
����������
�������

Citation: Masibi, E.G.; Makhetha,

T.A.; Moutloali, R.M. Effect of the

Incorporation of ZIF-8@GO into the

Thin-Film Membrane on Salt

Rejection and BSA Fouling.

Membranes 2022, 12, 436.

https://doi.org/10.3390/

membranes12040436

Academic Editor: Klaus Rätzke

Received: 8 March 2022

Accepted: 29 March 2022

Published: 17 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Article

Effect of the Incorporation of ZIF-8@GO into the Thin-Film
Membrane on Salt Rejection and BSA Fouling
Elizabeth Gaobodiwe Masibi 1,2, Thollwana Andretta Makhetha 1,2 and Richard Motlhaletsi Moutloali 2,3,*

1 Department of Chemical Sciences, Faculty of Science, University of Johannesburg,
P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; gaobodiwemasibi9@gmail.com (E.G.M.);
tamakhetha@uj.ac.za (T.A.M.)

2 DSI/Mintek Nanotechnology Innovation Centre—UJ Water Research Node, University of Johannesburg,
P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa

3 Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology,
University of South Africa, Florida, Roodepoort 1709, South Africa

* Correspondence: moutlrm@unisa.ac.za; Tel.: +27(0)-11-471-3994

Abstract: A series of Zeolitic imidazole framework-8 (ZIF-8) clusters supported on graphene oxide
(ZIF-8@GO) nanocomposites were prepared by varying the ratios of ZIF-8 to GO. The resultant
nanocomposites were characterized using various techniques, such as Scanning Electron Microscope
(SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller
(BET), thermogravimetric analysis (TGA), Fourier Transform Infrared (FTIR) and Raman spectroscopy.
These nanocomposites were incorporated into the thin film layer during interfacial polymerisation
process of m-phenylenediamine (aqueous phase which contained the dispersed nanocomposites)
and trimesoyl chloride (TMC, organic phase) at room temperature onto polyethersulfone (PES)
ultrafiltration (UF) support membrane. The membrane surface morphology, cross section and
surface roughness were characterized using SEM and AFM, respectively. Compared to the baseline
membranes, the thin film nanofiltration (TFN) membranes exhibited improved pure water flux
(from 1.66 up to 7.9 L.m−2h−1), salt rejection (from 40 to 98%) and fouling resistance (33 to 88%).
Optimum ZIF-8 to GO ratio was established as indicated in observed pure water flux, salt rejection
and BSA fouling resistance. Therefore, a balance in hydrophilic and porous effect of the filler was
observed to lead to this observed membrane behaviour suggesting that careful filler design can result
in performance gain for thin film composite (TFC) membranes for water treatment application.

Keywords: interfacial polymerization; graphene oxide; nanofiltration; thin film composite
membranes; zeolitic imidazole framework-8

1. Introduction

Membrane technology has emerged as a viable, alternate method for wastewater
remediation to augment the dwindling fresh water supplies due to its high efficiency and
small footprint [1]. The technology has found wide use in desalination, removal of heavy
toxic metals and dyes molecules amongst other applications [2]. Reverse Osmosis and
Nanofiltration membranes are the most prevalent thin-film composite (TFC) membranes
at which the top thin layer may be made of polyamide or polyimide selective layer and
porous substrate (polysulfones or polyethersulfone) as the support layer [3]. The polyamide
thin film composite (TFC-PA) membranes have been widely used for water treatments
due to their wide operating pH range, superior water flux, good stability to biological
attack, and good resistance to pressure compaction; however, membrane fouling and
chlorine degradation are still considered their main obstacle [4]. Due to these drawbacks,
these membranes require extensive pre-treatments to minimize fouling and achieve high
permeate quality. In order to reduce the costs and address these issues, scientists have a
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strong interest in making new membrane materials that will improve fouling resistance,
permeability and separation performance [5].

Various methods, such as surface grafting, blending, and coating, have been used
extensively. It has been proved that modification of the surface can effectively play a role in
reducing chlorination and fouling of PA-TFC membranes since most polymer membranes
are sensitive to chlorine. However, the surface modification that is currently used faces
great challenges due to decline in permeation of PA-TFC membranes, which is induced
by extreme pressure of modification layers. Therefore, the exploration of novel surface
modification technologies is of great importance because permeation can be retained
while successfully improving the chlorine and fouling resistance of PA-TFC membranes [6].
Current developments in thin-film composite (TFC) membranes for NF and RO applications
are aimed at improving the practical performance of the membrane materials over long
periods in operations [7]. One of the many ways of improving membrane materials is the
incorporation of inorganic fillers which has been demonstrated to address most of these
stated challenges [8].

Functional inorganic nanomaterials, such as graphene oxide (GO), zeolites, metal
organic frameworks (MOFs), carbon nanotubes (CNTs), etc., are incorporated into the thin
polyamine layer to improve its properties [9,10]. Novel inorganic hybrid materials such as
zeolitic imidazole framework-8 in combination with graphene oxide have become promi-
nent in the literature in the past few years due to their positive impact on the performance of
the resultant membranes [11]. The synergy realised between the hydrophilic GO and porous
ZIF-8 are attributed to these gains in observed behaviour [12]. The oxygen-rich graphene
oxide not only increases hydrophilicity but also increases the physicochemical properties,
such as mechanical strength and thermal stability of the composite membrane [13]. ZIF-8,
on the other hand, has high porosity, abundant active surface sites, high surface area and
also water stability, making it a favourable candidate for the removal of contaminants
in aqueous solutions [14]. The incorporation of MOF and GO can thus greatly improve
stability and potential usage of the resultant nanocomposite membranes water quality
upgrade [15]. Due to this combination (MOF@GO), advantages such as laminated structure,
large pore volumes, alterable pore functionalities, and high surface area can be realised.
Moreover, incorporating ZIF-8 particles into GO sheets leads to better control of its proper-
ties (structure, morphology, etc.) and eliminates or reduces its aggregation and possible
leaching out of the membrane matrix. These are due to the coordination between metal
ions and COOH groups of GO which can lead to nucleation of the MOF particles evenly on
the surface of GO [16,17].

Herein we report on the incorporation of the ZIF-8@GO nanocomposite in the polyamide
layer supported on PES UF support membrane for application in water treatment. It
was envisaged that the combination will result in increased water permeation due to the
synergistic influence of the hydrophilic GO and porous ZIF-8. The effect of varying ZIF-
8 content in the TFN layer on surface fouling, water permeation and solute rejection is
reported and interrogated.

2. Materials and Methods
2.1. Materials

Graphite powder (20 µm, synthetic), orthophosphoric acid (H3PO4, (85 wt.%), potas-
sium permanganate (KMnO4), concentrated sulfuric acid (H2SO4, 98 wt.%), hydrogen
peroxide, ethanol (98 wt.%), diethyl ether, hydrochloric acid (32 wt.%), hexane (95 wt.%),
1,3-phenylenediamine (MPD) and 1,3,5-benzenetricarbonyl trichloride (TMC), zinc nitrate
hexahydrate (Zn(NO3)2.6H2O, 98%), methanol (MeOH, 98%) and 2-methylimidazole (2-
mIM, 99%) and molecular sieves 4A (purified) used to dry moisture from hexane were all
sourced from Sigma Aldrich, Johannesburg (South Africa). Commercial polyethersulfone
(PES) (LY PES 100 kDa) sanitary UF membranes used as a support for interfacial polymer-
ization were obtained from Synder filtration, Vacaville (USA). All synthetic reagents were
used without any further purification.
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2.2. Preparation of Graphene Oxide and ZIF-8

GO [18], ZIF-8 [19] and ZIF-8@GO [17] nanocomposites were prepared according
to published methods and fully characterised before use. Table 1 indicates the relative
amounts of metal, ligand and GO used for the different ZIF-8@GO composite construction.

Table 1. Composition of different concentration for the construction of ZIF-8@GO composites.

Additives Ratio
ZIF8: GO GO (mg) (Zn(NO3)2.-

6H2O (g) Methanol (mL) 2-methyl-imidazole (g) Methanol (mL)

ZIF-8@GO 0.1:1 80 0.07 4 0.21 1
ZIF-8@GO 0.5:1 80 0.35 20 1.05 5
ZIF-8@GO 0.9:1 80 0.63 36 1.89 9
ZIF-8@GO 1.0:1 80 0.70 40 2.10 10

2.3. TFC Membrane Preparation

Polyamide thin composite membranes were synthesized through a modified interfacial
polymerization process (Scheme 1). Ultrafiltration polyethersulfone (UF-PES) support
membranes were pre-treated by soaking in a 0.5% sodium dodecyl sulphate (SDS) solution
overnight. The membranes were then washed with distilled water for 1 h, and the pre-
treated membranes were immobilized onto glass plates using double-sided tape. Thereafter,
aqueous solution of MPD (2% in 100 mL of distilled water at pH of 8 maintained by adding
ammonium buffer) was poured onto the top surface of the UF-PES substrate and left to
soak for 30 min. Excess amine solution was removed from the membrane surface using
a soft rubber roller. Trimesoyl chloride TMC (0.4% in hexane (100 mL)) was poured onto
the support UF-PES sheet that was saturated with MPD and left for 60 s. The excess of the
organic solution was removed off the surface, and the resulting TFC membrane was cured
in the oven at 65 ◦C for 15 min. The drying step was to provide a further polymerization
and to attain the desired stability of the TFC membrane against high pressure. Finally, the
resulting membranes were thoroughly washed and kept in DI water until used in carrying
out application/performance studies [20].
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Scheme 1. Formation of PA layer based on trimesoyl chloride (TMC) and 1,3-phenylenediamine
(MPD) through interfacial polymerization reaction [21].

For the preparation of composite TFC (GO, ZIF-8, ZIF-8@GO) membranes, the same
procedure for preparation of TFC was followed, except the addition of ZIF-8@GO (0.1:1,
0.5:1, 0.9:1 and 1.0:1) into the aqueous solution of MPD as illustrated in Table 2. All
MPD/additives solutions underwent sonication for 30 min before the interfacial polycon-
densation reaction was affected [21–23].

Table 2. Relative amounts of components used for the preparation of TFC membranes.

Sample MPD (wt.%) TMC (wt.%) Ratio (ZIF-8:GO) Concentration
(wt.%)

TFC (M1) 2 0.4 - -
GO (M2) 2 0.4 - 0.5

ZIF-8 (M3) 2 0.4 - 0.5
ZIF-8@GO (M4) 2 0.4 0.1:1 0.5
ZIF-8@GO (M5) 2 0.4 0.5:1 0.5
ZIF-8@GO (M6) 2 0.4 0.9:1 0.5
ZIF-8@GO (M7) 2 0.4 1.0:1 0.5
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2.4. Characterization of Inorganic Fillers and the PA-TFC Membranes
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR)

GO, ZIF-8, ZIF-8@GO composites (0.1, 0.5, 0.9, 1.0):1, commercial UF-PES membrane
and membranes incorporated with different concentrations of ZIF-8@GO were analysed to
identify functional groups using a Bruker Vector 22 mid-IR spectroscopy (Bruker, Karlsruhe,
Germany) against an air background. Prior analysis, the powder samples of GO, ZIF-8,
ZIF-8@GO (0.1, 0.5, 0.9, and 1.0):1 were prepared using 1:9 ratio of a sample and KBr. The
membrane samples were placed on the ATR and analysed over the wave number range of
4000–500 cm−1.

2.4.2. X-ray Diffraction Spectroscopy (XRD)

X-ray diffraction (XRD) analyses of GO, ZIF-8, ZIF-8@GO composites (0.1, 0.5, 0.9,
1.0):1 were performed at room temperature utilizing a D8 Advance diffractometer (X’Pert,
Munich, Germany) with PSD Vantec1 detectors and Cu Kα radiation (λ = 1.5406) source, a
tube voltage of 40 kV, a current of 40 mA and an SA 10m slit. The samples were scanned in
locked couple mode with 2θ increment in 0.5 s steps. The data obtained were interpreted
using high score plus program.’

2.4.3. Raman Spectroscopy (RS)

Raman Micro 200 (Perkin Elmer, Waltham, MA, USA), precisely Spectrometer (Spec-
trum software), was used to obtain Raman spectra of GO, ZIF-8, ZIF-8@GO composites
(0.1, 0.5, 0.9, 1.0) using a laser beam of 5 mW. Prior to analysis, the samples were ground
to fine powder, and then placed on a glass plate. The spectra were recorded over a range
of 50–3500 cm−1 using an operating spectral resolution of 2.0 cm−1. The spectra were
averaged with 20 scans, at an exposure time of 4 s.

2.4.4. Scanning Electron Microscopy (SEM)

Scanning electron microscopy was used to study the surface morphology of GO, ZIF-8,
ZIF-8@GO composites (0.1, 0.5, 0.9 and 1.0) as well as those of membranes incorporated
with the composites including the membrane cross-sections. The membranes samples were
mounted on a carbon tape and coated with carbon prior to surface morphology analysis. To
obtain cross-sectional image analysis, the membrane samples were frozen in liquid nitrogen
and fractured whilst hard and finally coated with carbon. SEM micrographs were obtained
at an accelerating voltage of 2 kV using a TESCAN Vega TC instrument (VEGA 3 TESCAN
software, Brno, Czech Republic), equipped with X-ray detector for energy dispersive X-ray
analysis (EDX) operated at 5 kV.

2.4.5. Transmission Electron Microscopy (TEM)

Transmission Electron Microscopy (TEM JEOL, JEM-2010, Akishima, Japan) at an
accelerating voltage of 200 kV was used to examine the composite materials (GO, ZIF-8,
ZIF-8@GO composites (0.1, 0.5, 0.9, 1.0)). A few milligrams of the samples were sonicated
in approximately 5 mL of ethanol using an ultrasonic bath for 10 min. A few drops of the
sample specimens were placed on a carbon-coated copper grid and further mounted onto
the exchange rod and placed in the TEM chamber for analysis.

2.4.6. Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM, Nanoscale IV, Veeco, Santa Clara, CA, USA) with the
spring constant of 0.12 N.m−1 through the contact mode in dry air was used to characterize
the surface morphology of PES, TFC, and PES/TFC composite membranes. All the mem-
branes were dried for 24 h at room temperature before the AFM analysis was performed.
The instrument software was used to obtain roughness factors (Ra and Rq) for the analyses.
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2.4.7. Thermogravimetric Analysis (TGA)

The thermal properties and stability of as-prepared samples were determined using a
TG-DTA, DT-40 (Shimadzu, Kyoto, Japan) instrument at a heating rate of 10 ◦C. min−1 in
the temperature range of 25–800 ◦C under nitrogen atmosphere.”

2.4.8. Brunauer–Emmett–Teller (BET)

Brunauer–Emmett–Teller (BET) analysis was used to determine the surface area and
pore volume of solids. The surface areas and pore volumes of the prepared samples were
determined using an automated gas adsorption and surface area analyser, Micrometrics
TriStar II Plus Version 3.00 (Micromeritics, Norcross, GA, USA) and Porosity Analyser
3000 (Micromeritics, Norcross, GA, USA). About 0.2 g of the samples were degassed using
Micrometrics degassing system at 150 ◦C in nitrogen at a flow rate of 60 cm3 min−1 for 4 h.

2.4.9. Contact Angle Measurements

The water contact angle measurements were conducted using the sessile drop method
on a contact angle goniometer (G10, KRUSS, Hamburg, Germany). Ten drops of deionized
water were deposited on the surface of each membrane, and the contact angle thereof
measured to investigate membrane hydrophilicity and hydrophobicity at room temperature.
A minimum of ten drop were investigated per sample.

2.4.10. Membrane Performance Measurements Studies

Membrane performance parameters were assessed using pure water flux and solute
rejection utilising a dead-end filtration system (Sterlitech Instrument, Kent, WA, USA)
under different applied nitrogen gas pressure. The membranes were first compacted with
deionized water for 1 h at 1200 Pa prior to flux measurements. Five different pressures (i.e.,
700, 800, 900, 1000 and 1100 Pa) were used for the pure water flux Equation (1) studies:

(Jw) =
∆V

A.∆t
(1)

where Jw (L.m−2.h−1) is the pure water flux, V is the volume of the permeate (m3), t is the
permeation time (h) and A is the effective membrane surface area (0.0013 m2).

A conductivity meter was used to measure the salt concentration in the feed and
permeate solutions before and after filtration, respectively. The membrane salt rejection
was then determined using Equation (2):

R(%) = 1 −
Cp

C f
× 100 (2)

where, Cp is the permeate concentration (ppm) and Cf is the feed concentration (ppm),
respectively. After the membranes were subjected to pure water flux measurement (Jw,1) for
1 h, a 1000 ppm BSA solution was poured into dead end reservoir and the flux (JP) of the
laden solution was obtained. After 1 h filtration, deionized water was used to backwash
membranes for 30 min to remove BSA loose bound on the surface of the membranes there-
after pure water flux (Jw,2) was obtained. The flux recovery ratio (FRR) was calculated in
order to evaluate the fouling-resistant capability of the membrane, using Equation (3). [24]:

FRR(%) =
Jw2

Jw1
(3)

The total fouling-resistance (Rt) of the membrane was determined using Equation (4) [25]:

Rt(%) =

(
1 −

Jp

Jw1

)
× 100 (4)



Membranes 2022, 12, 436 6 of 23

Reversible fouling (Rr) and irreversible fouling (Rir) were obtained using Equations (5) and (6):

Rr(%) =

(
Jw2 − Jp

Jw1
)× 100 (5)

Rir(%) =

(
Jw1−Jw2

Jw1

)
× 100 = Rt − Rr (6)

3. Results and Discussion
3.1. Characterization of GO, ZIF-8 and ZIF-8@GO
3.1.1. Fourier Transform-Infrared (FTIR) Spectroscopy

Figure 1 displays the FTIR spectra of GO, ZIF-8, and the ZIF-8 composites. In contrast
to GO alone, after the growth or deposition of ZIF-8 onto GO surface, all composite samples
exhibited a characteristic peak at 1727 cm−1 assigned to carboxyl C=O stretching band in
the ZIF-8 ligand [26]. Moreover, the C-O, O-H, and skeletal C=C vibrations at 1120, 3422,
1648 cm−1 are all attributed to GO were observed only in the 0.1:1 composite and were
depressed or absent in all the other ZIF-8@GO composite samples. The major absorption
bands in the other ZIF-8@GO composites are the vibrational modes emanating from the
2-methylimidazolate ligand at 689, 756, 2928 and 1588 cm−1, which are attributed to the
aliphatic and aromatic Zn-N, Zn-O, C-H and C=N, respectively [15,27]. The primary
absorption bands for ZIF-8 and ZIF-8@GO composites are at 995 cm−1, 1145 cm−1 and
1309 cm−1 corresponding to the C-N bonds in the imidazole group. This imidazolate band
is absent in the 0.1:1 composite probably due to the small ZIF-8 content deposited onto
the GO surface. Furthermore, the peaks at 757 cm−1 corresponds to the Zn-O bonds, and
697 cm−1, corresponding to Zn-N bonds, were ascribed to the ZIF-8 structure and these
are similar to what Huang et al. observed [26]. The observed FTIR results, therefore,
confirm that ZIF-8 nano crystallites were successfully grown or deposited onto GO surface
establishing strong interactions between the two components [28].
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3.1.2. Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray
Spectroscopy (EDS)

The SEM micrographs (Figure 2) show the morphology of the ZIF-8@GO composites.
SEM analysis of the 0.1:1 composite (Figure 2a) showed little or no obvious evidence
of the presence of ZIF-8 crystallites on the GO surfaces probably because of the small
content of ZIF-8 composite present, the only confirmation been the elemental analysis
from EDS. In contrast, all composites with higher ZIF-8 content (Figure 2b’–d’) had evenly
distributed ZIF-8 crystallites on the GO surfaces as well as higher elemental values in
the EDS spectra [29]. Furthermore, (Figure 2a’–d’) showed the relative intensities of the
elements (i.e., Zn and N) increased with increasing content of ZIF-8 deposited onto GO
support (Table 3). As with the FTIR analyses above, SEM and EDS result confirmed the
successful deposition/growth of ZIF-8 on GO support resulting in ZIF-8@GO composites.
These observations with respect to relative intensities of the elements is in line with prior
reports [30].
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Table 3. Elemental composition obtained from SEM-EDS element analysis of synthesized composites.

Sample C O Zn N

ZIF-8@GO
(0.1:1) 58.8 25.3 5.9 10

ZIF-8@GO
(0.5:1) 51.4 22.3 18.6 7.7

ZIF-8@GO
(0.9:1) 55.4 10.9 17.3 16.4

ZIF-8@GO (1:1) 57.3 9.5 15.4 17.8

3.1.3. Transmission Electron Microscope (TEM)

The exfoliated sheet morphology exhibited by GO in the TEM micrographs (Figure 3a)
were in line with expectations [18]. The unsupported ZIF-8 crystallites exhibited hexagonal
shape in line with the literature [31]. The ZIF-8 morphology was maintained in the compos-
ite materials (Figure 3b–f) demonstrating that its structure was maintained on deposition
or growth on GO sheets. The successful growth/deposition of ZIF-8 crystals on the GO
surfaces is attributed to hydrogen bonding interaction between the 2-methylimidazole
ligand in ZIF-8 and the hydroxyl, carboxyl and epoxy groups present on GO sheets [32].
A secondary growth path is due to the free Zn2+ coordinating to the oxygen-containing
functional groups of graphene oxide through electrostatic interactions or the metal–oxygen
covalent prior to coordinating with the ligands leading to fast self-assembly onto GO sheets
leading to ZIF-8 crystallite growth [15,30].

Membranes 2022, 12, x FOR PEER REVIEW 9 of 27 
 

 

3.1.3. Transmission Electron Microscope (TEM) 

The exfoliated sheet morphology exhibited by GO in the TEM micrographs (a) were 

in line with expectations [18]. The unsupported ZIF-8 crystallites exhibited hexagonal 

shape in line with the literature [31]. The ZIF-8 morphology was maintained in the com-

posite materials (b–f) demonstrating that its structure was maintained on deposition or 

growth on GO sheets. The successful growth/deposition of ZIF-8 crystals on the GO sur-

faces is attributed to hydrogen bonding interaction between the 2-methylimidazole ligand 

in ZIF-8 and the hydroxyl, carboxyl and epoxy groups present on GO sheets [32]. A sec-

ondary growth path is due to the free Zn2+ coordinating to the oxygen-containing func-

tional groups of graphene oxide through electrostatic interactions or the metal–oxygen 

covalent prior to coordinating with the ligands leading to fast self-assembly onto GO 

sheets leading to ZIF-8 crystallite growth [15,30]. 

 

Figure 3. TEM images of (a) GO, (b) ZIF-8, (c) ZIF-8@GO 0.1:1, (d) ZIF-8@GO 0.5:1, (e) ZIF-8@GO 

0.9:1, (f) ZIF-8@GO 1.0:1. 

3.1.4. X-ray Diffraction (XRD) Analysis 

Powder XRD analyses were done to confirm the crystal structure of GO and its hy-

brid materials containing ZIF-8. The diffraction patterns () for the fabricated materials in-

dicate that they were all crystalline in nature as evidence through the sharp diffraction 

bands. As expected, the XRD pattern of GO exhibited an intense peak around 8.7° with no 

evidence or hint of the starting graphite material. On the other hand, intense peaks were 

found at 2θ of 7.6, 10.8, 12.9, 14.8, 16.9, 18.1, 24.5, 26.6 for ZIF-8 corresponding to (110), 

(200), (211), (220), (310), (222), (233) and (134) planes in line with the prior literature reports 

[26,33]. These diffractions were maintained in the composites, ZIF-8@GO, composites, al-

beit with a slight shift to higher values (see the 200 band, ), indicating that the ZIF-8 crys-

talline structure was maintained with growth on the GO surface [31]. The presence of GO 

diffraction gradually decreased/disappeared with increasing ZIF-8 content demonstrating 

total delamination of the sheets with increasing ZIF-8 content. At 0.1 wt.% ZIF-8, no char-

acteristic peaks of ZIF-8 was observed presumably due to the small content similar to 

other prior studies [28]. Therefore, XRD also confirms that the nanocomposites were suc-

cessfully grown on the GO surface, in agreement with the other complementary tech-

niques discussed earlier. 

(a) (b) (c)

(d) (e) (f)

0.5 μm 0.5 μm 0.5 μm

0.5 μm 0.5 μm 0.5 μm

(

d

) 

(

e

) 

(

f

) 

Figure 3. TEM images of (a) GO, (b) ZIF-8, (c) ZIF-8@GO 0.1:1, (d) ZIF-8@GO 0.5:1, (e) ZIF-8@GO
0.9:1, (f) ZIF-8@GO 1.0:1.

3.1.4. X-ray Diffraction (XRD) Analysis

Powder XRD analyses were done to confirm the crystal structure of GO and its hybrid
materials containing ZIF-8. The diffraction patterns (Figure 4) for the fabricated materials
indicate that they were all crystalline in nature as evidence through the sharp diffraction
bands. As expected, the XRD pattern of GO exhibited an intense peak around 8.7◦ with
no evidence or hint of the starting graphite material. On the other hand, intense peaks
were found at 2θ of 7.6, 10.8, 12.9, 14.8, 16.9, 18.1, 24.5, 26.6 for ZIF-8 corresponding to
(110), (200), (211), (220), (310), (222), (233) and (134) planes in line with the prior literature
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reports [26,33]. These diffractions were maintained in the composites, ZIF-8@GO, compos-
ites, albeit with a slight shift to higher values (see the 200 band, Figure 4), indicating that
the ZIF-8 crystalline structure was maintained with growth on the GO surface [31]. The
presence of GO diffraction gradually decreased/disappeared with increasing ZIF-8 content
demonstrating total delamination of the sheets with increasing ZIF-8 content. At 0.1 wt.%
ZIF-8, no characteristic peaks of ZIF-8 was observed presumably due to the small content
similar to other prior studies [28]. Therefore, XRD also confirms that the nanocomposites
were successfully grown on the GO surface, in agreement with the other complementary
techniques discussed earlier.

Figure 4. XRD spectra of GO, ZIF-8 and ZIF-8@GO composites showing their evolution with increas-
ing ZIF-8 content in the composite.

3.1.5. Raman Analysis

Figure 5 shows Raman spectra of GO, ZIF-8 and the four ZIF-8@GO composites.
The G- and D-band of GO appeared at 1584 cm−1 and 1339 cm−1, respectively, in line
with expectations [32,33]. The Raman spectrum of ZIF-8 had bands at 647, 692, 843, 957,
1031, 1155, 1193, 1393, 1467 and 1516 cm−1 as expected, which were assigned to the
methyl group and vibrational modes of imidazole ring [27,34] and those at 1467, 1155 and
692 cm−1 assigned to methyl bending, C−N stretching and imidazolium ring puckering,
respectively [28]. In contrast to baseline GO, the Raman spectra of the four composites
show that as the content of ZIF-8 increased, there was a concomitant shift in D and G bands
as well as a drastic intensity increase for the D band. For instance, the D band relative
intensity increased from 728 a.u. (0.1:1), 782 a.u. (0.5:1), 975 a.u. (0.9:1) to 4718 a.u. (1.0:1)
with increasing ZIF-8 content. This observation is ascribed to the decrease in the mean size
of the sp2 domains upon the increase in ZIF-8 content. The ratio of the intensity of the D
and G band (ID/IG) showed that as the content of ZIF-8 was increased in the composite, the
value of ID/IG for ZIF-8@GO (0.1, 0.5, 0.9, 1):1 also increased (Table 4) thereby confirming
that ZIF-8@GO composites were successfully synthesized [35]. The growth of this ratio
suggests that the amount of defects consequently increased.
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Figure 5. Evolution of the Raman spectra with increasing ZIF-8 content as well as the reference
starting materials; (A) ZIF-8; (B) GO; (C) ZIF-8@GO 0.1:1; (D) ZIF-8@GO 0.5:1; (E) ZIF-8@GO 0.9:1;
(F) ZIF-8@GO 1.0:1.

Table 4. BET measurements and Raman D and G band ratios of the prepared materials.

Sample Surface Area
(m2g−1)

Pore Volume
(cm3g−1)

Pore
Diameter (nm)

GO 21.93 0.69 125.81
ZIF-8 985.37 1.12 4.53

ZIF-8@GO(0.1:1) 10.12 0.76 299.67
ZIF-8@GO(0.5:1) 471.91 0.44 3.69
ZIF-8@GO(0.9:1) 636.48 0.45 2.80

3.1.6. Brunauer–Emmett–Teller (BET)

The nitrogen adsorption-desorption isotherms for GO, ZIF-8 and ZIF-8@GO com-
posites from which the BET surface area, pore volume, and pore size were obtained are
shown in Figure 6. ZIF-8@GO composites showed a type IV isotherm with type H3 hys-
teresis loop [36]. It was observed that as the content of ZIF-8 on GO surface increased, the
BET surface area increased progressively whilst the pore size and pore volume decreased
(Table 4) in agreement with previous reports [14]. GO exhibited a lower surface area of
21.93 m2.g−1 compared to ZIF-8 which had a much highest surface area of 985.37 m2.g−1.
The surface area of the composites was found to be slightly lower than the surface area
of self-standing ZIF-8 because of the presence of the lower surface area GO leading to an
overall decrease in the surface area of the composites. The mesoporous nature together with
the improved specific surface area makes ZIF-8@GO composites more ideal materials for
water purification application [37]. The variations in the physicochemical characterization
observed here are an indirect, positive indication that the nanocomposites agree with other
techniques above.
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3.1.7. Thermogravimetric Analysis (TGA)

Thermograms for GO, ZIF-8 and ZIF-8@GO composites obtained under a N2 atmo-
sphere all exhibited three thermal events (Figure 7). For GO, the initial weight loss gradually
started from 25 ◦C to beyond 180 ◦C hence its accelerated for the second phase, from 180 ◦C
to 300 ◦C attributed to decomposition of the functional groups, i.e., carboxyl, epoxy, and
hydroxyl groups, on the GO sheets. The third phase between 300 ◦C and 400 ◦C was due to
the decomposition of GO hexagonal carbon skeleton [14]. For ZIF-8 was observed to have
small mass loss, less than 10% overall, up below 300 ◦C attributed to its structural collapse
and decomposition of 2-mIM [38,39]. This quantum and sequence of the weight decrease
was related to the content of ZIF-8@GO composites present in line with prior reports. It
was not obvious why the decomposition of ZIF-8@GO 0.9:1 differs with those of the other
composites, previously Chu attributed such deviations to the loss of guest molecules such
as moisture not adequately release during drying [28]. The increased thermal stability
observed for the composites is reflective of the strong interaction between the ZIF-8 and
GO units [40,41].
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3.2. Characterization and TFC Membrane Performance
3.2.1. FTIR Ccharacterizations of the PES (M0), PA-TFC (M1), GO (M2), ZIF-8 (M3),
ZIF-8@GO (0.1:1) (M4), ZIF-8@GO (0.5:1) (M5), ZIF-8@GO (0.9:1) (M6), ZIF-8@GO (1:1)
(M7) Membranes

Figure 8 showed the FTIR spectra of all the membranes (M0-M7) while Figure 8b is
the expansion of specific regions for selected membranes for enhanced clarity. The M0
characteristic bands were found at 1585, 1493 and 1240 cm−1 attributed to the aromatic
band, C-C stretching, a benzene ring, and aromatic ether band functional groups [42,43].
Similar bands were also observed for all other TFC membranes, which were coupled
with the emergence of new bands at ca. 620 and 1320 cm−1. These new bands were
assigned to vibrations of the phenyl ring and C-N stretching vibrations [44]. The C-N
stretching vibrations correspond to the amide structure of the PA layer during IP and hence
confirmation of the formation of the thin film [45]. Moreover, the peak intensity with the
slight enhancement found at 1662 cm−1 may be allocated to the new amide linkages formed
by the reaction of the –NH2 groups in MPD with –COOH groups in GO [46]. In addition,
with the incorporation of GO, the peak intensity increment observed at 3061 and 3092 cm−1

was due to symmetric and asymmetric stretching vibrations of additional C-H bonds. The
FTIR spectra of ZIF-8 showed the most Zn–N stretch mode was detected at 420 cm−1 [47].
Upon the incorporation of ZIF-8@GO, additional bands that were observed were attributed
to the imidazole groups indicative of the presence of ZIF-8@GO composite in the thin film
layer. However, the majority of the peaks are masked by PES peaks due to their minute
amount in the membranes [44].
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3.2.2. SEM Surface Morphology of Membranes

The smooth surface morphology of the pristine PES membranes was dominated by
large micropores as expected (Figure 9) [48]. The smooth membrane surfaces became
rougher as the thin film layer formed due to the reaction of the monomers, MPD (2 wt.%)
and TMC (0.4 wt.%), through interfacial polymerization. The surface roughness progres-
sively increased further with the addition of nanofillers into the thin film (Figure 9c–h),
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accordingly, i.e., for GO, ZIF-8, ZIF-8@GO (0.1:1, 0.5:1, 0.9:1, 1.0:1) [49]. Importantly, these
TFC membranes did not exhibit any noticeable pores compared to the base membrane even
as the nanofillers were increased (Figure 9a) further confirming presence and integrity of
the thin film polyamide layer on the support membrane [50].
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3.2.3. Cross-Section Analysis of Membranes

The cross-section of the membranes presented in Figure 10 showed a dense skin layer
which is connected by a porous sub-layer having finger like pore structures. The formation
of polyamide layer did not temper with the finger-like pore structures hence the structures
can be observed in all membranes [51–53].
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3.2.4. AFM Surface Analysis of the Membranes

The roughness of the membrane surface was obtained using AFM (Figure 11) and
related parameters calculated and presented in terms of Ra and Rq (where Ra is mean
roughness and Rq is the root mean square) in Table 5. PES base UF membrane (M0) exhibited
the least number of nodules like surface and had the highest surface roughness. Upon the
formation of the polyamine layer on top of the support layer, the surface roughness seemed
to have decreased as the nodule-like structures start to shrink in line with expectations [54].
However, with increasing nanomaterials embedded, the nodule-like structures disappear,
and the formation of sharp peaks started to appear which is reflected in the slight increase
in the roughness parameters (Table 5) as the content of the composites increased, ZIF-8@GO
(0.1:1, 0.5:1, 0.9:1 and 1.0:1). The significant decrease in Ra/Rq was observed for M0 from
215.40/278.35 to M4 with 46.91/64.48 since it contained more of GO [55].
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Table 5. Surface roughness parameters of M0–M7 and pure water permeability.

Membranes Ra (nm) Rq (nm) Permeability

M0 215.4 278.35 0.036
M1 141.88 179.29 0.27
M2 90.09 121.7 0.101
M3 136.26 179.08 0.17
M4 46.91 64.48 0.12
M5 86.87 109.28 0.07
M6 71.53 98.51 0.136
M7 74.04 94.27 0.15

3.2.5. Water Contact Angle (WCA)

The relative hydrophilicity, as represented by the water contact angle, of all the mem-
branes (M0–M7) is presented in Figure 12, with higher values indicative of hydrophobic
character. All the thin-film membranes had a lower contact angle compared to the baseline
UF PES support reflecting their higher relative hydrophilicity (82◦) [56]. Three reference TF
membranes are included for the purpose of elucidating the effects of ZIF-8 and GO. TFC
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membranes containing composites with more GO character, e.g., with the lowest content of
ZIF-8 (namely M2 and M4 membranes), exhibited the lowest water contact angle indicating
that the oxygen functional groups in GO significantly enhanced the hydrophilicity of TFC
membranes [33,57]. In general, however, the membranes with GO or ZIF-8@GO composites
showed a decreasing WCA with increasing content of the nanofiller. This is attributed to
the increased density of carboxyl, epoxy and hydroxyl groups being exposed on the surface
of the membrane as filler content increased. As the character of the nanofiller became
more ZIF-8 like, for instance, when ZIF-8 content is increased at constant GO (M4, M6 and
M7), the WCA was negatively affected (Figure 12). This is probably due to decrease in
overall hydrophilic character (Figure 12) as GO is fully covered with growing ZIF-8 content
(Table 4). However, the CA for M5 was higher than all ZIF-8@GO composite membranes
even though the content of ZIF-8 was less of M6 and M7. This could be due to the defects
formed on the thin layer during IP. Since ZIF-8 is known to be a hydrophobic type metal
organic framework, this observation is thus justified [25].
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Figure 12. The contact angle of M0, M1, M2, M3, M4, M5, M6, and M7.

3.2.6. Water Flux

The pure water permeation at different applied pressures is presented in Figure 13.
The flux seems to track the WCA measurements, i.e., the membranes with lower WCA
presented higher pure water flux in line with prevailing hypotheses and knowledge. Fur-
thermore, as the applied pressure was increased, pure water flux for all membranes (PES,
GO, ZIF-8 and different ZIF-8@GO loadings) increased as expected. The permeability
(Table 5), which is calculated from the slope of pressure v/s flux, was dramatic for the
TFC (highest of 0.27 v/s 7.9 L.m−2h−1) as compared to the base membrane (lowest of
0.036 v/s 0.1 L.m−2h−1) indicating that base UF membranes have been transformed into
NF type membrane on deposition/growth of thin film composite layer. This was in line
with the observations of Shen et al. [57], whereby it was discovered that the content of GO
had an effect on high fluxes of TFC membranes. The differences in the flux performance
of the membranes containing different types of fillers, that is, GO, ZIF-8 and ZIF-8@GO
composites, is attributed to the overall TFC membrane hydrophilicity and additional water
flow pathways afforded through the porous nanofillers [53]. The observed flux behaviour
is in line with previous reports when fillers were introduced through the MPD component
in the support UF membrane [58]. Thin film membrane without fillers gave the least water
permeability of 2.8 L.m−2h−1 (at the highest applied pressure) compared to modified TFC
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membranes which reached up to 7.9 L.m−2h−1 at highest pressure (1100 KPa) used in line
with reported findings [50].
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Figure 13. Pure water flux of M0, M1, M2, M3, M4, M5, M6, and M7.

Membranes which were dominated by GO character (with less amount of ZIF-8), e.g.,
M2 (GO) and M4 (ZIF-8@GO 0.1:1), had the highest flux due to the following; (I) the addition
of GO into thin film layer increased the hydrophilicity of the membrane surface, which can
draw water molecules into the matrix through to the pores of the support UF membrane
and thus aiding the water transportation through the membrane [5], (II) the addition of GO
(hydrophilic properties which attract water molecules) increase mass transport resistance
between the active and supporting layers contributing to an enhanced water flux [59], (III)
the presence of inorganic filler-organic polymer matrix (GO/PA) discontinuity interphase
defects [57]. The addition of porous ZIF-8 leads to enhanced water transport or passage as
it lowers the tortuosity of the matrix.

3.2.7. Rejection of Salts

Solute rejection studies were assessed using three salts, viz. NaCl, MgCl2 and Na2SO4
at 1000 ppm concentration. Figure 14 presents the membrane salt rejection performance of
all the membranes (M0–M7) obtained at applied pressure of 900 KPa. The results indicate
that the modified membranes (PA-TFC) gave better rejection (ranging from 45 (M1 for
NaCl) to 98% (M5 for Na2SO4)) for the salts compared to unmodified PES membrane
(ranging from 40–50%) in line with expectations [60]. The divalent Mg ion with relatively
high charge means it is strongly attracted to the negatively charged membrane surface than
the monovalent Na ion, resulting in the different observed rejection profiles [61]. Jamil et al.
also reported results confirming the low rejection for monovalent ions and high rejection
of divalent ions while using NF membranes [51]. The rejection performance of PA-TFC
membranes to salt is controlled by both the Donnan and size exclusion effect where the
surface of the membrane with negative charge has better salt separation for monovalent
cations and divalent anions than divalent cations and monovalent anions [51,62]. The fabri-
cated TFC membranes exhibited the highest rejection for salts containing the polyatomic
divalent anion SO4

2− (98% for M5 with Na2SO4) compared to monoatomic anions Cl− ions
(from both NaCl and MgCl2). This was ascribed to the combination of physicochemical
properties of dense PA composite layer, i.e., size exclusion [5] as well as the effect of the
strongly negative charge of membrane surface towards divalent charge. In line with this,
the rejection decreased when the monoatomic monovalent anion Cl− was assessed, i.e.,
smaller, and less charged Cl− experienced relatively less resistance to pass than SO4

2−.
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It was also observed that as the concentration of ZIF-8 was increased in the ZIF-8@GO
composites (M4, M5, and M6) the salt rejection increased for all the salt used (both mono
and divalent ions). This might be due to addition interaction forces introduced through the
ZIF-8 component, tortuosity and interactions as solutes pass within the porous structures
as well as adsorptive interactions of nanocomposite fillers. However, the decline was
observed for M3 as compared to other membranes whereby only ZIF-8 was used as a filler.
This might be due to the absence of GO which provide the membrane with more negatively
charged functional groups that provides the membrane with separation properties (Donnan
exclusion model) [63]. The trend in salt rejection was, in the diminishing order: Na2SO4
> MgCl2 > NaCl. Therefore, the Na2SO4 solution containing ions with relatively higher
valence and size (Mg2+ or SO42−) ions were rejected more efficiently (>90% for NaSO4 and
>80 for MgCl2) by the TFN membranes compared to solutions with smaller, monovalent
chloride anions (NaCl at ca. 50%) [48]. This observed salt rejection behaviour is typical of
TFC membranes and therefore clearly indicate that the fabrication of the targeted membrane
type as well as behaviour was realised.
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Figure 14. Salt rejection performance of the prepared membranes exhibiting the effects of GO and
ZIF-8 on mono- and multivalent ions.

3.2.8. Membrane Fouling Assessment

Membrane fouling remains one of the biggest obstacles for efficient operation of mem-
branes. Fouling propensity or antifouling behaviour of PES support membrane, PA-TF
membrane and PA-TFC membranes containing GO, ZIF-8 or ZIF-8@GO were evaluated by
measuring the recovery of pure water flux before and after the fouling of the membrane
with 1000 ppm of Bovine Serum Albumin (BSA) solution. In the first instance, flux of BSA
containing solution was measured over time, 175 min (Figure 15). Here it was observed that
the support PES membrane had a relatively faster permeate flux decline (~50%) when com-
pared with the PA-TF membranes which all had a slower flux decline (<10%) in the same
period. This indicated that the combination of a more porous and relatively hydrophobic
surface resulted in higher affinity and hence clogging of pores by BSA molecules in line
with prior reports [33]. On the other hand, the PA-TFC membranes containing GO alone
showed a higher flux decline (~12%) than that containing ZIF-8 alone (M3, <5%) or the
reference PA membrane (M1, <5%). The variation of the different composites tracked those
which they resemble closely, i.e., those with low ZIF-8 behaved closer to the GO filler alone
(M2) and those with higher ZIF-8, closer to the ZIF-8 filler alone (M3), albeit the differences
were small.
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Figure 15. Permeate flux decline during BSA filtration of the prepared NF membranes.

Secondly, membrane fouling behaviour was also assessed using flux recovery ratio
(FRR) (Figure 16). The pristine membrane, M0, showed the lowest FRR of all the mem-
branes indicative of relatively higher irreversible BSA fouling. The reference PA-TF (M1)
membrane also exhibited higher irreversibility at 50%. PA-TFC containing only GO showed
the highest FRR (85%) together with the composite with the least amount of ZIF-8 (M4) at
88%. Nonetheless, all the composite membranes containing ZIF-8@GO had FRR above 70%
confirming their high fouling resistance as seen earlier.
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Figure 16. Water flux recovery ratios of the TFC membranes.

In addition to FRR, membrane fouling on the surface or inside its pores is also assessed
using reversible, irreversible and total fouling calculations [64]. These parameters are
indicative of how foulants interact with or attached to the membrane. Reversible fouling
occurs when foulants are loosely bound to the membrane and therefore can be easily
removed through a sufficient shear force or backwashing. However, it is a different case
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with irreversible fouling since the fouling agents are tightly attached to the membrane
surface and can only be removed by chemical cleaning [65–67]. Figure 17 represents
reversible fouling ratio (Rr), irreversible fouling ratio (Rir) and total fouling ratio (Rt) for all
the fabricated membranes. These results revealed that Rt of the support PES membrane is
higher than those of the PA-TFC membranes. The Rir of PES is much higher (68%) whereas
those of PA-TFC membranes are all below 45% with the lowest at 12% (M4).
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Figure 17. Fouling resistance ratio of M0–M7 membranes.

These results demonstrated that the nanocomposites (ZIF8@GO) imparted a positive
effect on BSA fouling response. The surface hydrophilicity (Figure 12) played an important
role in the lowering the BSA adsorption affinity of the membranes. Breite attributed this
effect to the presence of multitudes of functional groups present on both GO and ZIF-8
fillers in the selective layer of the PA-TFC membranes [68].

4. Conclusions

The thin film polyamide layer was successfully grown on the surface of PES sup-
port substrate via interfacial polymerization method. Characterization’s techniques such
as (SEM-EDX, AFM, ATR-FTIR) confirmed the formation of the polyamide thin layer
upon MPD and TMC loading. The techniques also revealed that the modified membrane
composites possess ridge-valley and noodle morphology with better surface roughness
than pristine PES. Contact angle, water intake capacity and flux analysis revealed that
varying concentrations of composite nanomaterials have a positive impact on the mem-
brane hydrophilicity of the membrane. The TFC membranes incorporated with GO, ZIF-8,
ZIF-8@GO composites displayed a better flux and rejection performance because of their
exceptional properties. The negatively charged PA-TFC/GO and ZIF-8@GO membranes
experienced the highest rejection of more than 90% for multivalent SO4

2− as compared
to monovalent NaCl and divalent MgCl2 which is ascribed to the combination of physic-
ochemical properties of dense PA layer, i.e., size exclusion, and negative charge on the
membrane surface. The decreased rejection observed for NaCl and MgCl2 solutions might
be due to their relative smaller sized ions as well as lower change leading to a higher
permeation of the solute. Membranes with lower surface roughness displayed a better
fouling propensity than pristine PES and TFC membranes.
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