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Abstract: Herpesviral nuclear egress is a fine-tuned regulatory process that defines the nucleocyto-
plasmic release of viral capsids. Nuclear capsids are unable to traverse via nuclear pores due to the
fact of their large size; therefore, herpesviruses evolved to develop a vesicular transport pathway
mediating the transition across the two leaflets of the nuclear membrane. The entire process involves
a number of regulatory proteins, which support the local distortion of the nuclear envelope. In the
case of the prototype species of β-Herpesvirinae, the human cytomegalovirus (HCMV), the nuclear
egress complex (NEC) is determined by the core proteins pUL50 and pUL53 that oligomerize, form
capsid docking lattices and mediate multicomponent assembly with NEC-associated viral and cel-
lular proteins. The NEC-binding principle is based on the hook-into-groove interaction through an
N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. Thus
far, the function and characteristics of herpesviral core NECs have been well studied and point to
the groove proteins, such as pUL50, as the multi-interacting, major determinants of NEC formation
and egress. This review provides closer insight into (i) sequence and structure conservation of
herpesviral core NEC proteins, (ii) experimentation on cross-viral core NEC interactions, (iii) the
essential functional roles of hook and groove proteins for viral replication, (iv) an establishment of
assay systems for NEC-directed antiviral research and (v) the validation of NEC as putative antiviral
drug targets. Finally, this article provides new insights into the conservation, function and antiviral
targeting of herpesviral core NEC proteins and, into the complex regulatory role of hook and groove
proteins during the assembly, egress and maturation of infectious virus.

Keywords: herpesviruses; human cytomegalovirus; regulation of viral replication; nuclear egress
complex (NEC); NEC hook and groove proteins; functional properties; conditional expression;
specialized functional aspects; efficiency of virus production; antiviral drug target

1. Current Concept of Herpesviral Nuclear Egress Regulation

The virus family, Herpesviridae, includes a number of important human and animal
pathogens causing a broad variety of symptoms of infection that include lethal courses,
tumors and immunological disorders [1]. The type species of the three herpesviral sub-
families α-, β- and γ-Herpesvirinae are represented by herpes simplex virus 1 (HSV-1),
human cytomegalovirus (HCMV) and Epstein–Barr virus (EBV), respectively. Among
these, HCMV is a major human pathogen with worldwide distribution that is able to persist
lifelong in its human host. While most of HCMV infections remain asymptomatic in the im-
munocompetent, severe or even life-threatening sequelae may occur in immunosuppressed
individuals or immunonaive unborn and newborns. As a striking feature, HCMV-induced
pathogenesis is widely determined by the magnitude of viral reproduction [2]. This means
that specific cytomegaloviral pathogenic patterns in humans are mostly determined by
active virus multiplication in the infected tissues and high viral load.
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During lytic replication, the synthesis and encapsidation of the viral genomic DNA
occurs in the nucleus, prior to the subsequent steps of maturation of infectious particles that
proceed in the cytoplasm. Initially, during this sequence of events, the de novo synthesized
viral genomes are packaged into preformed nuclear capsids, thus representing a central
step in the herpesviral replication cycle. After this initial assembly step, the mature C
capsids have to face a rate-limiting process, in that they need to leave the nucleus for
further cytoplasmic maturation and the extracellular release of viral particles. However,
since the nucleus is surrounded by the nuclear envelope (NE), composed of the inner and
outer double membranes (INM and ONM), the nuclear pore complex (NPC) and the lamina
network, viral capsid transition is limited. It is mostly due to the rigid proteinaceous
network of the nuclear lamina that the NE serves as a highly selective barrier reserved for
the transport of small-size or signal-labeled molecules [3]. Of note, particles larger than
40 nm are not able to be transported through NPCs [4]. Since the diameter of herpesviral
capsids is approximately 130 nm [1], herpesviruses have emerged as a specific mechanism,
the so-called regulated nuclear egress, to bypass this barrier in a finely coordinated manner
(Figure 1). Thus, the nuclear egress is a crucial step during the late phase of replication and
is conserved among α-, β- and γ-herpesviruses [5–19].
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Figure 1. Prototypic replication and nuclear egress of herpesviruses. (A) During herpesviral 
replication capsids are transported to the inner nuclear membrane (INM), where the viral genome 
is released into the nucleus. In the nucleus, the viral gene replication and expression starts, and the 
newly synthesized genomes are packed into preformed capsids. The capsids are exported from the 
nucleus via the nuclear egress (B), and in the cytoplasm the virions finally mature and release the 
cell. (B) For the nucleocytoplasmic transport of the capsids, referred to as nuclear egress, the nuclear 
lamina has to be dissolved by phosphorylation (P) of lamins. At these lamina-depleted areas (LDAs), 
capsids bud at the INM into the perinuclear space. These primary enveloped virions then fuse with 
the outer nuclear membrane (ONM), releasing the capsid into the cytoplasm. 
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that represents a physical barrier separating the nucleus from the cytoplasm. As a 
characteristic feature of herpesviruses, the viral nuclear egress is a highly coordinated, 
multistep regulatory process. In this regard, the herpesviral NEC is a fascinating example 
of how a viral heterodimeric element (i.e., the core NEC) can provide a scaffold that hijacks 
host-specific functions including protein transport and intracellular trafficking [5–14,16]. 
Considering the specific case of HCMV, a central mechanistic determinant of nuclear 
egress is given by the multi-interacting pUL50, which is anchored to the nuclear 
membrane through its transmembrane domain (TMD). As a key point of functionality, 
pUL50, on the one hand, is able to recruit its nucleoplasmic binding partner, pUL53, to 
the nuclear rim by a hook-into-groove interaction (Figure 2A, left part). On the other hand, 
pUL50-recruited assemblies are also recruiting further NEC-associated proteins, in 
particular the viral kinase pUL97 [24] as well as cellular kinases like CDK1 [25], the prolyl 
cis/trans isomerase Pin1 [26] and a number of additional regulators [12,27]. Especially, 
these kinases play a crucial role during nuclear egress by the phosphorylation of the 
nuclear lamins. This site-specific lamin phosphorylation initiates a local reorganization of 
the nuclear lamina (lamina-depleted areas, LDAs), so that capsids ultimately attain access 
to the INM (Figure 2A, right part). Interestingly, it was also shown that pUL50 is 
phosphorylated by these NEC-associated protein kinases in a site-specific manner. 
However, our recent report illustrated that a mutagenesis-based suppression of these 
phosphorylation events did not impair viral replication [28]. As far as the conservation of 
NEC protein compositions are concerned, it should be emphasized that the heterodimeric 
core formed by two viral NEC proteins, as well as the NEC association of viral protein 

Figure 1. Prototypic replication and nuclear egress of herpesviruses. (A) During herpesviral repli-
cation capsids are transported to the inner nuclear membrane (INM), where the viral genome is
released into the nucleus. In the nucleus, the viral gene replication and expression starts, and the
newly synthesized genomes are packed into preformed capsids. The capsids are exported from the
nucleus via the nuclear egress (B), and in the cytoplasm the virions finally mature and release the
cell. (B) For the nucleocytoplasmic transport of the capsids, referred to as nuclear egress, the nuclear
lamina has to be dissolved by phosphorylation (P) of lamins. At these lamina-depleted areas (LDAs),
capsids bud at the INM into the perinuclear space. These primary enveloped virions then fuse with
the outer nuclear membrane (ONM), releasing the capsid into the cytoplasm.

In our previous studies, we mainly focused on the HCMV-specific nuclear egress and
the regulatory proteins involved. In the case of HCMV, nuclear egress is primarily regulated
by the two heterodimerizing viral proteins, the transmembrane protein pUL50 and the
nucleoplasmic pUL53, which colocalize at the NE, thereby defining the core nuclear egress
complex (NEC). This core NEC recruits a number of viral and cellular NEC-associated
factors, ultimately resulting in a multicomponent NEC, which then mediates the reorgani-
zation of the nuclear lamina and represents a docking platform for nuclear capsids. Thus,
the regulated nuclear egress promotes the envelopment and transient de-envelopment of
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genome-packaged C capsids at the INM and ONM as a part of the multistep nucleocytoplas-
mic capsid transition. Interestingly, different to the understanding previously anticipated,
the regulatory principle of herpesviral nuclear capsid egress is not unique to herpesviruses
as illustrated by a number of molecular studies on cell biology. Obviously, this transport
pathway also represents a specific mode of the cellular vesicle-mediated transport that is
able to mediate the delivery of various types of cargo through the NE [8,13,20,21]. Thus,
in many aspects, the herpesvirus-specific egress process is reminiscent of cellular vesicle-
mediated transport [8]. This is particularly true for intracellular trafficking, during which
the budding and scission of membrane vesicles is meditated by specialized proteins. Such
proteins, for instance clathrin and functionally related factors, are able to induce cytosolic
membrane curvature in order to extrude cytoplasmic vesicles. As another comparable
feature, the cellular vesicle formation can be based on the invagination of the endosomal
membrane as reported for the formation of multivesicular bodies of exosomes [22,23].

2. The Herpesviral Heterodimeric Core Nuclear Egress Complexes
2.1. Two Functionally Specialized Proteins Determine the Core of the Herpesviral NECs

One of the basic principles of cellular biology is given by the border line of the
NE that represents a physical barrier separating the nucleus from the cytoplasm. As a
characteristic feature of herpesviruses, the viral nuclear egress is a highly coordinated,
multistep regulatory process. In this regard, the herpesviral NEC is a fascinating example
of how a viral heterodimeric element (i.e., the core NEC) can provide a scaffold that hijacks
host-specific functions including protein transport and intracellular trafficking [5–14,16].
Considering the specific case of HCMV, a central mechanistic determinant of nuclear egress
is given by the multi-interacting pUL50, which is anchored to the nuclear membrane
through its transmembrane domain (TMD). As a key point of functionality, pUL50, on
the one hand, is able to recruit its nucleoplasmic binding partner, pUL53, to the nuclear
rim by a hook-into-groove interaction (Figure 2A, left part). On the other hand, pUL50-
recruited assemblies are also recruiting further NEC-associated proteins, in particular the
viral kinase pUL97 [24] as well as cellular kinases like CDK1 [25], the prolyl cis/trans
isomerase Pin1 [26] and a number of additional regulators [12,27]. Especially, these kinases
play a crucial role during nuclear egress by the phosphorylation of the nuclear lamins.
This site-specific lamin phosphorylation initiates a local reorganization of the nuclear
lamina (lamina-depleted areas, LDAs), so that capsids ultimately attain access to the INM
(Figure 2A, right part). Interestingly, it was also shown that pUL50 is phosphorylated by
these NEC-associated protein kinases in a site-specific manner. However, our recent report
illustrated that a mutagenesis-based suppression of these phosphorylation events did not
impair viral replication [28]. As far as the conservation of NEC protein compositions
are concerned, it should be emphasized that the heterodimeric core formed by two viral
NEC proteins, as well as the NEC association of viral protein kinases, appear to be similar
for all herpesviruses of the three subfamilies (Figure 2B). The composition of the entire
multicomponent NEC, however, including further cellular proteins of the NE, additional
host enzymes such as Pin1 or viral NEC-associated proteins, can profoundly differ among
individual herpesviruses (reviewed in [12]; for murine cytomegalovirus (MCMV), see [29];
for HCMV, see [27]; for HSV-1, see [30]).

2.2. The Hook-into-Groove Principle of Core NEC Heterodimerization

The specific mode for how the two herpesviral core NEC proteins interact with each
other is defined by their unique structural features and has been designated as the hook-
into-groove binding principle (Figure 2C). Both proteins are characterized by highly glob-
ular folds, comprising a combination of α and β secondary structural elements. The
heterodimeric interaction is mediated by the hook structure of pUL53 (amino acids 59–87)
binding into the groove structure (amino acids 1–209) of pUL50 (Figure 2C; [31–33]). The
specific hook structure of pUL53 is characterized by two α-helices, also termed αN (amino
acids 61–70) and αC (amino acids 72–81), followed by a β-sheet and the main globular
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domain. Of note, pUL53 contains a zinc-binding site, formed by three cysteine residues and
a histidine (i.e., Cys106, Cys122, Cys125 and His 211), but the function of this classical zinc-
binding site still remains elusive [31,33]. The groove structure of pUL50 is formed by four
α-helices and an almost all-antiparallel β-sheet sandwich, embedding the hook structure
of pUL53 [32,33]. This specific hook-into-groove interaction is based on mixed physico-
chemical properties. Besides the hook-into-groove interface, the complex comprises three
additional major sites of interaction mediating the oligomerization of the pUL50-pUL53
heterodimers into hexameric rings. These three oligomer interfaces are important to connect
(i) the two neighboring pUL53 proteins, (ii) the pUL50 of one dimer to pUL53 of a neighbor-
ing dimer and (iii) the two neighboring pUL50 proteins [34]. Although these higher NEC
oligomer interfaces are conformational rather labile, the hexameric arrangements, associ-
ating to honeycomb-like lattices, provide an important basis for the formation of curved
structures, required for the nuclear vesicle formation during the budding process [12,33,34].
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Figure 2. Schematic representation of the nuclear egress and the conserved herpesviral core NEC
proteins. (A) The herpesviral core NEC is formed by two interacting viral proteins, the hook and
the groove protein, which recruit several cellular and viral proteins, in particular protein kinases
(PKs), resulting in the multicomponent NEC. At present, it is still unknown whether host PKs may
replace the role of viral PKs (note that kinase-negative viral mutants are still moderately replication
competent). The local disruption of the lamina network depends on site-specific phosphorylation (P)
of nuclear lamins A/C and is mediated by PKs and the isomerase Pin1. The resulting lamina-depleted
areas (LDAs) and the oligomerization of the core NEC heterodimers into hexameric rings facilitate
the lamina transition and the budding of capsids through the inner nuclear membrane (INM; modified
from [35]). (B) Conserved core NEC proteins and NEC-associated viral protein kinases of six herpesviruses
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(exemplarily, the NEC association was clearly validated for HCMV pUL97, and is likewise postu-
lated for other herpesviral PKs): VZV, varicella zoster virus; KSHV, Kaposi’s sarcoma-associated
herpesvirus. (C) Crystal structure of the HCMV-specific heterodimeric core NEC characterized by the
hook structure of pUL53 (blue) binding into the groove structure of pUL50 (red); modified from [33].

3. Multiple Viral and Host Components Can Be Associated with Nuclear
Egress Complexes
3.1. Herpesviral Multicomponent NECs Represent Assembly Platforms That Recruit a Variety of
Nuclear Proteins with Regulatory Activities

The core NEC is associated with several viral and host components forming the
multicomponent NEC. Thus far, the exact composition of this complex is poorly understood.
However, in the case of HCMV, pUL50 seems to be the multi-interacting determinant
mediating the formation of the multicomponent NEC, whereas the functional role of pUL53
still remains largely unresolved. However, there are experimental indications that pUL53
may be involved in the recruitment of the capsids to the NE [36], an initial finding that has
to be further investigated in detail. Recently, a more specific analysis of pUL53 functional
properties supported the point that pUL53 may be responsible for nuclear viral capsid–NEC
recruitment. In addition, its binding to myosin Va was identified. Interestingly, further data
led to the statement that pUL53 might not be important for capsid transition towards the
nuclear periphery [37]. A very prominent host factor of the multicomponent NEC has been
identified with the multi-ligand binding protein p32/gC1qR. First detected in association
with the HCMV-specific kinase pUL97 [38], it became more and more clear that p32/gC1qR
acts as a bridging factor that associates the regulatory important pUL97 activity to the
NEC [27]. This NEC bridging function of p32/gC1qR, through direct contacts with pUL50
and pUL97, has been demonstrated by a number of different experimental approaches such
as yeast two-hybrid screening, coimmunoprecipitation and in vitro assembly assays, pUL97
in vitro kinase assays, confocal imaging of the NEC nuclear rim, mass spectrometry-based
proteomics and other methods [12,27,36,38–41]. In addition, the HCMV core NEC binding
of p32/gC1qR has been assigned to the central globular domain, amino acids 100–358 of
pUL50 [42]. Several further studies underlined the presence of p32/gC1qR not only in
further β-herpesviral NECs [29] but also in α-herpesviral and γ-herpesviral NECs [30,43].
Additional host factors associated with herpesviral NECs include the following: emerin
(a prominent integral NE component), protein kinase C alpha (PKCα), cyclin-dependent
kinase 1 (CDK1), endophilin A2 (a regulator of membrane scission in clathrin-independent
endocytosis), cis/trans isomerase Pin1 (a multifunctional phosphorylation-dependent
prolyl isomerase), nuclear importins/NUPs (main transport factors of the NPC), torsin A
(an ATPase of the ER and perinuclear space), RASCAL (a lamin B-associated regulatory
factor), BiP (an ER-localized chaperone), lamins A/B/C (the main constituents of the
nuclear lamina), lamin B receptor (LBR) and several other proteins (reviewed in [12]).

3.2. Similarities and Differences between the Constituents of Herpesviral Multicomponent NECs

Comparing all herpesviral NECs analyzed so far, based on proteomics and functional
analyses, the NEC-associated cellular proteins comprise the abovementioned typical lam-
ina/NE proteins as well as various regulatory factors. Hereby, it is surprising that the
differences in the overall composition of these multicomponent NECs appear to be quite
pronounced, at least when comparing viruses derived from the different subfamilies of α-,
β- and γ-herpesviruses, considering the fact that the basic features of NEC functionality
and NE remodeling are very similar (Table 1). A plausible explanation for differences in
the identified cellular NEC constituents is based on overlapping and possibly secondary
functions exerted by nonidentical proteins in the different systems. Thus, it is highly
suggestive that some NEC-associated factors, as particularly found for HCMV, may be
substituted by different proteins fulfilling similar tasks in the NECs of other herpesviruses.
Thus, an interesting feature of herpesviral NECs is that in terms of sequence, structural and
functional properties, they likewise include both consistent as well as different properties.
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As seen from the aspect of sequence conservation, a gradual adaptation is seen for closely
related herpesviruses compared to more distinctly related species belonging to different
subfamilies (see Section 5.1, Ref. [35]). In the context of 3D structures, in particular con-
cerning the hook-into-groove binding elements, very similar, if not identical, properties
could be identified. However, the constituents contained within the multicomponent NECs
may vary substantially among the individual herpesviruses, as discussed under Section 3.1.
Finally, as a principle, the finely regulated overall functionality of viral nuclear egress is al-
most identical among all herpesviruses (Table 1). In essence, it is most plausible to consider
that those features that make the differences among herpesviruses are widely balanced and
compensated by alternative factors and regulatory steps in the nuclear egress process.

Table 1. NEC conservation between herpesviruses.

Amino Acid Sequences Poorly Conserved

3D structure of core NEC Almost fully conserved
Principle of hook-into-groove interaction Identical
Multicomponent interaction properties In part conserved
Overall nuclear egress functionality Conserved in final outcome

4. Main Functionality and Regulatory Roles Shared by Herpesviral NECs
4.1. The Key Role Played by Herpesviral NECs during the Viral Lytic Replication Cycle

The process of herpesviral nuclear egress is embedded into a long sequence of regu-
latory events within the nuclear phase of the viral lytic replication cycle (Figure 1). After
the nuclear import of viral genomes, genomic replication, protein synthesis and capsid
assembly, the subsequent processes of genome encapsidation, ongoing capsid nuclear
egress and primary envelopment directly proceed. Interestingly, as specifically addressed
for the regulatory procedures of HCMV replication, a number of viral regulators involved
in one of these stages may also exert further supportive activity in other stages, as many
of these are multifunctional [44]. Thus, it is not surprising that the sensitive proteomics
studies demonstrated a detectability of viral regulatory proteins in not only one distinct
multiprotein complex but in other complexes of these interlinked replicative stages as
well [45–48]. Against this background of knowledge, it is not surprising that the her-
pesviral core NEC proteins also have secondary activities (e.g., HSV-1 pUL34 [49]; HCMV
pUL50 [50,51]; EBV BFRF1 [52–54]), and the multicomponent NEC may be figuratively
seen as a Swiss army knife, having incorporated a number of NEC-specific regulatory
activities [12,13,55–57]. Considering the numerous studies on NEC functionality performed
so far, four main steps in the regulation of herpesviral nuclear egress can be defined as
follows: (i) the coordinated core NEC heterodimerization and oligomerization to provide a
basic scaffold, (ii) the formation of a multicomponent NEC that carries multifold activities,
(iii) the phosphorylation-induced reorganization of the nuclear lamina and (iv) the NEC
docking and nuclear membrane budding of viral capsids. In particular, the involvement
of protein kinases in these events appears important for regulation. Not only has the
NEC association of herpesviral protein kinases been demonstrated, but also the direct or
indirect involvement of host kinases has been strongly suggested, such as CDK1, additional
CDKs, PKCα, PKCδ, ERK1/ERK2, and probably even more [15,16,58–62]. Site-specific
phosphorylation of the nuclear lamins by NEC-associated kinases has been identified as
the main trigger of massive rearrangements of the NE, consequently leading to the forma-
tion of lamina-depleted areas (LDAs), the sites where viral nuclear capsids gain access to
the INM [63–65]. Additional events of NE reorganization, specifically the formation of a
hexameric NEC coat and patch-like lattice that appears to serve as a platform for capsid
docking, allow for the budding of intranuclear capsids into the perinuclear space [12].
Hitherto, mainly, the regulation of the nuclear egress of some exemplary herpesviruses
has been mechanistically elucidated including the identification of NEC-associated pro-
teins [12,27]. Additionally, structural investigations revealed wide-ranging similarities
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between α-, β- and γ-herpesviral NECs [11,31,32,66–71]. So far, the 3D structures of five
different herpesviral core NECs have been crystallographically determined by independent
groups [22,31–33,70,72]. The multiple methods of interaction between viral core NEC pro-
teins and host cell factors, including their functional impact, is a key issue in understanding
this essential step in the herpesviral replication cycle and in virus-induced pathogenesis.

4.2. Comparative Aspects of Herpesviral Nuclear Egress and Cellular NE-Specific Processes

An important step during the nuclear egress is the partial disruption of the nuclear
lamina and the reorganization of the NE. Through the activity of pUL97 in the case of
HCMV infection, the site-specific phosphorylation of lamin A/C at Ser22 generates a
binding motif for Pin1 [26]. Lamin-associated Pin1 obviously isomerizes peptidyl-prolyl
peptide bonds [73,74], resulting in conformational changes of the lamins and, thus, in the
locally distinct disassembly of the nuclear lamina (LDAs). Such disassembly events are not
only observed in herpesvirus-infected cells but are also required in cellular processes such
as mitosis, in the latter case referred to as nuclear envelope breakdown (NEBD) [75,76].
While the NEBD during mitosis is initiated by site-specific phosphorylation of lamins
mediated by cellular kinases, namely, the cyclin-dependent kinase 1 (CDK1) and the pro-
tein kinase C (PKC) [77–79], herpesviruses probably hijacked this cellular mechanism
using the cellular but also their virus-encoded protein kinases to induce lamina depleted
areas (LDAs; [24,26,38,41,80–83]. The conserved herpesviral serine/threonine kinases
(Figure 2B) are designated as CDK orthologs, sharing similar functions among themselves
and among CDKs such as nuclear lamin phosphorylations [55,59,84–88]. Functional replace-
ment between herpesviral kinases has been demonstrated with specific examples [89–92].
Consequently, site-specific Ser22-phosphorylated lamins are recognized by the cellular
peptidyl-prolyl cis/trans isomerase Pin1, which isomerizes the lamins towards conforma-
tional reorganization and, thus, disassembles the lamina network to provide the capsids
access to the INM [26,41,93]. Concerning the membrane-specific effects of the nuclear
egress pathway, several highly valuable model systems have been established, in partic-
ular representing α-herpesvirus infections [6,7,94–96]. While the step toward the distinct
recruitment of viral capsids to the NE is still insufficiently understood, several studies
investigated the budding process in which core NEC proteins are involved by inducing
membrane fission. As based on the available 3D crystal structures of five herpesviral core
NEC pairs, spanning the three subfamilies [22,31–33,70,72], the concepts that are basic for
understanding herpesviral primary envelopment have been further developed. For HSV-1
and HCMV, it has been demonstrated that their heterodimeric core NECs can oligomerize
to form hexameric rings, which may associate to honeycomb-like lattices and, thus, enable
a membrane curvature and, subsequently, the budding of capsids [33,72]. In addition,
specific in vitro experiments demonstrated that HSV-1 core NEC proteins are sufficient to
induce a negative membrane curvature, which is an essential prerequisite for viral scission
and budding [64,96].

5. The Correlation between Herpesviral Core NEC Primary Sequences, Structural
Conservation and Binding Properties
5.1. What Is the Degree of Conservation between the Primary NEC Amino Acid Sequences?

The conservation of primary sequences has to be considered in the context of structural
and functional properties. To date, the crystal structures of five core NECs belonging to
all three herpesviral subfamilies, α, β and γ, have been resolved. Aa a main finding, it
turned out that despite low amino acid sequence identities between the NECs of HSV-1,
pseudorabies virus (PrV), VZV, HCMV and EBV, the structural features and the principle of
hook-into-groove interaction are highly conserved [11]. Moreover, the main functionality of
core NECs is also specifically conserved among herpesviruses and, thus, the multi-ligand-
binding core NEC proteins might serve as a particularly suitable target for antiherpesviral
drugs, either in a selective or a broad-spectrum inhibitory manner.
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As far as the conservation of primary sequences of the core NEC proteins is concerned,
a stepwise graduation of levels of conservation was recently reported [11,32,35]. Members
of the subfamilies α-, β- and γ-Herpesvirinae showed marked differences in sequence
characteristics. When comparing the entire amino acid sequences of core NEC proteins
regarding the levels of identity and similarity, a very poor conservation can be recognized
(Figure 3). In general, within individual herpesviral subfamilies, the level of conservation
was found to be higher than between different subfamilies. With very few exceptions, the
degree of conservation, in both the percentage of identity and percentage of similarity, is
gradually decreasing along the increasing distance of virus species relationship. Moreover,
it was considered as a striking feature that even the comparison between the sequences
determining the structures involved in the interaction, the hook and groove segments
(Figure 4), did not show a substantially higher degree of conservation compared to the
entire proteins. In both cases of comparison, either between entire sequences or the specific
hook and groove segments, the analyzed amino acid identities within α-herpesviruses
ranged between 41.7–97.1% (entire UL50) or 50.5–88.5% (UL50 groove) and 51.9–90.1%
(entire UL53) or 45.4–93.9% (UL53 hook). Within β-herpesviruses, they ranged between
32.4–94.2% (entire UL50) or 40.3–98.2% (UL50 groove) and 41.7–96.9% (entire UL53) or
45.4–96.9% (UL53 hook); within γ-herpesviruses, they ranged between 38.0–41.1% (entire
UL50) or 41.7–46.0% (UL50 groove) and 33.6–42.7% (entire UL53) or 45.4–51.5% (UL53
hook) (Figures 3 and 4). This may indicate that the sequence conservation is not specifically
restricted to the NEC hook-into-groove interaction segments, but it is also seen for the
entire sequences of the globular domains and even additional functionally important
regions such as TMDs, nuclear localization signals (NLS), and binding interfaces of NEC-
associated proteins.

5.2. How Is the Correlation between NEC Sequences, Structures and Binding Properties?

Interestingly, the finding that the structural domains of core NEC proteins are highly
conserved stands in contrast to the very limited sequence conservation, and even the
key amino acids within NEC-binding interfaces are not strictly conserved. Moreover,
although a high functional consistency was found when regarding the basic role of NECs
in nuclear egress, a marked specification was identified in regard of the limited cross-viral
binding properties of core NEC pairs. The available structures of five herpesviral core
NEC pairs [22,31–33,70,72] show almost full conservation and basically only vary in the
lengths of the structural elements (Figure 5). In addition, the available published crystal
structures and reports on several other NEC properties [11,12] showed that the principle
of the hook-into-groove interaction is identical in the so far investigated herpesviruses.
Regarding the more functional aspects of the core NEC, which will need further research for
a comprehensive understanding, there is no doubt regarding the fact that the final outcome
of the egress mechanism is conserved [5–18].
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Figure 3. Amino acid sequence identities and similarities in % of pUL50 and pUL53 homologs of nine
human and three animal herpesviruses. (A) Schematic depiction of pUL50 and pUL53. Amino acid
positions are represented by numbers; TMD, transmembrane domain. (B) Homologs of HCMV pUL50
(groove proteins). (C) Homologs of HCMV pUL53 (hook proteins). UniProt accession numbers:
HSV-1, P10218 and P10215; HSV-2, P89457 and P89454; VZV, P09280 and P09283; PRV (SuHV-1),
T2FKZ7 and G3G955; HCMV, P16791 and P16794; MCMV (MuHV-1), D3XDN8 and D3XDP1; human
herpesvirus 6A (HHV-6A), P52465 and P28865; HHV-6B, Q9QJ35 and Q9WT27; HHV-7, P52466 and
P52361; EBV, P03185 and P0CK47; KSHV (HHV-8), F5HA27 and F5H982; murine gammaherpesvirus
68 (MHV-68/ MuHV-4), O41968 and O41970.



Cells 2022, 11, 1837 10 of 23

Cells 2022, 11, x FOR PEER REVIEW 10 of 24 
 

 

pUL50 (groove proteins). (C) Homologs of HCMV pUL53 (hook proteins). UniProt accession num-
bers: HSV-1, P10218 and P10215; HSV-2, P89457 and P89454; VZV, P09280 and P09283; PRV (SuHV-
1), T2FKZ7 and G3G955; HCMV, P16791 and P16794; MCMV (MuHV-1), D3XDN8 and D3XDP1; 
human herpesvirus 6A (HHV-6A), P52465 and P28865; HHV-6B, Q9QJ35 and Q9WT27; HHV-7, 
P52466 and P52361; EBV, P03185 and P0CK47; KSHV (HHV-8), F5HA27 and F5H982; murine gam-
maherpesvirus 68 (MHV-68/ MuHV-4), O41968 and O41970. 

 
Figure 4. Amino acid sequence identities and similarities in % of the pUL50 groove- and pUL53 
hook-specific segments of nine human and three animal herpesviruses. (A) Schematic depiction of 
the pUL50 groove and pUL53 hook. Amino acid positions are represented by numbers. (B) Homo-
logs of HCMV pUL50 (groove proteins). (C) Homologs of HCMV pUL53 (hook proteins). 

5.2. How Is the Correlation between NEC Sequences, Structures and Binding Properties? 
Interestingly, the finding that the structural domains of core NEC proteins are highly 

conserved stands in contrast to the very limited sequence conservation, and even the key 
amino acids within NEC-binding interfaces are not strictly conserved. Moreover, alt-
hough a high functional consistency was found when regarding the basic role of NECs in 
nuclear egress, a marked specification was identified in regard of the limited cross-viral 
binding properties of core NEC pairs. The available structures of five herpesviral core 
NEC pairs [22,31–33,70,72] show almost full conservation and basically only vary in the 

Figure 4. Amino acid sequence identities and similarities in % of the pUL50 groove- and pUL53
hook-specific segments of nine human and three animal herpesviruses. (A) Schematic depiction of
the pUL50 groove and pUL53 hook. Amino acid positions are represented by numbers. (B) Homologs
of HCMV pUL50 (groove proteins). (C) Homologs of HCMV pUL53 (hook proteins).
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Another striking aspect of NEC characteristics is the lack of a simple correlation be-
tween the contact amino acids of hook-into-groove interfaces (Figure 6, marked by letters on
top [32,70]) and the amino acids strictly conserved across α-, β- and γ-herpesviral nuclear
egress proteins (Figure 6, marked by yellow shading). While most of the contact amino
acids of hook elements (bold) (i.e., responsible for the NEC hook-into-groove binding) were
found to be identical between the β-herpesviral sequences (yellow), only very few of these
were seen in an overall conservation across α-, β- and γ-herpesviral sequences (Figure 6,
compare bold with yellow). This may indicate that the mechanism of an evolutionary
conservation of structural properties mostly did not include a conservation of primary
sequences [11]. Nevertheless, the high structural identity and the conserved mechanism of
nuclear egress led to the assumption that cross-viral interactions between the core NEC
proteins of different herpesviruses should be possible. However, the analysis of such cross-
viral nonautologous core NEC interactions demonstrated that cross-viral interactions and
nuclear rim colocalizations were only possible for core NEC combinations within individual
subfamilies, indicating that the structural similarity is not the only decisive factor [35].
Together with the previous data indicating that the sequences are stronger conserved within
the same subfamily than between different subfamilies, the subfamily-spanning interaction
patterns hinted to the possibility that the amino acid sequences may define virus-specific
binding properties of NEC proteins. Moreover, these interaction analyses also confirmed
findings of previous cross-complementation studies. Two earlier studies have shown that
the core NEC proteins of EBV and KSHV can cross-interact and remodel the nuclear mem-
brane indicating that a cross-complementation between γ-herpesviruses is possible [97,98].
A very similar finding was also obtained for the β-herpesviruses, whereby recombinant
MCMVs, in which the ORF M50 or M53 was either replaced by the HCMV ORF UL50
or UL53 gene homolog, respectively, were investigated. Both virus variants were able to
replicate and did not significantly differ from the wild-type (WT) [99]. This functional
replacement of M50 in MCMV by UL50 was also confirmed by our group using an in vivo
mouse model [35]. A comprehensive study by Schnee et al. [99] not only investigated
the cross-complementation properties within individual herpesviral subfamilies but also
between different subfamilies. The authors replaced the M50 or M53 of MCMV by the
respective homologs of HSV-1, PrV, MHV-68 and EBV, resulting in subfamily-spanning
recombinant viruses. However, none of these replacements were functional in the viral
background. A very recent study of the α-herpesviruses HSV-1 and VZV showed that
the replacement of UL34 by Orf24 in HSV-1 did not lead to a replication-competent virus
recombinant, although on the protein levels, the pUL31 and Orf24 showed positive interac-
tion [19]. However, a minimal selection for viral replication in cell culture revealed some
functional variants which acquired additional mutations in Orf24, ICP22, ICP4 and US3, in
order to replicate in an almost WT-like manner. The authors of this study provided two
possible explanations for why this cross-viral core NEC was not functional. On the one
hand, they discussed that Orf24 was not able to recruit other viral proteins of the multicom-
ponent NEC, and on the other hand, it was considered possible that the hexameric ring
formation was not provided due to the sequence differences of the two herpesviral core
NEC proteins. Additionally, the aspect of core NEC functionality was further investigated
using the ∆UL50 virus and Orf24-, pM50- and BFRF1-complementing cells (M.M., S.H.
et al., unpublished data). However, none of the complementing cell lines were able to
completely rescue the ∆UL50 phenotype, suggesting that there is no perfect cross-viral com-
plementation achievable even within NEC proteins of identical subfamilies. Interestingly,
it is becoming increasingly apparent that either the minor differences within the lengths
of the α-helices, β-strands and the loop segments of the hook and groove structures may
represent factors defining the binding specificity of each core NEC, or distinct positions of
the primary amino acid sequences may play a crucial role in binding specificity.
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Figure 6. Lack of a simple correlation between the contact amino acids of hook-into-groove interfaces
(marked by letters on top) and the amino acids strictly conserved across α-, β- and γ-herpesviral
nuclear egress proteins (marked by yellow shading). Amino acid sequence alignment of the hook
sequences of several human and animal herpesviral pUL53 homologs. Conserved amino acids are
shaded in yellow (i.e., fully conserved between the analyzed β-herpesviruses), the hook-determining
amino acids are in blue, and the elements of secondary structure are depicted schematically be-
low the alignment. The hook-into-groove contact residues of VZV, HCMV and EBV are in bold
and additionally labeled by the letters α, β and γ on top of the alignment. Amino acids of the
animal β-herpesviruses identical to the contact residues of HCMV are also in bold. The numbers
represent amino acid positions. UniProt accession numbers: VZV, P09283; HCMV, P16794; rhesus cy-
tomegalovirus (RhCMV), O71122; herpesvirus tupaia (TuHV-1), Q91TN5; guinea pig cytomegalovirus
(GPCMV), U6H9V2; MCMV, D3XDP1; EBV, P0CK47.

6. Mutational Analysis Focusing on Specific Herpesviral NEC Functions
6.1. Phenotypical Features of Herpesviral Core NEC Proteins Determined by Viral
Deletion Mutants

There have been controversial discussions on whether herpesviral NEC proteins may
generally be categorized into proteins having an essential role during viral replication or
whether they can be dispensable under specific conditions. In any case, the absence of one
of the two core NEC proteins, which are definitely important based on their conservation
in functional and structural aspects (Figure 1B; [22,31–33,70,72]), leads to a reduction in
the viral reproduction efficiency and progeny titers in a drastic way [66–69,71,100–102].
While there are several studies regarding the essentiality of the two core NEC proteins of
HSV-1, PrV, MCMV and EBV, this aspect has only rarely been examined for HCMV. Many
studies investigated the functionality of the HCMV core NEC, particularly with regard to
the interactions forming the multicomponent NEC and the regulation of the nuclear egress.
However, the question whether the two core NEC proteins are absolutely essential for viral
replication has not been answered yet. Hence, our recent study focused on the characteriza-
tion of the ∆UL50 virus, a recombinant HCMV lacking the ORF UL50 [28,103]. Surprisingly,
this virus, as reconstituted on pUL50-complementing cells (∆UL50C) and used as a stock
virus for further infection experiments, was found impaired but not completely blocked in
replication as seen with non-complementing cells. Interestingly, we detected a strong de-
crease in the production of mature C-type capsids in the absence of pUL50 expression, with
a nuclear accumulation of immature A-type capsids (Figure 7). In our earlier reports, the
∆UL50 particles had commonly been produced in pUL50-complementing cells. However,
on the basis of current knowledge that pUL50 is also packaged into virions, at least at very
low amounts [104], the previously used ∆UL50 particles may not have completely missed
pUL50. For this reason, in continuation of the studies, we produced two different versions
of ∆UL50 particles: those either generated in pUL50-complementing cells (∆UL50C) or
in non-complementing cells (∆UL50N; Figure 7A) [103], the latter, of course, obtained in
much lower quantities. This comparison was made to gain deeper insight into functional
details of pUL50 and the range of its regulatory roles exerted during the entire HCMV
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replication cycle. An important and basic finding was that the ∆UL50N particles, derived
from non-complementing cells, exhibited a substantially stronger replicative defect than
∆UL50C particles (Figure 7B). This defect became even more apparent by performing a
gradient purification in which no virion fraction was detectable in the case of the ∆UL50N
virus. Remarkably, the proteomic composition of the noninfectious ∆UL50 particles (NIEPs
of ∆UL50C and ∆UL50N) did not differ to a relevant extent. However, several experiments
confirmed that the packaging of viral genomes into the capsids was massively disturbed
in the absence of pUL50 (Figure 7D). This also explained the lack of an infectious virion
fraction upon ∆UL50N gradient purification. Consequently, while the ∆UL50C particles
were still able to infect non-complementing cells, albeit to a lesser extent, infection with
∆UL50N particles was almost completely negative under these conditions. Thus, as a
central finding, the ∆UL50N particles lacked the normal portion of C-type capsids and
encapsidated, infectious virions (Figure 7B). In conclusion, the experiments demonstrate
that pUL50 is not completely essential for nuclear egress, per se, but obviously has an
important regulatory role in viral maturation, especially in the packaging of viral genomes.
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Figure 7. Generation and the phenotypical features of the ∆UL50 virus. (A) Schematic depiction of
the purification of ∆UL50 particles. HFF-UL50 cells, either dox-induced (+dox) or uninduced (−dox)
were infected with HCMV ∆UL50. Viral supernatants were harvested and purified, ∆UL50 particles
derived from pUL50-complementing conditions were named ∆UL50C and from non-complementing
conditions ∆UL50N. (B) Transmission electron microscopy (TEM) ∆UL50C-infected HFF-UL50 cells,
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either induced or uninduced, reveals a strong accumulation of immature A capsids (white triangle)
and reduction of mature C capsids (white arrowhead with black tail) under the non-complementing
condition; white arrowhead, B capsids. (C) Replication kinetics of the ∆UL50C and ∆UL50N particles
on complementing or non-complementing cells showing a strong impairment of replication efficiency
in the absence of co-expressed pUL50. Statistical significance of the values of genome equivalents
was calculated by ANOVA (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001) for 2–19 d p.i. in relation to WT
(mean value of WT +dox and WT −dox). (D) Comparison of viral genome levels in ∆UL50C and
∆UL50N particles by DNase treatment revealing strongly reduced levels of packaged viral genomes
in the ∆UL50N particles. Statistical significance was calculated by the Student’s t-test (**, p ≤ 0.01)
(modified from [28,103]).

6.2. Regulated Viral Nuclear Egress Compared to Nuclear Envelope Breakdown (NEBD)

The herpesviral egress is required to overcome the physico-chemical barrier of the NE
(represented by nuclear lamina, INM, ONM and NPCs). This nucleocytoplasmic capsid
transport is a specifically regulated process as described in chapter 1. In comparison to this,
the cellular nuclear envelope breakdown (NEBD) is a well-studied process that regulates
the disassembly of the nucleus during eukaryotic mitosis [75,76]. A partial NEBD, however,
as occurring in the process of mitosis, is characterized by large gaps in the NE due to a
phosphorylation-dependent disintegration of NPCs and lamins. These phosphorylation
events are mediated by mitotic kinases, mainly CDK1 and PKC. Of note, it has been shown
that both types of kinases and, in addition, also other cellular as well as virus-encoded
protein kinases are involved in the nuclear egress of herpesviruses [25,81,105–107]. These
findings indicate that herpesviruses may have captured this cellular mechanism. Another
hint is the ESCRT apparatus, which repairs and remodels the NE after mitosis and also
seems to be involved in herpesviral replication [9,75,76,108–110]. Thus, the core NEC
proteins may activate and optimize the mitotic NEBD to use this mechanism in a more
specific and efficient way for herpesviral replication and hence, can rely on this less efficient
mitotic NEBD when the functionality of the core NEC proteins is disturbed. Moreover,
it is noteworthy to mention that in addition to herpesviruses, several other viruses have
to overcome this physico-chemical barrier of NE to enter or exit the nucleus and, hence,
remodel the NE, albeit in various ways [111–113]. For example, the simian virus 40 (SV40)
restructures the NE by the activation of specific caspases resulting in a direct cleavage
of lamins and lamin-associated proteins, consequently hijacking the apoptosis-specific
mechanism to mediate NEBD, but without inducing the complete pathway of programmed
cell death [113].

However, the results obtained so far do not provide an insight into the exact mecha-
nism in which way pUL50 contributes to the maturation of infectious virions. The statement
which can be made by now is that, in the absence of pUL50, the level of encapsidated viral
genomes is lower, suggesting that the packaging of genomes into preformed B capsids is
impaired. In general, after capsid assembly, the portal complex interacts with the terminase
complex, composed of several subunits [14,114–117]. This complex recognizes specific
Pac sequences of the viral genomes and precisely cleaves the concatemers, leading to
the packaging of one complete genome per capsid through the portal channel. During
this packaging process, the scaffold, which is incorporated and characterizes B capsids,
is disassembled by the protease, resulting in mature C capsids [94]. Until now, it is not
known exactly where this packaging occurs in the nucleus, but most probably in direct or
close proximity to the replication compartments as all the proteins involved in this process
accumulate there. Since pUL50 is anchored in the NE by its TMD and hence, physically
separated from replication compartments, this raises questions regarding a function during
the genome packaging. A plausible explanation relies on the concept that the herpesviral
NEC appears to act as a quality control of nuclear egress, selectively transferring mature
C capsids through lamina-depleted areas of the NE [7,118,119]. Thus, a disturbance of
this function would either lead to a release of immature A- and B-type capsids into the
cytoplasm, or to a retention of mature C capsids in the nucleus. This mirrors the result of the
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mass spectrometry analysis of the study, in which a large number of NIEPs was received,
representing enveloped B capsids. Moreover, this would also explain why herpesviruses
do not simply use the cellular NEBD, releasing any nuclear content, but have developed a
specific egress mechanism to achieve a very selective and efficient transport.

6.3. The Essential and Non-Essential Functional Properties of Herpesviral Core NECs

As far as the essential role of the HCMV core NEC proteins for viral replication
is concerned, this has not really been evaluated in greater detail so far. For the two α-
herpesviruses HSV-1 and PrV, the issue has been specifically addressed. Data strongly
suggested that pUL31 of HSV-1 and pUL31 of PrV (the homologs of HCMV pUL53) are not
absolutely essential for nuclear egress [66–68]. Indeed, the deletion of ORF-UL31 from the
HSV-1 or PrV genomes did not lead to a complete block of viral replication, but instead to
some relative decrease in viral loads and a partial deficiency in the production of enveloped
particles. This phenotype could be restored by the use of pUL31-complementing cells, and
a very similar finding was obtained for the deletion of ORF-UL34 (the homolog of HCMV
ORF-UL50) [69,71,102]. However, similar to the present HCMV study, there was not a
complete block of HSV-1 and PrV replication. A more surprising result was obtained by an
extensive passaging of the PrV ORF UL31 or UL34 deletion mutants, which led to functional
variants, termed pass mutants, almost producing WT titers [118,120]. In both cases, similar
mutations in various viral proteins emerged and a virus-induced disintegration of the NE,
a NEBD, was observed. Furthermore, it was also shown that the NEBD releases immature
and mature capsids into the cytoplasm, suggesting that the core NEC also functions as
a quality control checkpoint [118]. This aspect is highly consistent with the findings on
HCMV ∆UL50 in the present study. Moreover, further experimental indications pointed
to mitosis-related processes possibly involved in this herpesvirus-induced NEBD. In the
case of EBV, deletion mutants in the coding sequences for nuclear egress proteins BFRF1
and BFLF2 were also described [100,101]. In both cases of deletion, a low-level replication
of the recombinant viruses was demonstrated, specifically showing strong defects in the
efficiency of nuclear egress and primary envelopment. Specifically, for the BFRF1-KO
virus, the reduction in viral titers was due to the sequestration of EBV nucleocapsids
in the nuclei of virus-producing cells [100]. For the ∆BFLF2 virus, in comparison, not
only a defect in the nucleocytoplasmic egress was observed but also a defect in genome
encapsidation [101]. As a more specific approach to gain insight into cytomegaloviral NEC
proteins, two studies investigated the deletion of either ORF-M50 or ORF-M53, the core
homologs of MCMV [121,122]. Both mutants of MCMV, either carrying a deletion of ORF
M50 or M53, were not able to be reconstituted, but could be rescued by co-expressed pM50
or pM53, thus indicating that both core NEC proteins are actually essential for MCMV
replication, at least under these experimental conditions. In summary, the studies do not
provide a fully consistent picture about the essentiality of herpesviral core NEC proteins,
but all of them demonstrate that viral replication is massively impaired in the absence of
one of the proteins.

Despite the intense research on NEC-specific topics during the last decades, there are
still gaps in the current knowledge. These are mainly based on the fact, that the individual
core NEC proteins have been characterized not only as structural NEC components, but
rather as multifunctional viral regulators. However, the individual functional characteris-
tics have not been deciphered yet. Thus, it will be pivotal for an overall understanding of
herpesviral nuclear egress to further study the underlying functional details. These may
include the question of nuclear core NEC–capsid interaction, the role in genome encap-
sidation, specific activities in nuclear trafficking, the triggers of host factor recruitment
and additional aspects. In particular, the recently recognized suitability of the NEC as an
antiviral target should be moved even stronger into the center of investigations.
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7. Validation of the NEC as a Unique Target of Anti-Herpesviral Therapy
7.1. Current Approaches and Proof-of-Concept That Support the Exploitation of the Herpesviral
NEC as an Efficient Drug Target

The herpesviral NEC has attracted the deep interest of researchers, since it repre-
sents a regulatory key position of viral replication and a putative target for novel antiviral
strategies. Specifically on the basis of the data defining 3D structures according to NEC
protein crystallization, the identification and development of a novel type of NEC-targeted
drugs may now be realized. The validation of the NEC as an efficient target for small
molecules exerting antiviral activity, has been achieved by several ways. These experiments
included deletion and replacement mutants in NEC binding studies, recombinant viruses,
experimental knock-down models, inhibitory peptides, NEC-directed small molecules, and
some more [42,103,123–125]. A key point in this direction may have been the screening
analysis using the Prestwick Chemical Library® that contains a selection of pharmacolog-
ically valuable compounds and approved drugs [123,124]. The results of these studies
provided a proof-of-concept that an inhibitory compound such as merbromin (MBM) that
prevents the formation of the HCMV core NEC has the potential to block further processing
of nuclear egress, eventually resulting in an intranuclear trapping of viral capsids. This
concept of a nuclear entrapment of viral capsids has also been substantially supported
by the studies using viral mutants carrying defects in the core NEC proteins, such as
HCMV ∆UL50 (see Section 7.1). It appears highly promising that direct-acting antivirals
(DAAs) that interfere with this viral replicative step of central importance may exert high
efficacy and antiviral potency. The mechanism of NEC-directed antiviral activities has
been investigated in our earlier studies including confocal imaging [25,28,42,124]. In these
analyses, the drug-mediated effect onto the HCMV core NEC could be assessed in the form
of a disturbed nuclear rim localization of viral pUL53 (Figure 8). Under the treatment with
an NEC-active compound, the typical nuclear rim localization of egress protein pUL53
shows speckled patterns of delocalization in the form of intranuclear pUL53 aggregates
(Figure 8A,B). Interestingly, this phenomenon of nuclear rim delocalization is not only
found with core NEC-blocking small molecules such as MBM, but also with inhibitors of
NEC-associated protein kinases such as maribavir (MBV; Figure 8B). MBV/LivtencityTM is
a selective inhibitor of the viral kinase pUL97, which exerts an important egress-regulating
function in that it phosphorylates nuclear lamins as well as the core NEC proteins them-
selves and other NEC-associated factors (Figure 8A) [126]. This finding indicates that
a block of viral NEC functionality may be pharmacologically achieved through several
different mechanistic modes of NEC inhibition. Moreover, the NEC-directed antiviral
activity might principally be realized in both ways, either in a virus-specific or in a broad,
pan-herpesviral manner. This aspect can be considered from two different points of view.
As far as the structural conformity of the core NEC is concerned, one might see a chance to
generate a broadly active NEC-directed inhibitor. On the other hand, the highly specific
requirements towards a sterical hindrance of such small molecules have to be taken into
closer account. Drug-target docking may be based on very specific interaction of the drug
with individual amino acids, forming a binding pocket or a finely structured microcanyon,
which may argue against a broadness of inhibitory activity. This aspect favors the idea
that a virus-specific mode of NEC inhibition appears more probable to be achieved. Thus,
further proceedings in NEC-directed drug research may answer these questions.
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Figure 8. (A) The HCMV-encoded protein kinase pUL97 exerts a nuclear egress-regulating activity
through the phosphorylation of nuclear lamins and additional proteins of the core and multicompo-
nent NEC, including the hook and groove proteins themselves. (B) The HCMV core NEC undergoes
a microscopically visible delocalization upon treatment with pUL97 inhibitors such as MBV or others.
Specifically, treatment of HCMV-infected cells with the pUL97 inhibitor MBV results in intranuclear
aggregates of pUL50 and pUL53. HFFs infected with recombinant HCMV AD169-GFP UL50-HA
and treated with MBV (5 µM) or DMSO at 74 and 94 h post-infection (h p.i.). Cells were fixed at
96 h p.i. and subjected to indirect immunofluorescence analysis, and the subcellular localization
of viral pUL50 and pUL53 was detected by recording confocal z-series. Representative images of
a single focal plane (xy) were depicted for individual stainings, and xz and yz axes were depicted
for merged images. White dotted lines and black arrowheads, optical section through the z stack
(xy) or the focal plane (xz and yz); yellow-filled arrows, intranuclear aggregates of pUL50/pUL53
colocalization; yellow open arrows, transnuclear transport channels common in human fibroblasts
(modified from [42]).

7.2. The Mode of NEC-Directed Antiviral Drug Activity Achieved through Several Defined
Mechanistic Principles

Seen from the concept of a novel type of NEC-directed drugs, such inhibitory activity
may be realized through a variety of different fine-mechanistic ways. An NEC-directed
drug may be characterized by (i) the blocking of core NEC formation, i.e., through sterical
hindrance of NEC protein interaction, (ii) the drug-mediated interference with activities of
the multicomponent NECs such as site-specific phosphorylation, i.e., through inhibitors
of NEC-associated herpesviral or cellular kinases, (iii) the inhibition of additional NEC-
specific enzymatic activities such as lamin-directed prolyl cis/trans isomerization or pu-
tative proteases involved in capsid-NEC interaction (e.g., HCMV pUL80), (iv) the direct
interference with capsid docking to the NEC or cognate host factors of the NE, and (v) the
blocking of membrane-specific activities of the NEC as a part of primary capsid envelop-
ment. To evaluate these inhibitory strategies on a molecular-mechanistic level, a number of
analysis systems have recently been reported for HCMV (Figures 7–9) and other human
herpesviruses [42,103,125]. An interesting point is that the recently approved anti-HCMV
drug MBV/LivtencityTM (Figure 9A), which represents the first prototype kinase inhibitor
in the entire field of antiviral therapy, exerts a strong nuclear egress-inhibitory activity
in vitro and in vivo [42,126,127]. This mechanistically new activity, i.e., the viral nuclear
egress-specific mode of action (MoA), of this drug and further investigational candidates
can be quantitatively assessed by applied test systems (Figure 9B). Combined, based on the
novel achievements on recombinant herpesviral NEC protein expression, in particular by
the use of hook::groove fusion constructs of recombinant core NECs [32] or, alternatively,
through heterodimeric NEC copurification, their characterization, crystallization, structural
analysis, in silico drug docking investigation and NEC-specific antiviral drug research,
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new ways have been explored. Thus, the respective strategies may hopefully provide a
mechanistically new generation of antiviral drugs in the near future.
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Figure 9. Maribavir (MBV) represents a newly approved anti-HCMV drug with nuclear egress-
blocking activity. (A) Chemical structure of the benzimidazole riboside MBV. (B) The mode of anti-
viral activity of MBV was determined by a quantitation of viral encapsidated genomes [128]. The 
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The significance between DMSO and MBV was calculated by Student’s t-test (*** p < 0.001). 
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