
RESEARCH ARTICLE

Colony Failure Linked to Low Sperm Viability
in Honey Bee (Apis mellifera) Queens and an
Exploration of Potential Causative Factors
Jeffery S. Pettis1, Nathan Rice1, Katie Joselow1, Dennis vanEngelsdorp2,
Veeranan Chaimanee3*

1 Bee Research Laboratory, USDA-ARS, Beltsville, Maryland, United States of America, 2 Entomology
Department, University of Maryland, College Park, Maryland, United States of America, 3 Department of
Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae, Thailand

* chveeranan@gmail.com

Abstract
Queen health is closely linked to colony performance in honey bees as a single queen is

normally responsible for all egg laying and brood production within the colony. In the U. S. in

recent years, queens have been failing at a high rate; with 50% or greater of queens

replaced in colonies within 6 months when historically a queen might live one to two years.

This high rate of queen failure coincides with the high mortality rates of colonies in the US,

some years with >50% of colonies dying. In the current study, surveys of sperm viability in

US queens were made to determine if sperm viability plays a role in queen or colony failure.

Wide variation was observed in sperm viability from four sets of queens removed from colo-

nies that beekeepers rated as in good health (n = 12; average viability = 92%), were replac-

ing as part of normal management (n = 28; 57%), or where rated as failing (n = 18 and 19;

54% and 55%). Two additional paired set of queens showed a statistically significant differ-

ence in viability between colonies rated by the beekeeper as failing or in good health from

the same apiaries. Queens removed from colonies rated in good health averaged high via-

bility (ca. 85%) while those rated as failing or in poor health had significantly lower viability

(ca. 50%). Thus low sperm viability was indicative of, or linked to, colony performance. To

explore the source of low sperm viability, six commercial queen breeders were surveyed

and wide variation in viability (range 60–90%) was documented between breeders. This

variability could originate from the drones the queens mate with or temperature extremes

that queens are exposed to during shipment. The role of shipping temperature as a possible

explanation for low sperm viability was explored. We documented that during shipment

queens are exposed to temperature spikes (<8 and > 40°C) and these spikes can kill 50%

or more of the sperm stored in queen spermathecae in live queens. Clearly low sperm viabil-

ity is linked to colony performance and laboratory and field data provide evidence that tem-

perature extremes are a potential causative factor.
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Introduction
Honey bees, Apis mellifera live in highly eusocial colonies that normally contain a single queen.
With colony success vested highly in this one individual, her health is of utmost importance to
colony growth and survival [1]. Any decline in queen health can have an adverse effects in col-
ony performance if a colony fails to supersede (replace) the failing queen[2,3]. Queens are
being replaced at a very high rate in the U.S. [4] compared to historic norms and little is known
about the putative causes of these high failure rates [5].

In the US honey bee colonies have been dying at an unacceptably high rate over the past
years [6–8]. These losses, at least in part, are thought to be the result of queen failures, as 50%
or more of queens are replaced within 6 months in some commercial operations [4, 9]. This is
compares to historic data where queens lived 2–3 years [2, 10].

Honey bee colonies are susceptible to a variety of pests and diseases. Beekeepers rely on pes-
ticides to control parasitic mites and antibiotics to control certain diseases. These products can
impact colony health [11–15]. Specifically, miticides used to control Varroa mites accumulate
in wax comb and can impact drone, [16, 17] queen [18–21] and colony survival [9, 22].

There are several reasons queens can fail, including poor mating, pathogen infection [23–
26] and drones can transmit viruses to queens via semen [27]. However, these biotic factors
seem an unlikely explanation for reported high failure rates as a survey of commercial queens
in 2007 showed that queens were well mated (sperm number 4 million) with an average of 16
drones and had low disease incidence [5]. Little work has been done on the role of abiotic fac-
tors, such as temperature and pesticide exposure on queen, specifically her stored sperm,
health. So why are beekeepers having high queen failures if the queens’ disease levels are low?
The rearing of queens is the same as it has been for 100 years or more [3, 28] and little attention
has been given to the actual process of rearing better queens [29, 30]. Much attention has been
focused on genetics [5, 31–36] but queen shipping conditions have been largely ignored.

To investigate possible reasons for the high rate of queen failures in the U.S., three sets of
data were collected; 1) beekeepers were asked to send live queens from colonies that were, in
their opinion, in good or failing health within the same apiaries, 2) the queens from six com-
mercial queen breeders were shipped to allow for the monitoring temperatures experienced by
queens during shipment and to determine background pathogen levels in U.S. queens sold
commercially, 3) laboratory experiments were performed to explore the possible role of tem-
perature extremes on sperm viability in mated queens.

Materials and Methods
We obtained honey bee queens (Apis mellifera L.) from two sources, buying them from queen
breeders or by removing them from colonies owned by commercial beekeepers or USDA-ARS.
The purchased queens originated from six U. S. queen breeders and were ca. 15–40 days of age;
queens removed from colonies were of unknown age. Newly mated queens from queen breed-
ers, were shipped alive in screened cardboard boxes with loose attendant bees surrounding the
queens that were held in individual cages within the battery box as it is known. Older queens
removed from commercial colonies were shipped in small wooden queen cages with 4–6 atten-
dant worker bees per cage (known as Benton cages). Sperm viability assessments were made
following the methods of Collins and Donoghue [37]. Briefly, queens were dissected alive by
removing the head and then the abdomen opened to remove the spermathecae from queens.
Spermathecae were placed in a 1.5ml eppendorph tubes containing 20 microliters of buffer D
[37]. Each spermatheca was pierced with a needle and gently swirled in the buffer to release the
sperm. The bulk of the spermathecal wall was then removed and dyes added that differentially
stained live and dead sperm. From the dyed sample, three aliquots of 4ml each were placed on

Sperm Viability Linked to Poor Colony Performance in Honeybees

PLOS ONE | DOI:10.1371/journal.pone.0147220 February 10, 2016 2 / 10



a glass microscope slide and using a florescent light source on a compound microscope (Axios-
kop 2 plus, Carl Zeiss at 400x), live-dead determination were made. One hundred sperm were
scored as live or dead based on color by scanning the field of view, moving to new areas in a
random pattern and scoring the first 100 sperm encountered. This was repeated on two addi-
tional independent aliquots, the high and low values thrown out and the middle value retained
as a measure of sperm viability for an individual queen.

Queens from Commercial Beehives
Beekeepers who had complained of queen failures were asked to rate a set of honey bee colonies
in a single apiary as being in good or poor health and to send live queens from those colonies
for analysis at USDA-ARS Beltsville, MD. The first two sets of queens (n = 18 & 19) received
were all from failing colonies, as beekeepers were reluctant to remove queens from colonies in
good health. In Beltsville a set of 12 queens from research colonies in apparent good health
were sacrificed to serve as a comparative group for the commercial queens sent from the two
commercial beekeepers. A third set of queens from commercial colonies were obtained when a
beekeeper who replaces queens on a yearly basis, sent 28 older queens but without hive ratings.
Upon making a second request, two beekeepers sent paired sets of queens (one set from the
east and western U.S. respectively) that contained queens from healthy and failing colonies as
rated by the beekeeper. Queen cages were marked with the colony ratings by the beekeeper but
these codes were kept blind from the individual performing the sperm viability determinations
as a separate individual dissected the queens and recorded colony condition.

The software JMP version 11.0 for Windows (SAS Institute Inc.) was used for statistical
analysis. Comparisons between sperm viability values for the first four sets of queens were
made using ANOVA. Viability values for the paired queens from the same apiaries (healthy vs.
failing colonies) from the east and west coast commercial beekeepers were made using a paired
t-test. Differences were considered statistically significant when alpha was< 0.05.

Queen Breeder Survey, Shipping Temperatures and Pathogens
Mated queens in paired sets were shipped in July 2014 via US Postal Service (USPS, n = 10) or
United Parcel Service (UPS, n = 10) from each of six queen breeders to Beltsville, MD to exam-
ine shipping temperatures queens might experience and to survey for background levels of
three common pathogens in commercial queens. Each shipment contained two thermocouples
(Sentry Inc.) set to record at 10 minute intervals. Upon arrival at USDA-ARS Beltsville bee lab,
queens were sacrificed and live-dead sperm determinations made. Additionally, abdomens of
12 queens per breeder (6 from each of the 2 shipments) were analyzed individually for virus
(BQCV and DWV) and Nosema ceranae levels using established methods [38]. Temperature
probes were recovered and data compared between the two probes to verify accuracy and func-
tionality and only the data from one probe used for analysis. To examine consistency of queens
by breeder, a second shipment of 10 queens per breeder were obtained in September 2014 from
five of the same breeders that shipped queens in July. Differences in viability between shipment
methods was compared using a paired t-test. Potential differences in viability between queen
breeders was compared separately for the July and September shipments using a Steel-Dwass
non-parametric test (JMP version 11.0 SAS Institute Inc.)

Laboratory queen exposures to temperature extremes
Laboratory studies were conducted to explore the role of temperature extremes on sperm via-
bility. A set of 60 queens were obtained via United Parcel Service from a single queen breeder
and randomly sub-divided and subjected to either 4°C for one, two, or four hours or 40°C for
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one or four hours with control queens held at 30°C. Following temperature exposures, all
queens were held an additional six days at 30°C to allow time for any detrimental effects to on
sperm to be realized. On day seven all queens were sacrificed and sperm viability measured.
Comparisons in viability at different time intervals and temperatures was made using a Steel-
Dwass test and Tukey HSD test to separate means when significance was found.

Results

Queens from Commercial Colonies
The first two sets of queens from colonies in failing health had low sperm viability (Fig 1) with
the queens removed from colonies on the west coast averaging 55% viable sperm while east
coast queens averaged 54% viability. The queens that were removed during colony re-queening
averaged 57% sperm viability. By comparison, the 12 queens removed from colonies in Belts-
ville, MD at the same time of year (July) as the commercial queens were obtained, averaged
92% sperm viability which was significantly higher than the other three groups of queens
(ANOVA, p = 0.001). The paired queens from colonies rated as failing or in good health had
significant differences in viability (paired t-test, P<0.05) from both the east and west coast bee-
keepers, with low sperm viability in queens heading failing colonies (Fig 2).

Queen Breeder Survey, Shipping Temperatures and Pathogens
Sperm viability values varied by breeder, with one breeder producing queens with noticeably
higher viability (ca. 90%) than the other five (Fig 3). Breeders four and five had values below a
proposed acceptable level of 80%. The two shipping methods differed significantly in only one
case with breeders one (p<0.01, paired t-test). The temperature probes from breeder one in
the shipment with lower viability (USPS) recorded a low spike in temperature of 8°C for two
hours. All other shipments showed temperature values within an acceptable range of 15–35°C.
Significant differences were observed when the breeders were separately compared in July and
September (p<0.05 Steel-Dwass test, Fig 4). The laboratory exposure of queens to extreme
temperatures resulted in significant reductions in viability after only one or two hours at either
high or low temperatures (p<0.05 Steel-Dwass test, Fig 5). Exposures longer than 1–2 hours at
4°C or 40°C did not result in additional increased mortality.

The pathogen levels in queens from the six breeders are given in Table 1, with all three path-
ogens present in queen stocks from each breeder with the exception of BQCV being absent
from the queens from breeder five. In general, queens had high prevalence of DWV followed
by Nosema ceranae and low prevalence of BQCV.

Discussion
Honey bee colonies that were rated as failing by beekeepers were headed by queens that had
low sperm viability compared to queens heading colonies in apparent good health. This rela-
tionship between low sperm viability and poor colony performance was most striking in
queens removed from colonies within the same apiary owned by two commercial beekeepers.
Sperm viability was low in queens removed during routine re-queening from a separate com-
mercial beekeeper when compared to the queens at the USDA-ARS laboratory and previous
reports on queen health [39, 40]. A survey of newly-mated commercially available queens from
breeders across the U.S. showed wide variation in queen quality based on both sperm viability
values and on virus and Nosema prevalence. Queen exposure to extreme temperatures during
shipment can reduce sperm viability as indicated in one real-world shipping event and follow-
up laboratory exposure of queens to temperature extremes. Reduced viability with temperature
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Fig 1. Sperm viability in honey bee queens removed from four different geographic locations;
colonies managed by USDA-ARS in Maryland were in apparent good health (n = 12 queens), two
commercial beekeeping operations where the beekeeper rated the colonies as in failing health
(western U.S. n = 18, eastern U.S. n = 19) and a commercial beekeeper in California who removed
queens during routine queen replacement without reguard to colony health (requeen n = 28) where
most queens were considered to be ca. one year in age. The actual age of all queens is unknown. Letters
indicate significant differences between means by queen source (ANOVA, P = 0.0001).

doi:10.1371/journal.pone.0147220.g001

Fig 2. Sperm viability in queens heading colonies that were rated as in healthy or failing health.
Queens are from two commercial beekeeping operations, colony heath was rated by the beekeeper and
sperm viability assessments conducted blind relative to hive ratings. Data are from queens removed from a
single apiary in either the east coast (healthy n = 8 and failing n = 14) or west coast (healthy n = 9 and failing
n = 12) and asterisk indicate significant differences in viability within apiaries (paired t-test P<0.05).

doi:10.1371/journal.pone.0147220.g002
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extremes is believed to be the first report of such an impact on queen health. Taken together
this data point to areas of concern with queen quality from the breeder and issues with ship-
ping temperatures but do not preclude problems that queens could encounter in the hive such
as pesticide exposure.

Beekeepers in these studies removed queens from colonies that they felt were heading colo-
nies in either good or failing health and these colony assessments are made using an overall
gestalt or feeling that the beekeeper gets when looking at the bees and brood within the colony.
A major part of the colony assessment is the “brood pattern”, a relative measure of how well

Fig 3. Percent sperm viability in queens (n = 10 per shippingmethod / breeder) obtained from six
queen breeders across the U.S. utilizing two shippingmethods, US Postal Service Priority (USPS)
and United Parcel Service (UPS).Queen shipments contained temperature monitors and significant
difference in viability by shipping method from Breeder #1 represent a cold spike where the queens were
exposed to 8°C for two hours. ** indicated significant differences (p<0.01, paired t-test).

doi:10.1371/journal.pone.0147220.g003

Fig 4. Percent sperm viability in queens (n = 10 per breeder) obtained in July and September from
each of five queen breeders in the states of Georgia, California and Hawaii in the U.S. Letters over
bars indicate significant differences (p<0.05 Steel-Dwass test).

doi:10.1371/journal.pone.0147220.g004
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Fig 5. Sperm viability from 60 honey bee queens (n = 10 / temperature and time interval) exposed to
high (40°C) and low (4°C) temperatures for varying lengths of time. All queens were from a single source
and control queens were held at 30°C for the 7 day test period, with queens exposed to experimental
temperatures on day one. Letters over bars indicate significant differences (0<0.001 for all comparisons,
4°C = Steel-Dwass Method, 40°C = ANOVA Tukey-Kramer HSD).

doi:10.1371/journal.pone.0147220.g005

Table 1. Percentage of honey bee queens infected with DeformedWing Virus (DWV), Black Queen
Cell Virus (BQCV) andNosema ceranae (n = 12 queens per breeder, July 2013) from six commercial
queen breeders in the US as detected by rtPCR.

Percentage of queens infected (n = 12)

DWV BQCV Nosema ceranae

1 75 8 67

2 67 8 42

3 100 25 92

4 75 8 25

5 42 0 67

6 83 17 42

doi:10.1371/journal.pone.0147220.t001
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the queen has laid eggs and how well those eggs have developed into larvae and pupae. Bee-
keepers associate poor brood patterns with failing colonies and this is one of the major factors,
along with adult bee population, that they used to determine if queens originated from healthy
or failing colonies. More precisely, brood pattern can be measured in terms of number of
empty cells within a given area of cells contain larvae or pupae that are sealed (e.g. and area of
100 cells might contain 10 empty cells and thus have 10% of the total cells missing). It is
assumed that the queen fills all cells in a given area with eggs and that the missing cells are indi-
viduals that have died and been removed. Previous research has indicated that when brood pat-
terns contain more than 20% open cells then colonies are more likely to die [4]. It is not certain
at this time if queens with less than 50% viable sperm lay poorer brood patterns. The queens
surveyed in this research from colonies rated by the beekeeper as being good or failing, strongly
suggest a link between poor brood pattern, colony health and low sperm viability.

Commercially available newly-mated queens surveyed showed wide variation in both sperm
viability and pathogen levels. In the queens obtained in July and September there was one
breeder (#2, Fig 4) that was consistently high at ca. 90% viability. Surprisingly, the breeder with
the lowest average viability in July (breeder #4) had the highest viability in September; which
points to the numerous factors that might influence viability and that quality is not consistent
across breeders and time. Previous surveys of queen health in the U.S. had shown similar levels
of DWV and BQCV virus [5] but we report much higher prevalence for N. ceranae. The actual
effects of various viruses on queen health remains unknown (Gauthier et al. 2011). It is known
that infection with Nosema apis can cause premature supercedures [41]. Thus the high preva-
lence levels of Nosema ceranae reported here are likely of concern. Perhaps of most concern
was the low sperm viability measured from several breeders which may indicate potential issues
with drone health. Drones have been shown to be sensitive to pesticides used to control mites
[16, 17] and to Varroa infestation; all having a negative impact on drone health. Drones could
mate with queens and have viable sperm at the time of mating but that sperm may be inferior
in quality with pesticide exposure and die in as few as 6 weeks after mating, as noted when
drones were reared in the presence of coumaphos [28]. All aspects of producing healthy and
fertile drones need to be investigated to reduce the low viability in newly mated queens
reported here. Lastly, simple improvements in the queen rearing process may help reduce virus
and Nosema levels and thus produce healthier queens.

We cannot blame all queen issues on the queen breeders. Many of the queens examined in
the current research were of high quality. What is needed is to further identify factors in the
drone and queen production process that result the well mated and long-lived queens. Work
with the shipping companies to reduce or eliminate extreme temperatures during shipment or
find ways to modify the queen shipping containers to allow attendant bees to better heat or
cool the queens during shipment. Reducing pesticide exposure to drones and queens at the col-
ony level should improve sperm viability and queen longevity. A clear relationship between
low sperm viability and failing colonies are reported here and shipping temperatures is one
possible explanation for the observed low sperm viability in queens. Additional research is
needed on drone health and exposure to pesticides prior to mating and on the possible role of
pesticides in queen health at the colony level.

Supporting Information
S1 Data. Supporting data for Figs 1–5 and Table 1, each Figure or Table is on a separate
spreadsheet within the S1 Excel File.
(XLSX)
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