]. The most dominant metabolic phenotype of cancer cells, which is
an essential step in the adaptation to metabolic stress, is the elevation of glucose uptake
and the production of lactate for aerobic glycolysis regardless of oxygen presence [79].
Additionally, alternative carbon and energy sources, such as fatty acids and amino acids,
are used by cancer cells to fulfil increased energy demands and to respond to the various
metabolic stresses and oncogenic signaling [80,81].

Protein acetylation levels were reported to be affected by cellular metabolism through
the regulation of NAD+ and acetyl-CoA concentrations. Thus, HDACs have a pronounced
role in the metabolic reprogramming in cancer cells [82]. Indeed, several reports uncovered
the role of the SIRT family in manipulating several metabolic pathways (Figure 5). For
instance, SIRT3 and SIRT6 suppress tumorigenesis by inhibiting aerobic glycolysis or a
glycolytic switch (Warburg effect) through the destabilization of HIF-1α and inhibition of
glycolytic kinases [76]. SIRT6 was also found to inhibit gluconeogenesis, which generates
glucose from noncarbohydrate precursors, through the deacetylation of the transcription
factor FoxO1, leading to its export to the cytoplasm. The nuclear exclusion of FoxO1 reduces
the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase
(G6PC), which are rate-limiting enzymes in gluconeogenesis (Figure 5A) [83]. Furthermore,
SIRT6 was shown to induce the deacetylation of pyruvate kinase M2 (PKM2), a glycolytic
enzyme, which results in its nuclear export through exportin 4 [84]. Interestingly, PKM2
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was found to have HDAC3-dependent regulation of the expression of oncogenes such as
c-Myc and cyclin D, which promotes tumorigenesis [85].

1 
 

 
Figure 5. HDACs elicit metabolic reprogramming to support cell survival under metabolic stress.
Different HDACs are involved in reglueing several metabolic pathways. (A) Under low glucose
levels, histone acetyltransferase p300 acts as coactivator for HIF-1α to induce transcription of genes
involved in gluconeogenesis. Under high glucose levels, SIRT6 inhibits gluconeogenesis by acting
as a co-repressor of HIF-1α transcriptional activity by deacetylating H3K9 at the promoter sites of
its target glycolytic genes such as PCK1 and G6PC, which are a rate-limiting enzymes in glucose
synthesis. SIRT6 deacetylates the transcription factor FoxO1, which results in its export to the
cytoplasm. Excluding FoxO1 from the nucleus reduces the expression of PCK1 and G6PCm thereby
inhibiting gluconeogenesis. (B) The mitochondrial lysine deacetylase SIRT3 promotes glutamine
flux to the TCA cycle via glutamate dehydrogenase, which, in turn, shields the cancer cells from
metabolic stress and maintains cell survival. (C) SIRT2 deacetylates IDH1 at lysine 224 and stimulates
its metabolic activity. IDH catalyzes the decarboxylation of isocitrate to produce alpha-ketoglutarate
(αKG), which is important for the hydroxylation and degradation of HIF-1α. Consequently, SIRT2-
dependent IDH1 deacetylation inhibits metastasis as well as decreasing reactive oxygen species
(ROS) levels by producing NADPH, an ultimate donor for ROS-detoxifying enzymes. Abbreviations:
HIF-1α, hypoxia-inducible factor-1; FoxO1, Forkhead box protein O1; PCK1, phosphoenolpyruvate
carboxykinase 1; G6PC, glucose-6-phosphatase catalytic subunit; IDH1, isocitrate dehydrogenase
1; αKG, alpha-ketoglutarate; ROS, reactive oxygen species; GDH, glutamate dehydrogenase; TCA,
tricarboxylic acid.

Despite the negative regulation of glycolysis by SIRT6, SIRT3 and SIRT5 were found
to contribute to cancer cell proliferation and survival in diffuse large B cell lymphoma and
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breast cancer by regulating the function of metabolic enzymes [86,87]. The depletion of
SIRT3 in large B cell lymphoma blocks glutamine flux to the tricarboxylic acid (TCA) cycle
through inhibition of glutamate dehydrogenase that results in the reduction of acetyl-CoA
pools, which causes the induction of autophagy in cancer cells (Figure 5B) [87]. Similarly, the
overexpression of SIRT5 in breast cancer protects the mitochondrial enzyme glutaminase
(GLS) from ubiquitin-mediated degradation through SIRT5 dependent-desuccinylation of
lysine164 residue, which stabilizes GLS [86]. Indeed, SIRT5-dependent GLS stabilization
is the main mechanism by which SIRT5 promotes cancer cell growth and survival. The
involvement of SIRT2 in supporting tumorigenesis through modulating metabolic path-
ways was also reported. SIRT2 regulates cellular metabolism and metastasis in colorectal
cancer through deacetylation of isocitrate dehydrogenase 1 (IDH1), which plays an im-
portant role in glutamine metabolism. The increased deacetylation level of IDH1 at lysine
224 simulates its enzymatic activity and subsequently induces the generation of NADPH
and glutathione (GSH), which protects cancer cells from ROS produced during their rapid
proliferation rate (Figure 5C). In addition, IDH1 stimulation by deacetylation induces
the proteasomal degradation of HIF-1α, which exerts a suppressive effect in colorectal
cancer metastasis [88].

HDACs were found to be involved in regulating the covalent attachment of fatty
acids to proteins, which is known as fatty acylation of proteins. This protein modification
is known to be essential in membrane synthesis and cellular signaling during cancer
growth and progression. Surprisingly, some HDACs established a greater catalytic activity
towards acyl groups when compared with acetyl peptides [89,90]. For instance, the catalytic
efficiency of HDAC11 as a lysine defatty-acylase was reported to be more than 10,000-fold
higher than its deacetylase activity [89]. Recently, SHMT2α, a mitochondrial enzyme
involved in one carbon metabolism and found to exert a critical metabolic function in
cancer cells, has been identified as a substrate of the lysine defatty-acylase activity of
HDAC11. It was demonstrated that HDAC11 removes the acyl groups from the SHMT2α
surface, which prevents its translocation to late-lysosome/endosome. This effect leads
to the polyubiquitylation and degradation of type I interferon receptor chain 1 (IFNαR1),
which downregulates the IFN signaling that is involved in metabolic reprogramming [7].
Consequently, elevenostat, which is an HDAC 11 inhibitor, represents a potential treatment
approach that targets metabolic lipid dysfunction in cancer [91]. Overall, HDACs exert a
critical role in regulating glucose homeostasis and energy balance and strengthening the
metabolic phenotype of cancer cells to promote their survival regardless of the intracellular
nutrient stress environment.

4. HDACs and Anti-Tumor Immune Response

Different cellular stress conditions were recognized to induce autophagy (ATP secre-
tion) or necrosis (inflammation) or to stimulate the release of damage-associated molecular
patterns (DAMPs), which trigger a form of cell death called immunogenic cell death (ICD),
to eliminate the stressed cells. ICD triggers the activation of the immune response against
cancer cells through the attraction of professional antigen-presenting dendritic cells and
the subsequent priming of cytotoxic T lymphocytes. However, it is well known that cancer
cells are resistant to antitumor immunity due to the highly immunosuppressive tumor
microenvironment that favors the immune escape of cancer cells [92,93]. Indeed, ICD can be
induced by certain conventional chemotherapeutic drugs through increasing the immuno-
genicity of cancer cells to reactivate anticancer immunity. Accumulating evidence suggests
that HDACs can regulate the tumor microenvironment and modulate the anti-tumor im-
mune responses, which affects tumor progression. Interestingly, HDACIs can enhance
the antitumor immunity by facilitating the production of proinflammatory cytokines such
as interleukin 6 (IL-6), IL-8, IL-1β, macrophage inflammatory protein 1 (MIP1), tumor
necrosis factor-α (TNFα) and IFNγ, which activate more immune cells such as T lympho-
cytes [94,95]. On the other hand, the selective inhibition of HDAC6 demonstrated a crucial
role in inducing the activation of T cell functionality and immunosurveillance through de-
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creasing the production of anti-inflammatory cytokine IL-10 [96–98]. Inhibition of HDAC8
was shown to block Hepatocellular carcinoma tumorigenicity in a T-cell-dependent man-
ner and this effect was abrogated by CD8+ T cell depletion or regulatory T cell adoptive
transfer [99]. A low dose of the HDACi trichostatin-A was shown to enhance the anti-
tumor effects of immunotherapies by modulating the suppressive activity of infiltrating
macrophages and by inhibiting the recruitment of myeloid-derived suppressor cells in
different types of tumors [100].

In addition to cytokine production, HDACIs induce changes in the expression of major
histocompatibility complex (MHC) class I, which presents a diverse number of peptides
to cytotoxic T lymphocytes to induce its activation [96,101]. Indeed, the histone deacetyla-
tion at the promoter sites of genes which produce the components of antigen processing
machinery (AMP) was found to be dysregulated in multiple types of cancer such as colon
cancer, esophageal squamous carcinoma, renal cell carcinoma, and melanoma. This dys-
regulation of histone deacetylation could be reversed by treatment with HDACI [102,103].
For instance, treating metastatic carcinoma cells with TSA increased the expression of
APM components such as transporter associated with antigen processing 1 (TAP-1), TAP-2,
low-molecular-weight protein-2 (LMP-2), and Tapasin, as well as the cell surface expression
of MHC class I, which boost the susceptibility of cancer cells to cytotoxic T lymphocytes-
mediated target cell killing [101,104]. Moreover, immune cells such as natural killer and
cytotoxic T cells become more activated after inhibition of class I HDACs by entinostat [105].
In comparison to the above-mentioned role of HDACIs in inducing the immune response,
several HDACIs such as SAHA, LBH589, and TSA were found to suppress both adhesion
and costimulatory molecules such as CD40, CD80, and CD83 on dendritic cells, which
attenuate T lymphocyte proliferation and cytokine secretion [106–108]. Furthermore, it was
reported that HDACs are involved in the transcriptional regulation of programmed death
ligand-1 (PD-L1), which is a transmembrane protein that engages with PD-1 on immune
cells to inhibit the antitumor immune response. HDAC5 was reported to regulate the
expression of PD-L1 through direct interaction with NF-κB p65 and inhibition of HDAC5-
sensitized tumor cells to immune checkpoint blockade [109]. The upregulation of histone
acetylation at the PD-L1 gene was induced with HDACI treatment in melanomas cells,
which increased the expression of PD-L1 and, in turn, blocked immune surveillance [110].
Collectively, HDACIs established the ability of HDACs to modulate the immunogenicity
and antigen-presenting capacity of tumor cells, which affect the anti-tumor response of the
immune system.

Immunomodulatory Role of HDACs under Genotoxic Stress

The suppression of the immune system in cancer patients is one of the major factors
that facilitates tumor progression and resistance to chemotherapy and radiotherapy. There-
fore, the approach of boosting the immune activity by a combination of chemotherapy
and radiotherapy with additional therapeutic drugs to enhance their antitumor effect has
become a promising strategy in cancer therapy. Indeed, a continuous activation of variable
immunoreceptors was recognized in immune cells in the surrounding tumor environment.
However, the inadequate expression of immunoreceptor ligands and the immunosuppres-
sive nature of the tumor microenvironment limit the activation of anti-tumor immunity.
Among the several immunoreceptors that are involved in the immune response shield in
cancer is natural-killer group 2, member D (NKG2D). NKG2D is expressed in different
types of immune cells such as natural killer and T lymphocytes cells, and it is cytotoxic
to cancer cells [96,98]. The expression of the members of NKG2D ligands, such as major
histocompatibility complex class I-related chain A and B (MICA/B), was reported to be
increased by DNA damage induced by ionizing radiation (IR) or chemotherapeutic agents.
This increase in the expression of NKG2D ligands potentiates the killing of cancer cells
by NK cells [111–113]. However, in some cancer cell lines, the expression of MICA/B
wasn’t induced after DNA damage, which was suggested to be due to chromatin disor-
ganization that affects their sensitivity to DNA-damaging agents. Interestingly, it was



Int. J. Mol. Sci. 2022, 23, 8141 16 of 28

demonstrated that the inhibition of HDACs activity restored and enhanced DNA-damage-
induced MICA/B expression in the resistant cells. This observation suggests that HDACs
may contribute to the enhancement of immune activation following DNA damage induced
by radiotherapy or chemotherapy [114,115].

5. Therapeutic Implications of HDAC Inhibitors

Various studies over the past decade have displayed HDACs as a crucial player in
cancer development and progression by reversibly regulating the acetylation level of both
histone and nonhistone proteins. This is unlike the permanent and irreversible cancer-
associated genetic aberrations such as the overexpression of oncogenes and suppression of
tumor suppressor genes. Abnormal HDACs expression and recruitment has been reported
in different human cancers, highlighting them as a significant target against cancer. Mech-
anistically, HDACs suppression was found to be correlated with the regression of tumor
growth through modulating different mechanisms including inhibition of angiogenesis
and activation of apoptosis [116,117]. The currently available HDACIs are classified into
four classes: hydroxamates (e.g., suberoylanilide hydroxamic acid (SAHA)), benzamides
(e.g., MS-275), cyclic peptides (e.g., romidepsin), and aliphatic acids (e.g., valproic acid). In
addition, HDACIs can be further classified based on their specificity to HDAC isoforms.

A great investigation has been previously directed toward the development of the
first-generation non-specific HDACIs, which were mainly pan inhibitors that targeted
multiple HDAC isoforms. The hydroxamate class agent called vorinostat (SAHA) was the
first nonspecific HDACI that was approved by the FDA for the treatment of cutaneous
T cell lymphoma (CTCL). In preclinical studies, SAHA demonstrated several anticancer
mechanisms such as the induction of apoptosis and cell cycle arrest in cancer cells [118].
Another two nonspecific hydroxamate class agent HDACIs called belinostat and panobi-
nostat received FDA approval in 2014 for the treatment of peripheral T-cell lymphomas
(PTCL) and multiple myeloma, respectively. However, these pan HDACIs endure serious
limitations such as secondary effects including cardiac toxicity, gastrointestinal side effects
(anorexia, diarrhea, nausea, and vomiting) and hematological effects (anemia, lymphope-
nia, and thrombocytopenia), in addition to the lack of efficacy against solid tumors when
used as single agents compared to hematological malignancies [119]. Accordingly, recent
advancements are focused on overcoming these hindrances by enhancing HDACI isoform
selectivity through targeting cap groups around the catalytic site [120–124].

Currently, next-generation HDACIs are developed as isoform-selective HDACIs and
are tested in preclinical settings, such as tubacin (a selective HDAC6 inhibitor) and PC-
34051 (a selective HDAC8 inhibitor) [125]. A recent study demonstrated the ability of
a novel selective HDAC6 inhibitor, azaindolylsulfonamide (MPT0B291), to reduce cell
viability and to increase the cell death of human and rat glioma cell lines but not normal
astrocytes. Moreover, MPT0B291 is reported to induce cell death and cell cycle arrest, which
suppresses cell proliferation in the C6 and U-87MG cell lines (in vitro) and in xenograft
as well as allograft animal models (in vivo). Mechanistically, MPT0B291 was found to
increase p53 acetylation and its subsequent activation. In turn, activation of p53 induces
senescence and apoptosis by controlling its target genes, p21, Bax, and PUMA, which leads
to cell cycle arrest and the inhibition of proliferation [126]. On the other hand, preclinical
studies suggested a potent efficacy of an HDAC8-selective inhibitor, PCI-34051, against T
cell lymphomas [127]. The mechanism of action of PCI-34051 was demonstrated to involve
phospholipase C gamma 1 (PLCγ1) activation, which is a signal transducer following T cell
receptor activation, and calcium-induced apoptosis in T cell lymphomas [128]. Interestingly,
the use of an HDAC8-selective inhibitor may have a better effect in solid tumors since its
knockdown inhibits lung, colon, and cervical cancer proliferation [129].

In spite of the great achievements and rapid development of the isoform-selective
HDACIs, further investigations are needed to compare these selective inhibitors with the
well-known pan inhibitors in terms of drug efficiency and side effects. In addition, it is
important to identify the cancer-associated HDACs and to consider them in the strategy of
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designing selective HDACIs. This knowledge not only will lead to the development of more
selective and less toxic HDACIs, but it will also illustrate the essential biological pathways
for HDACIs to exert their anti-cancer activity, thereby improving the rational design of
new anti-cancer therapies. Moreover, a novel perception in the HDACIs formulation field
involved combining the features of inhibiting protein kinases and HDACs in a single
molecule. These compounds may allow not only blocking the catalytic sites of HDACs
and kinases, but also preventing their binding with other proteins independently of their
catalytic activities [130]. Recently, mouse models carrying catalytically inactive HDACs,
which mimic a specific HDACI treatment, were generated to be used as a valuable tool to
investigate the function of particular HDACs in certain cancer types [28].

5.1. Clinical Trials of HDACs Inhibitors

Over the past decades, enormous studies have been conducted to characterize the
effects of HDACIs in the underlying tumor biological mechanisms such as transcriptional
regulation, metabolism, angiogenesis, DNA damage response, the cell cycle, apoptosis,
and protein degradation. The results of these studies indicate that HDACIs have potential
anti-tumor activity with versatile anticancer effects. Therefore, intensive clinical trials
using multiple HDACIs have been conducted for treatment of both hematological and
solid malignancies as a single anticancer drug or in combination with other anti-cancer
therapeutics [131]. Among them are the clinical trials of FDA-approved inhibitors such
as vorinostat, romidepsin, and belinostat, which were performed to check for their effi-
ciency in different types of hematological and solid malignancies. Despite the promising
responses and safety profile that were reported from two phase II studies in refractory indo-
lent follicular lymphoma, a modest effect was obtained in solid tumors such as breast [132],
colorectal, ovarian and peritoneal [133–135], and prostate cancers [136,137]. Other non-
FDA-approved HDACIs such as CI-994 underwent clinical trials as single agents in phase
I/II and in combination with gemcitabine and capecitabine in phase I for treatment of
solid tumors [138–140]. An orally active HDACI (ITF2357) was found to reduce inflamma-
tory cytokines production. It was investigated in phase II trials on pretreated refractory
Hodgkin’s disease patients [141]. Multiple models have been observed and summarized in
Table 2. Although the utilization of HDACIs opened the way for a new class of anti-cancer
drugs, they are subjected to some limitations such as resistance and toxic effects. Future
investigations using multicenter clinical trials are recommended to provoke approaches for
enhancing their selectivity to augment their accumulation in cancer cells even with lower
doses, in order to decrease the unwanted side effects and off-target effects.

Table 2. HDAC inhibitors in clinical studies.

HDACIs Clinical
Trial Phase

Clinical Trial
ID

Cancer
Types Trial Description Status References

MS-275
(Entinostat) I NCT00020579 Refractory solid tumors

and lymphoid

Well tolerated at a dose of 6 mg/m2,
administered weekly with food for
4 weeks every 6 weeks

Completed [142]

Romidepsin
(Depsipeptid)

I NCT00053963 Solid tumors Well tolerated in children with
refractory solid tumors Completed [143]

II NCT00106613 Renal cell carcinoma Did not have sufficient activity. Completed [144]

I NCT00077337 Colorectal cancer

Romidepsin at dose of 13 mg/m2 as a
4 h iv infusion on days 1, 8, and 15 of a
28-day cycle was ineffective in
treatment of metastatic colon cancer

Completed [133]
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Table 2. Cont.

HDACIs Clinical
Trial Phase

Clinical Trial
ID

Cancer
Types Trial Description Status References

Panobinostat
(LBH589)

II NCT00667862 Hormone refractory
prostate cancer

Panobinostat did not show a sufficient
level of clinical activity to undergo
further investigation in CRPC

Completed [145]

II NCT00425555 Cutaneous T-cell
lymphoma

Panobinostat was generally well
tolerated with no major safety
concerns.

Completed [146]

I NCT00412997 Solid tumors Doses well tolerated up to 20 mg in
Japanese patients Completed [147]

Belinostat
(PXD 101)

I NCT01273155

Adult primary
hepatocellular carcinoma
and advanced adult
primary liver cancer

Increased belinostat exposure
accompanied hepatic dysfunction Completed [148]

I and II NCT00321594

Localized unresectable
adult primary liver cancer
and recurrent adult
primary liver cancer

Phase I—belinostat tolerated at
maximum dose of 1200 mg/m2/day
Phase II—will start with
1200 mg/m2/day

Completed [149]

Vorinostat

I NCT00097929 Relapsed diffuse large
B-cell lymphoma

Limited activity against relapsed
DLBCL Completed [150]

II NCT00132067
Primary peritoneal cavity
recurrent ovarian
epithelial cancer

Vorinostat well tolerated with minimal
activity as a single agent Completed [135]

5.2. HDAC Inhibitors in Combination Therapies

Combination cancer therapy, which is a modality that combines two or more ther-
apeutic agents, is considered the cornerstone in cancer therapy. The preference for the
combination therapy approach in combating cancer is due to its ability to limit drug re-
sistance, the cancer stem cell population, tumor growth, and metastasis, while in parallel
providing a synergistic or additive manner in targeting cancer pathways., in addition to
the use of a lower therapeutic dosage of each individual drug in the combination regimen,
which, in turn, lowers the off-target side effects [151]. Many chemotherapeutic agents
exert their cytotoxic effects by inducing different types of cellular stress such as genotoxic,
proteotoxic, oxidative, and metabolic stress. To overcome these toxic effects, cancer cells
activate a network of pathways that enable them to adapt to these cellular stresses. The
involvement of HDACs in the response to cellular stress opens the avenue for combining
HDACIs with anti-cancer drugs as an effective strategy to overcome the resistance of cancer
cells to cancer therapeutics.

Promising findings came from in vitro and in vivo investigations for the combina-
tion of HDACIs with anticancer drugs and/or radiotherapy (Table 3). This combination
regimen leads to synergistic or additive antitumor effects through different molecular
mechanisms [152]. Efficient DNA repair is one of the mechanisms of the resistance of
cancer cells to therapy-induced genotoxic stress. Thus, targeting DNA repair proteins
represents an effective approach to enhance the response of cancer cells to therapy-induced
genotoxic stress. HDACIs were found to selectively deactivate key regulators of DNA
repair proteins such as ATM, MRE11, and RAD50 in cancer cells [36]. Thus, Phase I/II
clinical trials are currently conducted to investigate the combination of vorinostat with
Olaparib (PARP inhibitor) in terms of safety and effectiveness in patients with refractory
lymphoma (NCT03259503) and metastatic breast cancer (NCT03742245) [36]. Moreover,
HDACIs including TSA, SAHA, MS-275, and OSU-HDAC42 have been reported to sensitize
prostate cancer to DNA-damaging agents such as bleomycin, doxorubicin, and etoposide
through modulating the acetylation of Ku70 [153]. However, these data warrant further
investigations by in vivo study and clinical trials.

Combination therapy involving topoisomerase II inhibitors and HDACIs has been
shown to achieve a higher efficacy in the inhibition of topoisomerase II and in the in-
duction of DNA damage [154]. Consequently, a phase I clinical trial combining valproic
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acid and epirubicin was performed in solid tumors and showed an anti-tumor activity
in anthracyclines-resistant patients [155,156]. Moreover, Chen et al. reported that the
inhibition of SIRT1 sensitizes lung cancer cells to MK-1775, a selective inhibitor of G2/M
checkpoint protein WEE1, resulting in the induction of DNA replication stress and DNA
damage [157]. On the other side, this combination strategy can also serve to overcome
resistance to HDACIs. The most common resistance mechanism is the increased expression
of adenosine-triphosphate-binding cassette (ABC) transporters, which causes drug efflux
and induces multidrug resistance, in addition to the elevated levels of cell cycle protein
p21 and thioredoxin induced by HDACIs, which lower ROS-mediated DNA damage and
contribute to HDACIs resistance [158].

Despite the approved efficacy of HDACIs in hematological malignancies, a limited
therapeutic potency is demonstrated against solid tumors when used as single agents [154].
Combining HDACIs as chemosensitizers to other cancer therapeutics showed a great
potential in preclinical and clinical trials and may thus represent an avenue to achieve
their full therapeutic benefits [159]. As our knowledge has built up to understand how
tumors utilize HDACs to overcome cellular stress, rational combination strategies can
be implemented in cancer cells. In summary, HDACIs show enormous potential for the
treatment of hematological and solid tumors, especially when used in combination with
other anticancer agents [136].

Table 3. Clinical trials of HDAC inhibitors in combination with other anticancer agents.

HDACIs Combination
Drugs

Clinical Trial
Phase Clinical Trial ID Cancer Type Trial Description Status References

Vorinostat
(SAHA)

Paclitaxel,
Trastuzumab,
Doxorubicin,
Cyclo-
phosphamide

I and II NCT00574587 Breast cancer,
gastric cancer

To determine the optimal
dose of vorinostat when
combined with standard
chemotherapy alone (or with
trastuzumab when treating
HER2-positive cancer).

Completed [160]

Doxorubicin
hydrochloride I NCT00331955 Unspecified adult

solid tumor

Vorinostat may help
doxorubicin work better by
making tumor cells more
sensitive to the drug.

Completed [161]

Capecitabine
and cisplatin I and II NCT01045538 Non-small cell lung

Phase 1—maximum
tolerated dose, Phase
2—response rate.

Completed [162]

Bortezomib II NCT00798720 Cancer
The combination showed a
weak anti-tumor activity as
third-line therapy in NSCLC.

Completed [163]

Panobinostat
(LBH589)

Trastuzumab/
Paclitaxel I NCT00788931

HER-2-positive breast
cancer, metastatic
breast cancer

Combination is well
tolerated. Completed [164]

Capecitabine
Lapatinib I NCT00632489 Lung vancer, head

and neck cancer

Combination of
Panobinostat and
capecitabine is well tolerated
at the recommended doses.

Completed [165]

Erlotinib I NCT00738751 Lung
adenocarcinoma

Panobinostat increases the
sensitivity of lung
adenocarcinoma
cells to the antiproliferative
effects of erlotinib.
(synergism)

Completed [166]

Belinostat
(PXD101) Doxorubicin I/II NCT00878800 Solid tumors and soft

tissue sarcomas

No evidence of synergy
between belinostat and
doxorubicin in terms of
objective tumour shrinkage.

Completed [167]

Valproic Acid

Epirubicin
5-Fluorouracil
Cyclo-
phosphamide

I NCT00246103 Advanced neoplasms

Maximum tolerated dose
and recommended phase II
dose was VPA 140 mg/kg/d
for 48 h followed by
epirubicin 100 mg/m2.

Completed [156]

In addition to chemotherapy, the use of immune checkpoint inhibitors (ICIs) in cancer
has recently remodeled the treatment approaches for solid tumors and hematological ma-
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lignancies [93]. Currently, many ICIs have been approved by the FDA, such as ipilimumab
(anti-CTLA-4); cemiplimab, nivolumab, and pembrolizumab (anti-PD-1); and atezolizumab,
durvalumab, and avelumab (anti-PDL) [168,169]. In spite of the promising effects of ICIs,
cancer cells still evolve the ability to evade host immune system. Thus, combining ICIs
with epigenetic modulators such as HDACIs, which have an immunomodulatory effect,
provides a novel strategy that has been shown to produce a beneficial consequence both
in vitro and in vivo [170,171]. These benefits include an increase in the immune response
and modulation of drug resistance in the tumor microenvironment. A recent study demon-
strated that the underlying reason of cancer resistance to ICIs might be due to the presence
of immune suppressor cells such as myeloid-derived suppressor cells (MDSCs) in the
tumor microenvironment [172]. Interestingly, these immune suppressor cells were found
to be targeted by a selective class I HDACI entinostat, which results in augmenting the
anti-tumor effect of anti-PD-1 in a mouse model of lung and renal cell carcinoma and
subsequently overcoming the resistance to ICIs [173]. In line with this, entinostat was
reported to reduce and regulate the MDSC CD40 expression in breast cancer patients [174].
Moreover, the resistance of lymphoma cells to anti-PD-1 drugs was reversed in vitro by
administration of a novel class I, IIb, and IV HDACI (OKI-179) [175]. Furthermore, a combi-
nation of anti-CTLA-4 and anti-PD-1 antibodies with the pan-HDACI belinostat potentiated
the efficacy of these antibodies via upgrading the immune function and reducing tumor
volume in a murine hepatocellular carcinoma model [176]. Similarly, a synergistic effect
of the triple combination of vorinostat (HDACI) with anti-CTLA-4 and anti-PD-1 was ob-
served in a triple-negative 4T1 breast cancer mouse model through boosting the anti-tumor
activity [177]. In melanoma cells, the combination of HDACI with a PD-1 blockade was
found to augment tumor immunogenicity [110]. Currently, several clinical trials for the
use of ICIs in combination with HDACIs are still going on as listed in Table 4. Collectively,
these results rationalize combination therapy between HDACIs and ICIs.

Table 4. Clinical trials of HDAC inhibitors in combination with immune checkpoint inhibitors.

HDACIs
Immune

Checkpoint
Inhibitor

Clinical Trial
Phase Clinical Trial ID Cancer

Types
Trial

Description Status References

Vorinostat
(SAHA) Pembrolizumab

I/II NCT02638090 Lung cancer/stage IV
NSCLC - Recruiting [178]

I/Ib NCT02619253
Renal cell carcinoma
and urinary bladder
neoplasms

- Recruiting [179]

Entinostat

Atezolizumab I/II NCT02708680 Breast cancer
Combination
therapy resulted
in more toxicity

Completed [180]

Nivolumab I/II NCT03838042 Central nervous system
tumors, solid tumors - Recruiting [181]

6. Conclusions and Future Direction

Since dysregulation of HDACs and manipulated cellular stress phenotypes are ma-
jor hallmarks of cancer cells; therefore, revealing a connection between HDACs and the
response to cellular stress may boost our understanding of the underlying mechanisms of
the survival and growth of cancer cells. This might open a new avenue for novel strategies
to attack this aggressive disease. However, the existence of a crosstalk between differ-
ent cellular stress responses has further increased the complexity of understanding the
bridge between HDACs and cellular adaption pathways. This review article highlights
the advanced molecular mechanisms of the cellular stress response modulated by the
differential activity of HDACs isoforms. In addition, we summarize the implications of
HDAC activity in cancer growth and in evasion of the cell death pathways and host immu-
nity. Recent clinical trials have exposed the conceptual role of HDACIs and the improved
clinical outcomes after their implementation in cancer treatments. Future recommendations
necessitate improved understanding of the stress responses adopted by cancer cells for
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establishing more efficacious therapeutic strategies that might be designed by combining
stress-induced therapies with pan HDACIs or isoform-selective HDACIs.
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