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Abstract

Protein phosphorylation acts as an essential on/off switch in many cellular sig-

naling pathways. This has led to ongoing interest in targeting kinases for thera-

peutic intervention. Computer-aided drug discovery has been proven a useful

and cost-effective approach for facilitating prioritization and enrichment of

screening libraries, but limited effort has been devoted providing insights on

what makes a potent kinase inhibitor. To fill this gap, here we developed

kinCSM, an integrative computational tool capable of accurately identifying

potent cyclin-dependent kinase 2 (CDK2) inhibitors, quantitatively predicting

CDK2 ligand–kinase inhibition constants (pKi) and classifying different types

of inhibitors based on their favorable binding modes. kinCSM predictive

models were built using supervised learning and leveraged the concept of

graph-based signatures to capture both physicochemical properties and geome-

try properties of small molecules. CDK2 inhibitors were accurately identified

with Matthew's Correlation Coefficients (MCC) of up to 0.74, and inhibition

constants predicted with Pearson's correlation of up to 0.76, both with consis-

tent performances of 0.66 and 0.68 on a nonredundant blind test, respectively.

kinCSM was also able to identify the potential type of inhibition for a given

molecule, achieving MCC of up to 0.80 on cross-validation and 0.73 on the

blind test. Analyzing the molecular composition of revealed enriched chemical

fragments in CDK2 inhibitors and different types of inhibitors, which provides

insights into the molecular mechanisms behind ligand–kinase interactions.

kinCSM will be an invaluable tool to guide future kinase drug discovery. To

aid the fast and accurate screening of CDK2 inhibitors, kinCSM is freely avail-

able at https://biosig.lab.uq.edu.au/kin_csm/.
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1 | INTRODUCTION

The human genome encodes more than 500 protein
kinases, which catalyze the process of protein phosphory-
lation, where a phosphate group from ATP is transferred
to the hydroxyl group of a serine/threonine/tyrosine resi-
due in the target protein.1 Kinases are important in many
cellular signaling processes, including cell growth, prolif-
eration, apoptosis, and metabolism,2 with abnormal
kinase regulation leading to a range of diseases, including
cancer.3–6 It has been proposed that over a third of
human protein functions are regulated by phosphoryla-
tion, making kinases attractive targets for therapeutic
interventions via inhibition or modulation.

Developing kinase inhibitors via the traditional drug
development process, however, is a time-consuming and
costly endeavor. To date, 71 inhibitors have been
approved by the U.S. Food and Drug Administration, tar-
geting a small fraction of human kinases.7 While the tra-
ditional in vitro experiments for hit discovery are
challenging and usually present low hit-rates, data avail-
ability emerging from these efforts has led to develop-
ments in virtual screening, a time- and cost-effective
approach to enable improvement in discovery rates and
prioritization of compounds.8 One approach that has suc-
cessfully leveraged this data has been quantitative
structure–activity relationship (QSAR)9 analyses, which
have been playing an important role in drug discovery
efforts.10 Balachandar et al. identified potent inhibitors
targeting eight kinases by using deep learning models,11

and Govinda et al. predicted drug-kinase inhibition con-
stant (pKi) for a wide range of kinases.12 Additionally,
Miljkovi�c et al. classified different types of inhibition
based on binding modes by considering a ligand-based
approach.13 Although these models represent a signifi-
cant contribution to the field, they presented poor perfor-
mance and generalization capabilities, and provided
limited biological insight into what physicochemical
properties are required for the design of new potent
kinase inhibitors, for different favorable binding modes.

Cyclin-dependent kinases (CDKs) within the family
of Ser/Thr kinases can drive the cell cycle propagation
upon bindings to cyclins. They have become popular che-
motherapeutic targets for different types of cancers.
While a number of studies have been focused on CDK4/6
inhibitors to mediate tumor cell cycle arrest, CDK2 can
also be a promising target to overcome drug resistance to
CDK4/6 inhibitors.14 To our knowledge, there has been
no freely accessible tool dedicated to predict the potency
of CDK2-targeting small molecules and their favorable
binding modes as an assembly.

We have previously shown that the concept of graph-
based signatures could be used to model both protein and

small molecule structures,15–20 capturing both geometry
and physicochemical properties.21–24 Leveraging this con-
cept, we developed kinCSM (Figure 1), a new predictive
tool dedicated to identify potent CDK2 inhibitors. The
method has three different predictive capabilities. First, it
accurately identifies potential CDK2 inhibitors with IC50
<10 μM. Second, it quantitatively measures potency by
predicting the inhibition constant (pKi), allowing com-
pounds to be ranked and prioritized. Finally, it also
enables the identification of the mode of inhibition. We
show kinCSM performs as well as or better than similar
methods and can generate biological insights into what
makes potent CDK2 inhibitors.

2 | RESULTS AND DISCUSSION

2.1 | Associating molecular properties
with CDK2 inhibition

By analyzing the general physicochemical properties of
compounds, we found no strong correlation between
independent molecular features and the inhibition con-
stant, pKi (Pearson's correlation coefficient of up to 0.21).
Across our datasets, both CDK2 inhibitors
(IC50 < 10 μM) and non-inhibitors (IC50 ≥ 10 μM) gen-
erally followed Lipinski's rule of five (RO5)25 and Veber's
Rule,26 reflecting an intrinsic bias in the screening librar-
ies routinely used. Most of the active molecules evaluated
had no more than 10 hydrogen bond acceptors, <5
hydrogen bond donors, octanol–water partition coeffi-
cient (log p) <5, no more than 10 rotatable bonds, and
TPSA <140 Å2 (Figure S2).

Despite a modest correlation between inhibition
strength and drug-likeness properties, some physico-
chemical properties did distinguish between CDK2 inhib-
itors and non-inhibitors. Potent CDK2 inhibitors had a
lower log p (Figure S2(C); p-value <0.001, using a two-
sample Kolmogorov–Smirnov test), indicating they are
more hydrophilic and are more likely to be distributed in
aqueous regions such as blood serum. Consistent with
this observation, inhibitors also had a larger TPSA
(Figure S2(E); p-value <0.001) compared to non-inhibi-
tors, reflecting a potential to establish more interactions
with CDK2.

2.2 | Molecular substructure mining

To further our understanding of the chemical landscape
of known CDK2 inhibitors, we used molecular substruc-
ture mining to identify enriched chemical groups. Using
the Molecular Substructure Miner (MoSS),27 we found
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two chemical fragments, sulfanilamide (16.2% support)
and 2-(N-Anilino)pyrimidine (10.1% support) that
occurred more frequently in CDK2 inhibitors compared
to non-inhibitors (Figure 2), and appeared together with
2% support. Moreover, to analyze whether these two frag-
ments are selective for CDK2, we searched them against
a library of more than 36,000 known multi-kinase inhibi-
tors for 420 human kinases (with pKi, pKd, or
pIC50 ≥ 6),28 and found they occur much less frequently
in other kinase inhibitors and even other types of CDK2
inhibitors (<1% support). Atoms in these enriched and
selective groups include hydrogen bond donors and
acceptors, which can form interactions with the linker
and hinge region in CDK2. Additionally, the ring struc-
tures in the fragments can mimic the adenine component
of ATP, which are important for competitive inhibitors.

Few studies have been devoted to exclusively anno-
tate different types of available CDK2 inhibitors. While

the limited binding mode information on CDK2 inhibi-
tors does not allow us to search for enriched fragments
and build a dedicated model on classifying different types
of CDK2 inhibitors, the consistent binding modes of the
same molecule with different kinases enabled us to uti-
lize the information from other kinase–ligand structures,
which can also be applied to CDK2 inhibitors. The
enriched substructure (24.2% support) in Type II inhibi-
tors is composed of a 1-Phenylurea connected to a ring
(Figure S3). The odds ratio is 64.7 compared to Type I,
and 41.6 compared to Type I1/2, indicating confident
enrichment. Urea can form a hydrogen bond donor–
acceptor pair with the αC-helix and DFG motif, consis-
tent with experimentally solved structures. The nitrogen
atoms can establish hydrogen bonds with the glutamate
side chain, which is conserved in αC-helix, while the car-
bonyl group can establish a hydrogen bond with the
backbone amide of the aspartate in the DFG-motif. The

FIGURE 1 Methodology workflow. There were four steps involved in the methodology. First, molecules in SMILES representation and

prediction labels were collected from three different sources for the three aims. After that, features were generated by pkCSM, including

both physicochemical properties and graph-based patterns. These features were input into different machine learning algorithms, trained

using 10-fold cross-validation and tested on independent blind test sets. Finally, a freely available web server was developed
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benzene ring close to the donor nitrogen can form aro-
matic interactions with the gatekeeper residue in the
kinase, and a hydrophobic moiety (at the top right corner
in Figure S3 shaded in blue) accommodates into the back
pocket. Accordingly, the urea acts as a bridge between
the two ring structures, extending the molecules into the
gatekeeper and back pockets exposed by the DFG out
and αC-helix out kinase conformation.

Substructure enrichment for Type I, I1/2, and alloste-
ric inhibitors was not thoroughly analyzed. Type I and
I1/2 inhibitors form stronger interactions with the hinge
region similar to ATP, without having access to the back
pocket. As all of Type I, I1/2, and Type II inhibitors share
common substructures capable of occupying the ATP
binding site, no substructure was found exclusively in
Type I and I1/2 inhibitors. Additionally, the limited sam-
ple size for allosteric inhibitors (32 in 10-fold cross-vali-
dation, 15 in blind test) did not allow for unbiased
enrichment analysis.

2.3 | Identifying CDK2 inhibitors

Our predictive model was trained using different super-
vised learning algorithms. The best performing algo-
rithm, Extra Tree Classifier (M5P) with 23 features

(identified via feature selection), was chosen. Table 1
shows the overall model performance. Although the data-
set used is relatively unbalanced (595 non-inhibitors,
1040 inhibitors, using the cut-off IC50 = 10 μM), the
model still achieved high and consistent Matthew's Cor-
relation Coefficients (MCCs) on both 10-fold cross-
validation (0.74) and independent blind test set (0.66). F1
score (0.91 on cross-validation and 0.88 on blind test) and
AUC (0.86 on cross-validation and 0.84 on blind test) also
demonstrated model robustness (Figure 3). The perfor-
mance metrics obtained via rigorous internal and exter-
nal validation suggest potent CDK2 inhibitors can be
correctly identified.

To shed light on properties that can explain differ-
ences between CDK2 inhibitors and non-inhibitors, we
conducted a two-sample Kolmogorov–Smirnov test on
the feature set. Figure S4(A) shows the top three features
with the smallest p-values. Inhibitors tend to have higher

FIGURE 2 Substructure enrichment in CDK2 inhibitors (IC50 < 10 μM). The top left fragment (in blue), sulfanilamide, contains a

sulfonamide, two hydrogen donors (nitrogen atoms at the top and the bottom) and one acceptor (the oxygen atom). It occurs 16.2% in CDK2

inhibitors (1.6% in a general kinase inhibitor dataset28 against 420 human kinases, 7.5% in other CDKs among the same dataset), 1.2% in

CDK2 non-inhibitors, with an odds ratio of 16.2. The bottom right fragment, 2-(N-Anilino)pyrimidine, contains heterocyclic rings that can

mimic the adenine part of the ATP. It occurs 10.1% in CDK2 inhibitors (0.06% in the general kinase inhibitor dataset, 0.91% in other CDKs),

never in non-inhibitors, so the odds ratio would tend to infinity. The two fragments appeared together 2% in CDK2 inhibitors (0.02% in the

general kinase inhibitor dataset, 0.35% in other CDKs). The intermolecular interactions between the inhibitor (CHEMBL ID: 478409; PDB

Chemical ID: FRT) and the CDK2 (PDB code: 2w05) are calculated using Arpeggio,39 where hydrogen bonds, donor-π, and polar interactions

are shown in red, blue, and yellow dashes, respectively

TABLE 1 Extra tree classifier performance for CDK2 inhibitor

identification on training and blind test sets

MCC F1 AUC

10-fold CV 0.74 0.91 0.86

Blind test 0.66 0.88 0.84
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partial charges and van der Waals surface area contribu-
tions (PEOE_VSA12 attribute), a higher frequency of sul-
fonamides, and more hydrogen bond donors (p-values
<0.001). These characteristics reveal different non-
covalent interactions between enriched substructures
(sulfanilamide and 2-(N-Anilino)pyrimidine) and CDK2,
including electrostatic interactions, hydrogen bonds, and
van der Waals forces, which can stabilize favorable inhib-
itor binding.

Compared to the deep learning models developed by
Balachandar et al. on the same dataset, our classical
machine learning algorithm has competitive perfor-
mance. On the blind test, we achieved an AUC of 0.84,
whereas Balachandar et al. achieved an AUC of 0.73.11

Although the performance results are not directly compa-
rable since the training and test set splits are different,
our model does demonstrate satisfactory generalization
under a low-redundant splitting strategy compared to the
random split by Balachandar et al. The small score differ-
ence between the 10-fold cross-validation (0.86) and the
blind test (0.84) provides further confidence in model
robustness. Additionally, by investigating both the signifi-
cant features and enriched substructures, we inferred dis-
criminative physicochemical properties of potent
inhibitors and discussed their biological significance. In
contrast, no relevant biochemical insight was drawn from
previous works,11 as features were encoded as bit strings
to accommodate deep learning architectures, which are
not explainable. Therefore, our model does not only have

competitive prediction performance but also contributes
to the detection of novel scaffolds among potent inhibi-
tors and sheds light on their potential mode of action.

2.4 | Predicting CDK2 ligand–kinase
inhibition constant (pKi)

By predicting the pKi values of small molecules, the inhi-
bition strength can be quantified. A Random Forest
Regressor with 22 features was trained and validated.
Table 2 shows the overall model performance. We
obtained a Pearson's correlation coefficient of 0.76
(RMSE of 0.62) on 10-fold cross-validation, and 0.68
(RMSE of 0.65) on an independent blind test set. The
consistent performance between internal and external
validation indicates model generalization. After removing
10% of outliers, Pearson's correlation coefficients
increased to 0.87 on cross-validation and 0.78 on the
blind test (Figure 4). Here, no enriched substructures
were observed exclusively in outlier molecules, indicating
their structural diversity.

A recent study29 suggested an upper bound for scor-
ing machine learning model performance on predicting
drug-kinase pKi, which has a Spearman's correlation of
around 0.8 based on 10,000 samplings of replicated pKi

values. The performances obtained by kinCSM in predict-
ing ligand-CDK2 pKi achieved Spearman's correlations of
0.71 on cross-validation, and 0.59 on the blind test,
approaching the maximal performance we would see
using independent experimental measurements.

By dividing the molecules into two groups with the
cut-off pKi value of 6, we were able to compare the physi-
cochemical differences between the defined potent inhib-
itors (pKi ≥ 6) and non-inhibitors (pKi < 6) in cell-based
assays using the two-sample Kolmogorov–Smirnov test.
Figure S4(B) depicts three significant features (p-values
<0.001) discriminating molecules with a high binding
affinity using a more stringent threshold (pKi ≥ 6). These
features were consistent with those identified previously
in our classifier, where a lower threshold was used
(IC50 = 10 μM, that is, pIC50 = 5) as an initial crude
screening. Moreover, the threshold pKi = 6 also led to
the highest performance when testing classification by
regression (MCCs of 0.62 on cross validation, and 0.57 on
blind-test), highlighting the distinct differences between
CDK2 inhibitors and non-inhibitors under this threshold.

While the regression model with the pKi cut-off could
also potentially be useful for classification purposes, in
general, continuous labels can have higher variance com-
pared to discrete classes, and may lead to poor classifica-
tion performance. Instead, more information could be
gained by considering the outputs from both classifica-
tion and regression models. Accordingly, kinCSM

FIGURE 3 ROC curves for CDK2 inhibitor identification. Our

model was able to correctly identify CDK2 inhibitors with

AUC > 0.8 for both training and blind test sets. Here, we plot the

mean ROC (with AUC 0.92) of all of the 10 folds instead of the

overall ROC (with AUC 0.86) on training
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provides a platform to quantify and rank inhibition
strength in addition to inhibitor identification.

As a guideline to screen potent CDK2 inhibitors, we
suggest users to take compounds, which meet the two fol-
lowing criterion (from crude to refined screening):
(1) compounds identified as “inhibitor” by our classifier;
(2) compounds with a moderately high pKi ≥ 5.5 pre-
dicted by our regressor. Using the combined information,
further validation results on active compounds and
decoys (which are considered as non-inhibitors that are
challenging to classify) from DUD-E30 CDK2 datasets are
shown in Table S2, achieving an MCC of 0.52. Thus, the
combined information from our classifier and regressor
enabled a robust screening for CDK2 inhibitors.

2.5 | Classifying different types of CDK2
inhibitors

The dataset for the classification of inhibitor types is
highly unbalanced (1425 Type I, 394 Type I1/2, 190 Type

II, and 47 allosteric inhibitors), which significantly
increases the challenges of identifying the minority clas-
ses. However, our model was able to distinguish Type II
inhibitors from Type I1/2 inhibitors, despite their smaller
sample sizes. As shown in Table 3, the Type I1/2 versus
Type II classifier achieved MCCs of 0.80 on cross-
validation and 0.73 on blind test sets. Additionally, it also
achieved the highest AUC with 0.91 on the blind test set
(Figure S5). The method has also identified allosteric
inhibitors effectively, with an MCC of 0.68 on cross-
validation and 0.63 on the blind test.

Compared to the best machine learning model devel-
oped by Miljkovi�c et al.13 trained on 80% of the whole data-
set under 10 different trials, and validated on a randomly
generated external blind test set (20%), our model achieved
higher MCCs in identifying allosteric inhibitors and distin-
guishing Type I1/2 and II inhibitors even when the blind
test set (30%) presents low similarity with the training set
(70%) and the model was trained on fewer data (Table 3).
This means our model has a better generalization for unseen
data when the sample size is limited and unbalanced.

TABLE 2 Random Forest regressor

performance on pKi prediction
Pearson Spearman Kendall MSE RMSE

10-fold CV 0.76 0.71 0.56 0.39 0.62

Blind test 0.68 0.59 0.45 0.43 0.65

FIGURE 4 Regression plots for the 10-fold cross-validation and blind test sets on predicting pKi. The plots depict the correlation

between experimental and predicted pKi. By removing the 10% outliers (highlighted in red), Pearson's correlation coefficients (r) increase

from 0.76 to 0.87 on training, and from 0.68 to 0.78 on the blind test; Spearman's correlation coefficients (s) increase from 0.71 to 0.79 on

training, and from 0.59 to 0.65 on the blind test; Kendall's correlation coefficients (k) increase from 0.56 to 0.63 on training, and from 0.45 to

0.50 on the blind test. Several molecules have qualified measurements (pKi smaller than a given threshold) instead of precise measurements,

leading to a concentration of points around pKi of 5.1
40
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Another challenge for this task was to do with the
molecular structures of the three ATP competitive inhibi-
tor types, which can be modeled as a continuum instead
of distinct categories as the kinase conformation they
bind changes in a stepwise manner.31 Type I inhibitors
bind to the DFG-in, αC-helix in conformation, then the
movement of αC-helix (DFG-in, αC-helix out) allows
binding of Type I1/2 inhibitors, and lastly, the DFG-out,
αC-helix out conformation is recognized by Type II inhib-
itors. Two selected machine learning features (fluorine
and hydrophobe counts) demonstrate this continuum
(Figure S6(A,B)). The distributions of Type I1/2 inhibitors
can be visualized as a mixture of Type I and Type II
inhibitors, biased toward Type I. This may suggest that
the shared substructures between types of favorable bind-
ing mode can affect model performance.

Being positioned in the middle of the continuum,
Type I1/2 becomes the most challenging class, even
though it has an adequate sample size. The Type I versus
Type I1/2 classifier achieved the lowest performance
(MCC of 0.50 on cross-validation, and 0.41 on blind test,
shown in Table 3). After integrating the prediction out-
comes from the four binary classification models, a large
proportion of Type I1/2 inhibitors were wrongly classified
as Type I inhibitors (Figure S7). One possible reason is
that Type I1/2 inhibitors share a larger proportion of
common substructures with Type I inhibitors in compari-
son with Type II inhibitors. Although Type I1/2 inhibi-
tors can form interactions with residues in the gatekeeper
pocket, making them distinguishable from Type I, this
characteristic may not be captured by our model. Rather,
their strong affinity with the hinge region leads to similar
physicochemical properties (e.g., low log p as shown in
Figure S6(C)) as Type I inhibitors. Nevertheless, our

model does capture features capable of distinguishing
Type I1/2 inhibitors from others (e.g., higher frequency
of nitrogen-containing functional groups attached to aro-
matics, as shown in Figure S6(D)—Welch two-sample t-
test p-values <0.001 compared to Type I and II).

Although Type II inhibitors have a distinctive charac-
teristic (back pocket access), a larger sample size still
causes biased predictions toward Type I inhibitors
(Figure S7). The Type I versus II classifier achieved MCC
of 0.73 and 0.65 for 10-fold cross-validation and blind
test, respectively (Table 3). However, insightful features
were captured by our model. Type II inhibitors have
higher log p (p-values <0.001 compared to Type I and
I1/2) as shown in Figure S6(C), which means they are
more hydrophobic. This is caused by their special interac-
tions with the kinase hydrophobic back pocket. Addition-
ally, fluorine and urea occur more frequently in Type II
inhibitors (p-values <0.001, Figure S6(A,E)). This may
suggest both of them can contribute to interactions with
the back pocket.

2.6 | kinCSM web server

kinCSM has been made freely available through an easy–
to–use web interface at https://biosig.lab.uq.edu.au/kin_
csm/. Users can identify CDK2 inhibitors, predict CDK2
pKi and possible binding modes by providing a single
molecule or a list of molecules as SMILES strings
(Figure 5). Moreover, users can also predict the toxicity
profiles via toxCSM,32 and selectivity profiles via Swis-
sTarget33 by clicking on the links on the result page to
further prioritize safer, less toxic, and more selective
CDK2 inhibitors for clinical usage.

TABLE 3 Performance of the inhibitor type classification model on training and blind test sets

Classifier Metric kinCSM cross validation kinCSM blind test Miljkovi�c et al.13 blind test

Type I vs. II F1 0.73 (± 0.02) 0.64 0.71 (± 0.03)

BACC 0.80 (± 0.01) 0.74 0.78 (± 0.02)

MCC 0.73 (± 0.02) 0.65 0.70 (± 0.04)

Type I vs. I1/2 F1 0.54 (± 0.02) 0.43 0.58 (± 0.04)

BACC 0.69 (± 0.01) 0.64 0.74 (± 0.02)

MCC 0.50 (± 0.02) 0.41 0.47 (± 0.05)

Type I1/2 vs. II F1 0.87 (± 0.01) 0.82 0.77 (± 0.03)

BACC 0.90 (± 0.01) 0.88 0.82 (± 0.02)

MCC 0.80 (± 0.02) 0.73 0.69 (± 0.03)

Allosteric or not F1 0.64 (± 0.03) 0.57 0.36 (± 0.18)

BACC 0.73 (± 0.02) 0.70 0.63 (± 0.07)

MCC 0.68 (± 0.03) 0.63 0.48 (± 0.09)
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3 | CONCLUSIONS

Here, we developed kinCSM, the first predictive tool to
identify CDK2 inhibitors, predict CDK2 Ligand–Kinase
Inhibition Constant (pKi), and classify different types of
inhibitors in a single resource. This tool can be used to
study both the binding affinity and favorable binding
modes of CDK2 inhibitors.

Using the concept of graph-based signatures, our
model not only achieved high prediction performance
but also inferred distinctive physicochemical properties
that are supported by substructure mining. We have
made the kinCSM web server freely available at https://
biosig.lab.uq.edu.au/kin_csm/.

We anticipate further model optimization by generat-
ing substructure descriptors and oversampling the minor
class in the future. The model can also be trained to tar-
get different kinases for inhibitor selectivity studies. This
may create extra value for drug development. We believe
kinCSM would be a useful tool for accelerating CDK2
inhibitor drug screening and improving hit rates.

4 | MATERIALS AND METHODS

4.1 | Datasets

Molecules with labels were curated from three different
literature sources11–13 for the three aims, and converted
into SMILES strings. The label distributions of the three
datasets are all unbalanced to some extent. Dataset 1 has
more CDK2 inhibitors (IC50 < 10 μM, 63.6%) than non-
inhibitors (IC50 ≥ 10 μM, 36.4%), without information on
the exact IC50 values. The pKi distribution in Dataset
2 has a peak at around 5. Additionally, most of the inhibi-
tors discovered so far are Type I, and only a few allosteric
inhibitors have been developed. This leads to the highly
unbalanced dataset 3 (1425 Type I, 394 Type I1/2,
190 Type II, and 47 allosteric inhibitors) for inhibitor type
classification. All datasets used in this study are available
at https://biosig.lab.uq.edu.au/kin_csm/.

The training and test sets in the previous article were
not low-redundant, and will have led to data contamina-
tion and over-estimated performance. To address this

FIGURE 5 kinCSM Web

server interface. (a) The

submission page for kinCSM.

Users can provide a molecule as

a SMILES string, or upload a file

containing multiple SMILES

strings. (b) The results page for

multiple molecule submission.

Results are presented in a table,

including predictions on CDK2

inhibitor (Yes or No), CDK2 pKi,

binding modes based on

different binary classifiers, and

final decisions. Users also have

the choice to show molecule

depiction and properties via

visualization controls, as well as

redirecting to toxicity and

selectivity predictions by

toxCSM32 and SwissTarget,33

respectively
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problem, in our work, the datasets were split into low-
redundancy training (70%) and blind test (30%). We
ensured the molecules in the training and blind test sets
have similar label distribution but are in different simi-
larity clusters. The clusters were formed using the rdkit.
ML.Cluster.Butina module in the cheminformatics toolkit
RDKit34 according to the TanimotoSimilarity.35 The simi-
larity thresholds (75% for Dataset 1 and 2, 55% for Data-
set 3) were adjusted to ensure that around half of the
molecules in the dataset are singletons, and the other half
have at least one neighbor within their clusters.

4.2 | Graph-based signatures and feature
selection

Molecular features for machine learning were extracted
from SMILES strings as done previously.21–23 This
approach has been successfully used on a variety of data-
sets to predict pharmacokinetic properties, including
both classification (with categorical labels) and regression
(with continuous labels). It generates both physicochemi-
cal features and graph-based signatures, making it an
effective way to represent molecules' properties.

The graph-based signatures are distance patterns that
are generated iteratively by the Cutoff Scanning Matrix
(CSM) algorithm.16,17,19,36 Molecules are modeled as a
graph in an undirected and unweighted way, where
atoms are represented as nodes, and bonds are repre-
sented as edges. Additionally, all atoms are labeled with
pharmacophores (including Acceptor, Donor, PosIoniz-
able, NegIonizable, iAromatic, and Hydrophobe) as shown
in the bottom left panel of Figure S1. While scanning
through the whole molecular graph, the distances
between pharmacophore pairs are captured as a cumula-
tive distribution using all-pairs shortest paths (bottom
right panel of Figure S1). This information can add extra
values to the feature space, and therefore facilitate QSAR
investigation.

4.3 | Model selection and evaluation

Different machine learning models were trained and
assessed under 10-fold cross-validation within the train-
ing set (70%). We then evaluated the trained models on
the blind test set (30%) and compared the performance of
the machine learning methods.

Specifically, in this study, we have compared the per-
formance of the following popular machine learning
techniques using the python Scikit-learn library37: ran-
dom forest (with 300 estimators), extra trees (with
300 estimators), multilayer perceptron (with the

activation function “relu,” and the solver “adam”), and
support vector machines (with the kernel “radial basis
function”). Our evaluation result suggests that tree-based
methods lead to the highest performance for the regres-
sor and most of the classifiers, except multilayer percep-
tron, which is the best method for Type I1/2 versus Type
II classifiers.

Finally, the model performance was further evaluated
by different metrics. MCC, F1 score and AUC for classifi-
cation, Pearson's correlation coefficient (r), mean squared
error (MSE), and root mean squared error (RMSE) for
regression.

A bottom-up greedy feature selection method was
used according to MCC for classification, and Pearson's
Correlation Coefficient (r) for regression, to simplify
models and reduce noise.

4.4 | Substructure mining

The SMILES strings were input into the MoSS27 to investi-
gate substructure enrichment. We searched enriched sub-
structures in a focused group of molecules (inhibitors)
compared to a complementary set (non-inhibitors). Dis-
criminative fragments were found in CDK2 inhibitors
compared to non-inhibitors, and also for different types of
CDK2 inhibitors in a pair-wise manner. These substruc-
tures and patterns can further validate the features learned
by our models, and also improve their overall interpret-
ability. Finally, we studied the kinase–ligand interaction
patterns by searching molecules enriched with these sub-
structures in the Protein Data Bank (PDB)38.

The odds ratios for substructure enrichment were cal-
culated based on the contingency tables obtained from
control studies. They can quantify the association
between enriched fragments and the inhibitors. Table S1
shows an example of the contingency table for the top left
fragment (in the blue box) in Figure 2. The odds ratio
was calculated as:

OR¼ odds inhibitorsð Þ
odds non-inhibitorsð Þ ¼ 168=872

7=587
≈ 16:2 ð1Þ

Odds ratios greater than one for both of the fragments
demonstrate their confident enrichments in inhibitors.

4.5 | Web server development

The web server front end was developed using Bootstrap
framework version 3.3.7, and the back end was based on
Python 2.7 via the Flask framework version 0.12.3 on a
Linux server running Apache.
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