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Abstract: To detect perimeter intrusion accurately and quickly, a stream computing technology was
used to improve real-time data processing in perimeter intrusion detection systems. Based on the
traditional density-based spatial clustering of applications with noise (T-DBSCAN) algorithm, which
depends on manual adjustments of neighborhood parameters, an adaptive parameters DBSCAN
(AP-DBSCAN) method that can achieve unsupervised calculations was proposed. The proposed
AP-DBSCAN method was implemented on a Spark Streaming platform to deal with the problems of
data stream collection and real-time analysis, as well as judging and identifying the different types of
intrusion. A number of sensing and processing experiments were finished and the experimental data
indicated that the proposed AP-DBSCAN method on the Spark Streaming platform exhibited a fine
calibration capacity for the adaptive parameters and the same accuracy as the T-DBSCAN method
without the artificial setting of neighborhood parameters, in addition to achieving good performances
in the perimeter intrusion detection systems.
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1. Introduction

With the widespread technological development of society, security issues have become
increasingly prominent. Thanks to the recent progress of modern science and technology, better
solutions have become available to solve security problems. Among them are fiber Bragg grating
interference technology [1–3], big data processing technology [4–6], machine learning [7,8] and stream
processing technology [9–11]. Recently, our team has realized the online writing of an ultra-weak
FBG (UWFBG) array during the drawing process of single mode fibers (SMF). A large-scale UWFBG
array is made up of hundreds or thousands of identical-wavelength FBGs with a reflectivity of about
−50 dB for each FBG. Such a large-scale UWFBG sensor array has attracted a great deal of attention
in major engineering monitoring, because of its low cost, low crosstalk, and strong multiplexing
capacity [12–14]. In particular, the UWFBGs have the advantages of small size, favorable wavelength
selectivity, and anti-electromagnetic interference, and so they are widely used in perimeter security
and structural health monitoring.

The physical parameters of these UWFBGs, such as their reflected powers and Bragg wavelengths,
vary with external vibration signals. The external signals are extracted from the light signs through
demodulation and further data processing. As the demodulated data shows characteristics of having a

Sensors 2018, 18, 2937; doi:10.3390/s18092937 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4600-2795
http://www.mdpi.com/1424-8220/18/9/2937?type=check_update&version=1
http://dx.doi.org/10.3390/s18092937
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2937 2 of 14

large capacity, much noise, and a high frequency, it is necessary to detect abnormal data affected by
intrusion in a real-time and more accurate way. The outliers can be analyzed to find more abnormal
classes by using a clustering algorithm. Thus, how to improve the capability of existing machine
learning algorithms to process large-scale data in real-time has become a hot issue.

Handling large-scale data streams requires the support of stream computing [15]. Stream data
is a type of data form in the big data environment that was born at the end of 20th century and has
gradually become a hot issue in the development of cloud computing and the Internet of Things.
Spark Streaming [16] is an extension to the core spark API (application programming interface) [17]
that can handle real-time data streams by DStream (discretized Stream). The DStream is expressed
by a continuous set of RDDs (resilient distributed datasets) over a time series. Each RDD contains a
data stream at a particular time interval. Input data, which is taken from Spark Streaming according to
the batch size (such as 1 s), is broken down into segments; each segment is converted to RDD and the
results of the RDD operation are stored in the memory. Therefore, Spark Streaming can be used to
process large-scale optical fiber grating stream data.

The stream data of perimeter intrusion contains a large amount of information, and the feature
parameters of the data are extracted for cluster analysis [18–20]. Based on the characteristics of the
event types, different clusters can be formed whenever a perimeter intrusion event occurs, which
forms a new cluster. More focus should be put on this new type of event in order to detect anomalies in
stream data. In the face of unknown distribution data, such as the data collected in perimeter security,
the clustering method takes advantage of the relationships among the data objects to gather data in
different classes, which is actually an unsupervised way of finding the optimal partition.

The traditional density-based spatial clustering of applications with noise (T-DBSCAN) [21] was
proposed by Martin Ester et al. This T-DBSCAN method depends on the choice and calibration of
two neighborhood parameters, namely the characteristic size of clusters (ε) and the minimum number
of points in a cluster (Nmin), and so the choice of neighborhood parameters has a great influence on
the determination of clusters and it will enable the calibration of a large workload of neighborhood
parameters. In recent years, some scholars have tried to improve the T-DBSCAN algorithm through
clustering analysis. For example, Li et al., designed a modified DBSCAN to identify fixations in
eye-tracking data, thus including the advantages of the classical fixation identification method [22].
Edla et al. proposed a prototype-based modified DBSCAN algorithm to cluster the gene expression data
and speed up the DBSCAN algorithm [23]. Cai et al., proposed an improved DBSCAN algorithm that
is insensitive to input parameters by adding the connection information of the clusters and merging the
related clusters [24], but this method is incapable of selecting neighborhood parameters automatically
to achieve unsupervised anomaly detection. Feng et al., proposed an adaptive DBSCAN algorithm for
constellation reconstruction and modulation identification [25] by choosing the parameter Nmin, and
then different values of ε were introduced to the trial clustering, the optimal clustering was obtained
by evaluating the validity of each cluster. However, it is hard to define the parameter Nmin in the case
of trial clustering.

In this paper, an adaptive-parameters DBSCAN (AP-DBSCAN) method was proposed, in which
two neighborhood parameters, ε and Nmin, were determined automatically by time-domain statistical
analysis. Then, AP-DBSCAN was implemented on Spark Streaming to deal with the problems of data
stream collection and real-time analysis. After that, a perimeter intrusion detection system based on
suspended UWFBG sensing arrays and UWFBG sensing arrays that were buried under the ground
was constructed. Finally, a number of sensing and processing experiments were finished and analyzed.

2. Materials and Methods

2.1. T-DBSCAN

DBSCAN is a famous density based clustering technique [21]. A cluster in this model is described
as a linked region that exceeds a given density threshold. The functioning of DBSCAN is directed
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by two definitions, namely density-reachability and density-connectability, which depend on two
predefined parameter values: the size of the neighborhood, denoted by ε, and the number of
neighborhood points in a cluster, denoted by Nmin. In T-DBSCAN, one begins with a random point x
and it finds all of the points that are density-reachable from x with respect to ε and Nmin. It is obvious
that no points are density-reachable from x when x is a border point; in this case, the T-DBSCAN
begins with an unclassified point to repeat the same process, and so the two predefined parameters ε

and Nmin decide the quality and efficiency of clusters.

2.2. AP-DBSCAN Algorithm

In the T-DBSCAN method, the values of ε and Nmin are regulated by the users. To avoid human
intervention, we proposed an unsupervised clustering method. A sample set composed of n sensing
signals, Signsn = {(xl), l = 1, 2, . . . , n}, with the sampling frequency (f ) and a quantity of nf = n/f,
can be denoted by

Signs n = {(sm), m = 0, 1, 2, . . . , nf} (1)

where
sm =

{
xm f+1 , xm f+2, . . . , xm f+ f

}
(2)

Then, a set of characteristic parameters, energy and average amplitude, can be calculated,
as follows:

energy =

{
f

∑
i=1

x2
m f+i, m = 0, 1, 2, . . . , nf

}
(3)

average amplitude =

{
1
f

f

∑
i=1

∣∣∣xm f+i

∣∣∣, m = 0, 1, 2, . . . , nf

}
(4)

A set of sample characteristic parameters can be described as:
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f

∑
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i , 1

f
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∑
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)
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x2
i+ f , 1

f

f
∑

i=1

∣∣∣xi+ f

∣∣∣),

(
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i+2 f , 1

f
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∑

i=1

∣∣∣xi+2 f

∣∣∣), . . . ,

(
f

∑
i=1

x2
i+nf f , 1

f

f
∑

i=1

∣∣∣xi+nf f

∣∣∣)} (5)

These characteristic data contain different dimensions. An effective normalization is needed
to eliminate the influence of target dimensions, and so the min-max normalization method was
used, which enables the mapping of energy and average amplitude in the range of [0, 1] by the
linear transformation of the characteristic set T. Let the horizontal axis and vertical axis in the
range of [0, 1] denote normalized energy and normalized average amplitude, respectively; then,
the original one-dimensional data were converted into two-dimensional normalized data. Then, a
symmetric distance matrix which describes the distances between all pairs of points may be constructed,
as follows:

Dt =


d11 d12 . . . d1t
d21 d22 . . . d2t

...
...

. . .
...

dt1 dt2 . . . dtt

 (6)

where t = 1 + n/f is the number of the characteristic sample sets and dij is the distance between points i
and j.

Sorting the elements of each row in the matrix Dt from small to large in turn, a new matrix Ds

can be obtained. In the matrix Ds, all of the elements at the first column are zero, and the elements at
the kth column (k > 1) are the (k − 1)th closer distances. The sorted matrix Ds can be represented by
column matrices:

Ds = (ζ1, ζ2, . . . , ζt ), ζi = (d1i, d2i, . . . , dti)
T (7)
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For all the column matrices, calculating their J values gives the following:

Ji = J(d1i , d2i, . . . , dti) =
1
2

(
t

∑
i=1

d1i −
1
t

t

∑
i=1

d1i

)2

i = 1, 2, . . . , t (8)

Then, to find the characteristic column matrix, which produces a minimum of all J’s values, this
process can be denoted by:

γ = argmin(J(ζi ), i = 1, 2, . . . , t) (9)

Thus, the characteristic column matrix γ = ζimin = (d1,imin, d2,imin, . . . , dt,imin)
T can be obtained.

Progressively, the maximum distance in the characteristic column matrix was assigned as ε.
After the determination of ε, and then performing an arithmetic mean for the number of points

within the ε-neighborhood in the entire data set, an optimal value of the point number in each cluster
can be obtained:

Nmin =
1
n

n

∑
i=1

Xi (10)

where Xi is the number of points in the ε-neighborhood of each point.

2.3. AP-DBSCAN on Spark Streaming

Figure 1 describes the implementation process of the proposed AP-DBSCAN method on Spark
Streaming, which decomposes streaming computing into a series of short batch jobs. The batch engine
is Spark Core, which divides the input data into pieces of data according to the batch size (for example,
4 s). The data were converted to the RDD in Spark, and then the transformation operation was changed
to the RDD transformation operation, and each RDD is the data conversion of T s demodulated by the
fiber grating signal processor.
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Figure 1. Adaptive parameters density-based spatial clustering of applications with noise (AP-
DBSCAN) clustering analysis based on the Spark Streaming mechanism. 
Figure 1. Adaptive parameters density-based spatial clustering of applications with noise (AP-DBSCAN)
clustering analysis based on the Spark Streaming mechanism.
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The main steps in AP-DBSCAN on Spark Streaming are shown in Algorithm 1, and the workflows
of the algorithm are shown in Figure 2. Box-plots [26] and fast Fourier transform [27] are employed
to deal with noises. The feature sets of normal data in the first RDD, which mean that there is no
intrusion, are obtained by Equations (3) and (4), and are then mixed to the proposed AP-DBSCAN in
case the abnormal data appears at the beginning. The noise data is reconstructed and added to the
normal data from AP-DBSCAN. On the DStream, each piece of data is continuously updated by RDD.
If there is no abnormal data in a certain RDD, the output of the RDD includes normal feature samples
of the last RDD and the current RDD; if there is abnormal data in a certain RDD, then the output of the
RDD includes not only the normal feature samples of the last RDD and the current RDD, but also the
abnormal samples of the current RDD. Thus, the clustering result of each RDD is achieved through
AP-DBSCAN when the distinguished abnormal samples are output and the normal data samples are
mixed with the following RDD.
Sensors 2018, 18, x FOR PEER REVIEW  6 of 14 

 

Noise

HDFS

Data from 
time 1 to 4

RDD @ time 1 RDD @ time 2 RDD @ time N

Data from 
time 5 to 8

Data from time 
4*N-3 to 4*N

Dstream

Box LineBox LineBox LineBox LineBox-plots Box LineBox LineBox LineBox-plots Box LineBox LineBox LineBox LineBox-plots

Normal
data

Fast Fourier 
transform

Data 
reconstruction

Fast Fourier 
transform

Data 
reconstruction

Fast Fourier 
transform

Data 
reconstruction

AP-DBSCAN

Abnormal 
data

Normal data

AP-DBSCAN

Noise

Noise

Abnormal 
data Normal data

AP-DBSCAN

Abnormal 
data

Normal data

Normal data

Merge Merge

Merge

Merge

 
Figure 2. The workflows of AP-DBSCAN implementation on Spark Streaming. 

3. Results and Analysis 

3.1. Monitoring System Based on the UWFBG Array 

The architecture of the intrusion monitoring and identification system is shown in Figure 3. The 
sensing system is composed of a quasi-distribution UWFBG array that was prepared on a drawing 
single mode silica optical fiber, a 1550-nm laser source (RIO, narrow frequency laser module, 1 kHz 
of line width), an FBG signal processor, a detector (4-way photoelectric detection plate, self-control, 
bandwidth is 60 MHz), and a computer. UWFBGs with the same Bragg wavelengths were used as a 
string of vibration detectors to encapsulate the external vibration signals near the optical fibers. In 
our experiments, two kinds of UWFBG sensing arrays were prepared at a distance of every 5 m: one 
is the suspended UWFBG sensing array with a length of 100 m (20 sensors), which was fixed along a 
railing; the other is the buried UWFBG sensing array with a length of 300 m (60 sensors), which was 
buried under the ground. 

Figure 2. The workflows of AP-DBSCAN implementation on Spark Streaming.



Sensors 2018, 18, 2937 6 of 14

Algorithm 1. Main steps in AP-DBSCAN on Spark Streaming.

1: Input:
The training sets of n workers: Dn =

{(
x1, y1

)
,
(

x2, y2
)
, . . . , (xn , yn )

}
Normal data: Nt = {(x1, y1), (x2, y2), . . . , (xt, yt)}
2: Step1: Create a local streaming context with two working thread and a batch interval of 4 s.
3: Step2: Create an input in DStream.
4: Step3: Operate DStream:

Convert segment data and normal data to RDD, perform the first AP-DBSCAN to get the result of the
clustering:

Di : {(x1, y1), (x2, y2), . . . , (xi, yi)} ∪ Nt : {(x1, y1), (x2, y2), . . . , (xt, yt)}
→first RDD→AP-DBSCAN→the first clustering result

While input DStream = true
Abnormal data is separated from the first result, normal data is retained and mixed into the next data;
Perform AP-DBSCAN to get the result of clustering.

5: Step4: Start Spark Streaming.
6: Output: The results of clustering on each RDD.

3. Results and Analysis

3.1. Monitoring System Based on the UWFBG Array

The architecture of the intrusion monitoring and identification system is shown in Figure 3.
The sensing system is composed of a quasi-distribution UWFBG array that was prepared on a drawing
single mode silica optical fiber, a 1550-nm laser source (RIO, narrow frequency laser module, 1 kHz
of line width), an FBG signal processor, a detector (4-way photoelectric detection plate, self-control,
bandwidth is 60 MHz), and a computer. UWFBGs with the same Bragg wavelengths were used as a
string of vibration detectors to encapsulate the external vibration signals near the optical fibers. In our
experiments, two kinds of UWFBG sensing arrays were prepared at a distance of every 5 m: one is the
suspended UWFBG sensing array with a length of 100 m (20 sensors), which was fixed along a railing;
the other is the buried UWFBG sensing array with a length of 300 m (60 sensors), which was buried
under the ground.

All of the wavelength shift signals from the UWFBGs were transmitted to the signal processor
based on Mach-Zehnder interference (MZI). The grating signal processor was connected to a computer
through a network line, sending and receiving the data by the user datagram protocol (UDP).
The computer and the software received the data stream from the grating signal processor, pushed the
stream data to Spark Streaming for real-time processing, and saved the data to the Hadoop distributed
file system (HDFS). As abnormal data appeared, the computer output them in real-time, and finally
actualized the intelligent analysis and pattern recognition of the intrusion signals.
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The data acquisition methods are as follows: the continuous light from an amplified spontaneous
emission (ASE) was modulated into a nanosecond pulse by a semiconductor optical amplifier.
The pulse light was launched into the fiber with uniformly distributed UWFBGs by a circulator,
and then a pulse train could be realized. A phase demodulation unit consisting of an unbalanced
MZI, a 3 × 3 coupler and three detectors was used to restore the vibration signal. The unbalanced
paths of the MZI separated each reflected pulse to two pulses; the slower pulse from the closer
UWFBGs coincided with the faster pulse from the further UWFBGs, and the coherence would
be maintained. Phase perturbations that are caused by vibrations between the two adjacent
UWFBGs can be demodulated from the interference light pulse. According to optical time domain
reflectometry, the correspondence relationships between the interference light pulse and sensing
position were established.

The experiments were finished on a cluster with four nodes: a master node and three compute
nodes. The configuration of each node is as follow: 3.4 GHz Intel Core i7-6700 processor, 8 M cache,
4 G memory, and 1 TB storage. The software used are Spark 1.6.1 and the Ubuntu 16.04 operating
system, and the sampling frequency is 100 Hz.

3.2. Signal Processing for Railing Sensors

Three kinds of railing intrusion behaviors, namely knock, shake, and climb, were simulated,
and the corresponding vibration signals are shown in Figure 4a–c. The DBCSAN and AP-DBSCAN
calculations were finished by selecting the data of three behaviors and merging static data, respectively.
The corresponding clustering effects are shown in Figure 5, where the horizontal axis and vertical axis
denote the normalized energy and the normalized average amplitude, respectively. According to the
distance between the mass center of each cluster and the origin, one can judge the type of behaviors
and each cluster represents a behavior.
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In addition, the number of points in each cluster and the number of clusters corresponding to all
the behaviors given by the T-DBSCAN and AP-DBSCAN methods were calculated and are shown in
Table 1. The number of data for static, knocking, shaking, and climbing the rail are represented by C1,
C2, C3, and C4, respectively; the results showed that the AP-DBSCAN method can achieve the same
precision as T-DBSCAN without setting neighborhood parameters manually, being conductive to the
realization of automatic detection in the perimeter intrusion detection systems.

Table 1. Comparison of calculated data by two methods for railing sensors.

Data Set
Clustering Algorithm

T-DBSCAN AP-DBSCAN

C1 119 119
C2 113 113
C3 111 111
C4 121 121

Number of clusters 4 4
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Finally, according to the methods by K-means [28], FCM (Fuzzy C-means) [29], and AP-DBSCAN,
the misclassified patterns, the computation time and the error rate (ER) were computed and compared;
their data are shown in Table 2, where the error rate was computed, as follows:

ER =
Number o f misclassi f ied objects

Total number o f objects
× 100% (11)

Smaller ERs given by AP-DBSCAN indicated the AP-DBSCAN method can produce better results
than the other methods.

Table 2. Comparisons of misclassified patterns, computation time and the error rate (ER) for different
sizes of data sets for railing sensors. A: K-means; B: Fuzzy C-means (FCM); C: AP-DBSCAN.

Data Size (kB)
Misclassified Patterns (kB) Computation Time (s) ER (%)

A B C A B C A B C

150 12 3 3 10 10 11 8.0 2.0 2.0
185 15 4 5 27 29 25 8.1 2.1 3.0
286 26 10 9 43 44 41 9.1 3.5 3.1
768 59 24 21 391 401 379 7.7 3.1 2.8

1024 93 32 33 578 593 533 9.1 3.2 3.3
1625 131 49 47 1601 1701 1567 8.1 3.0 3.0

3.3. Signal Processing for Buried Sensors

The underground sensing optical cable was buried under the ground at a depth of half a meter
so that the optical cables were less affected by noise. We simulated five behaviors that influence the
underground cable: walking on the buried cable, walking parallel to the cable at distances of 20, 40,
60 cm from the cable, and static standing, respectively. Each behavior records data for 20 s, and the
corresponding vibration signals are shown in Figure 6a–d. Due to low noise, the collected data is
processed by difference denoising methods, and then the AP-DBSCAN method is used to calculate
the clustering based on the data of five behaviors. The corresponding clustering effects are shown in
Figure 7, where the horizontal axis and vertical axis denote the normalized energy and the normalized
average amplitude, respectively. The AP-DBSCAN on Spark Streaming and that on a single machine
are compared with the clustering speed at an interval of 4 s. The abnormal behavior is obtained by
clustering according to the data characteristics of different behaviors. Each cluster represents one
kind of behavior; the abscissa and the ordinate of point denote energy and frequency amplitude,
respectively. According to the distance from the origin to the center of the cluster, one can determine
the type of the behaviors.

Then, we calculate the number of clusters that form each behavior and the number of points in
each cluster, as given by T-DBSCAN and AP-DBSCAN. The number of data sets of static standing,
walking parallel to the cable at distances of 60, 40, and 20 cm from the cable, and walking on the buried
cable is denoted by C1, C2, C3, C4, and C5, respectively. According to the same sample data, the
experimental results of the two methods are shown in Table 3, which exhibits that the AP-DBSCAN
method can achieve the same accuracy as the T-DBSCAN without artificial setting of neighborhood
parameters; thus, the AP-DBSCAN method can save a large amount of labor time.
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Table 3. Comparison of calculated data by two methods for buried sensors.

Data Set
Clustering Algorithm

T-DBSCAN AP-DBSCAN

C1 116 116
C2 115 115
C3 115 115
C4 115 115
C5 114 114

Number of clusters 5 5

Thirdly, according to the methods by K-means [28], FCM (Fuzzy C-means) [29], and AP-DBSCAN,
the misclassified patterns, the computation time, and the error rate (ER) were computed and compared;
their data are shown in Table 4. One can see that the smaller ERs given by AP-DBSCAN indicated that
the AP-DBSCAN method can produce better results than the other methods.

Table 4. Comparisons of misclassified patterns, computation time and the error rate (ER) for different
sizes of data sets for buried sensors. A: K-means; B: FCM; C: AP-DBSCAN.

Data Size (kB)
Misclassified Patterns (kB) Computation Time (s) ER (%)

A B C A B C A B C

131 10 5 2 9 9 10 7.6 3.8 1.5
254 23 15 7 40 42 37 9.1 5.9 2.8
552 46 27 13 287 301 266 8.3 4.9 2.4
783 62 34 23 399 420 391 7.9 4.3 2.9

1131 101 81 39 583 606 542 8.9 7.1 3.4
1721 140 121 51 1721 1835 1643 8.1 7.0 3.0

Finally, the time response of AP-DBSCAN on Spark Streaming was investigated also. In order
to test the timeliness of the algorithm, several invasion scenarios were simulated. At a distance of 1
m from one side of the detection optical cable, one person walked to the optical cable vertically and
arrived at the ground over the optical cable, and then walked 1 m distance to other side of the optical
cable. Meanwhile, 100 pieces of data are recorded every 1 s and calculated every 2 s; the clustering
data and the number of abnormal events are shown in Figure 8. It can be seen that the data can be
received and processed in an effective time. To test the performance of the AP-DBSCAN method on
Spark Streaming, the time responses was measured and shown in Figure 9. There is a small difference
between AP-DBSCAN on a single machine and AP-DBSCAN on Spark Streaming when the test data
is small. However, when the test data is very big, the response time by the AP-DBSCAN on Spark
Streaming is significantly superior to the response time by AP-DBSCAN on the single machine.



Sensors 2018, 18, 2937 12 of 14

Sensors 2018, 18, x FOR PEER REVIEW  12 of 14 

 

 

Figure 8. Time response of AP-DBSCAN on Spark Streaming. 

 
Figure 9. Computing times by AP-DBSCAN and AP-DBSCAN on Spark Streaming. 

4. Conclusions 

In this paper, we propose the AP-DBSCAN algorithm with adaptive parameters on the Spark 
Streaming platform, solving the problem of the real-time anomaly detection of large-scale data in 
perimeter security. The preprocessing of the algorithm combines the Box-plots and the fast Fourier 
transform, and it is necessary to make certain that the data stream of a segment is mixed with the 
normal data stream of the previous segment to detect the abnormal data of different types. In the 
verification experiment of AP-DBSCAN, the proposed algorithm improves the unsupervised 
capability of T-DBSCAN and can detect abnormal conditions of large-scale data in real-time, 
providing better convenience and service for perimeter security. 

Author Contributions: Conceptualization, F.L.; Methodology, F.L. and Z.Y.; Software, Z.Y.; Validation, Z.Y. and 
S.L.; Writing-Original Draft Preparation, Z.Y.; Formal Analysis and Writing-Review & Editing, Y.Y.; Project 
Administration and Funding Acquisition, Z.L. 

Funding: This research was funded by the National Natural Science Foundation of China grant numbers 
61735013 and 61402345, and the Natural Science Foundation of Hubei Province of China grant number 
2018CFA056. 

Acknowledgments: This work is supported by National Natural Science Foundation of China and Natural 
Science Foundation of Hubei Province of China. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 8. Time response of AP-DBSCAN on Spark Streaming.

Sensors 2018, 18, x FOR PEER REVIEW  12 of 14 

 

 

Figure 8. Time response of AP-DBSCAN on Spark Streaming. 

 
Figure 9. Computing times by AP-DBSCAN and AP-DBSCAN on Spark Streaming. 

4. Conclusions 

In this paper, we propose the AP-DBSCAN algorithm with adaptive parameters on the Spark 
Streaming platform, solving the problem of the real-time anomaly detection of large-scale data in 
perimeter security. The preprocessing of the algorithm combines the Box-plots and the fast Fourier 
transform, and it is necessary to make certain that the data stream of a segment is mixed with the 
normal data stream of the previous segment to detect the abnormal data of different types. In the 
verification experiment of AP-DBSCAN, the proposed algorithm improves the unsupervised 
capability of T-DBSCAN and can detect abnormal conditions of large-scale data in real-time, 
providing better convenience and service for perimeter security. 

Author Contributions: Conceptualization, F.L.; Methodology, F.L. and Z.Y.; Software, Z.Y.; Validation, Z.Y. and 
S.L.; Writing-Original Draft Preparation, Z.Y.; Formal Analysis and Writing-Review & Editing, Y.Y.; Project 
Administration and Funding Acquisition, Z.L. 

Funding: This research was funded by the National Natural Science Foundation of China grant numbers 
61735013 and 61402345, and the Natural Science Foundation of Hubei Province of China grant number 
2018CFA056. 

Acknowledgments: This work is supported by National Natural Science Foundation of China and Natural 
Science Foundation of Hubei Province of China. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 9. Computing times by AP-DBSCAN and AP-DBSCAN on Spark Streaming.

4. Conclusions

In this paper, we propose the AP-DBSCAN algorithm with adaptive parameters on the Spark
Streaming platform, solving the problem of the real-time anomaly detection of large-scale data in
perimeter security. The preprocessing of the algorithm combines the Box-plots and the fast Fourier
transform, and it is necessary to make certain that the data stream of a segment is mixed with the
normal data stream of the previous segment to detect the abnormal data of different types. In the
verification experiment of AP-DBSCAN, the proposed algorithm improves the unsupervised capability
of T-DBSCAN and can detect abnormal conditions of large-scale data in real-time, providing better
convenience and service for perimeter security.
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