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A B S T R A C T   

Background: Predictive maps of the final infarct may help therapeutic decisions in acute ischemic stroke patients. 
Our objectives were to assess whether integrating the reperfusion status into deep learning models would 
improve their performance, and to compare them to current clinical prediction methods. 
Methods: We trained and tested convolutional neural networks (CNNs) to predict the final infarct in acute 
ischemic stroke patients treated by thrombectomy in our center. When training the CNNs, non-reperfused pa-
tients from a non-thrombectomized cohort were added to the training set to increase the size of this group. 
Baseline diffusion and perfusion-weighted magnetic resonance imaging (MRI) were used as inputs, and the lesion 
segmented on day-6 MRI served as the ground truth for the final infarct. The cohort was dichotomized into two 
subsets, reperfused and non-reperfused patients, from which reperfusion status specific CNNs were developed 
and compared to one another, and to the clinically-used perfusion-diffusion mismatch model. Evaluation metrics 
included the Dice similarity coefficient (DSC), precision, recall, volumetric similarity, Hausdorff distance and 
area-under-the-curve (AUC). 
Results: We analyzed 109 patients, including 35 without reperfusion. The highest DSC were achieved in both 
reperfused and non-reperfused patients (DSC = 0.44 ± 0.25 and 0.47 ± 0.17, respectively) when using the 
corresponding reperfusion status-specific CNN. CNN-based models achieved higher DSC and AUC values 
compared to those of perfusion-diffusion mismatch models (reperfused patients: AUC = 0.87 ± 0.13 vs 0.79 ±
0.17, P < 0.001; non-reperfused patients: AUC = 0.81 ± 0.13 vs 0.73 ± 0.14, P < 0.01, in CNN vs perfusion- 
diffusion mismatch models, respectively). 
Conclusion: The performance of deep learning models improved when the reperfusion status was incorporated in 
their training. CNN-based models outperformed the clinically-used perfusion-diffusion mismatch model. 
Comparing the predicted infarct in case of successful vs failed reperfusion may help in estimating the treatment 
effect and guiding therapeutic decisions in selected patients.   

1. Introduction 

Early reperfusion, by means of intravenous thrombolysis or throm-
bectomy, is the main therapeutic goal in acute ischemic stroke (Powers 
et al., 2019). Acute treatment decisions have increasingly incorporated 
advanced neuroimaging to estimate patients’ prognosis and likelihood 

of benefiting from revascularization procedures (Nogueira et al., 2018; 
Albers et al., 2018). Currently, both computed-tomography (CT) and 
Magnetic Resonance Imaging (MRI) entail threshold-based methods to 
delineate the still salvageable brain (i.e. ischemic penumbra) from the 
already lost tissue (infarct core). Specifically in MRI, criteria for the 
infarct core is based on Apparent Diffusion Coefficient (ADC) extracted 
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from Diffusion-Weighted Imaging (DWI), and criteria for the ischemic 
penumbra is based on Time to maximum of the residue function (Tmax) 
extracted from perfusion-weighted imaging. Precisely, infarct core is 
defined as ADC voxel values < 600∼620x10− 6 mm2/s, and ischemic 
penumbra is defined as Tmax voxel values >6 s (Kidwell et al., 2013; 
Olivot et al., 2009). Patients with a large penumbra and limited ischemic 
core (so-called ‘target mismatch’ profile) have a high probability of 
benefiting from reperfusion, even in late time windows (Nogueira et al., 
2018; Albers et al., 2018). However, these fixed-threshold methods may 
fail to capture the significant interindividual heterogeneity observed in 
stroke progression (Rekik et al., 2012). While the clinical and imaging 
characteristics of some patients may clearly indicate urgent reperfusion 
therapies, the benefit/risk balance in others can appear more uncertain. 
Thus, personalized probability maps of the final infarct would be of high 
clinical value to guide acute revascularization decisions and possibly 
help evaluate novel neuroprotective strategies. 

Convolutional neural networks (CNNs), a subtype of machine 
learning, are flexible, data-driven methods capable of automatic non- 
linear feature extraction, with promising results in stroke lesion seg-
mentation (Qiu et al., 2020). A well-acknowledged limitation of CNNs is 
the large quantity of data required for their training and validation. Only 
a limited number of studies, with heterogeneous treatment paradigms 
and evaluations metrics, have evaluated CNNs for the prediction of the 
final stroke lesion from baseline MRI (Winzeck et al., 2018; Pinto et al., 
2018; Nielsen et al., 2018; Yu et al., 2020) or CT (Robben et al., 2020). 
Sample size and performance were modest (∼50 to ∼200 patients, Dice 
similarity coefficient ∼0.50 or lower), illustrating both the inherent 
difficulty of prediction tasks and scarcity of high-quality data, compared 
to simpler image segmentation tasks. 

In the present work, we evaluated the impact of integrating the 
reperfusion status on the performance of CNNs for predicting the final 
infarct in patients with proximal intracranial occlusions treated by 
thrombectomy. Reperfusion is the single most important clinical meta-
data known to influence the progression of ischemic lesions from the 
baseline imaging (used as inputs to CNN) to the final infarct (Tsai and 
Albers, 2015). Previous studies have investigated direct integration of 
the reperfusion status during the learning process of CNN-based 
methods (Pinto et al., 2018; Robben et al., 2020). Another dichoto-
mized the training set according to the reperfusion status with random 
forest-based methods (McKinley et al., 2017), but has not been evalu-
ated with CNNs. We hypothesized that training CNNs from reperfusion 
status-specific subcohorts could improve their performance. Our 

objectives were: (1) to assess the impact of the reperfusion status on 
CNN-based predictive models; (2) to compare the predictive value of 
these CNNs against the threshold-based perfusion-diffusion mismatch 
models. An ancillary objective was to assess the relative predictive 
importance of the MRI inputs with an ablation study. 

2. Material and methods 

2.1. Data 

We describe the HIBISCUS-STROKE and I-KNOW cohorts, from 
which the final stroke lesion was assessed. This section details the MRI 
protocol, patient inclusion criteria and image post-processing steps 
(upsampling, registration, normalization). 

2.1.1. Patients and imaging protocol 
Patients were included from the HIBISCUS-STROKE and I-KNOW 

cohorts. HIBISCUS-STROKE is an ongoing monocentric observational 
cohort enrolling patients with a large intracranial artery occlusion 
treated by thrombectomy, following a baseline diffusion-perfusion MRI. 
I-KNOW (2007–2011) was a prospective multicenter observational 
study of stroke patients with both admission and several follow-up MRI. 
A subset of these patients underwent an acute follow-up perfusion MRI 
(∼3 h from the baseline MRI) to assess early reperfusion (Cho et al., 
2015). In total, 109 patients were analyzed as shown in Fig. 1. Early 
reperfusion was observed in 74 patients, while 35 had no reperfusion 
(17 from I-KNOW and 18 from HIBISCUS-STROKE). Baseline patients’ 
characteristics are summarized in A.2. The inclusion and exclusion 
criteria for both cohorts are detailed in A.1. All patients from both co-
horts gave their informed consent and the imaging protocol was 
approved by the regional ethics committee. 

In both cohorts, all patients underwent the following MRI protocol 
on admission: diffusion-weighted-imaging (DWI), T2-weighted fluid- 
attenuated-inversion-recovery (FLAIR), T2-gradient echo, MR- 
angiography and dynamic susceptibility-contrast perfusion imaging 
(DSC-PWI). A follow-up FLAIR was performed several days after 
admission (specifically, 6 and 30 days in HIBISCUS-STROKE and I- 
KNOW, respectively). MRI acquisition parameters are described in A.3. 

2.1.2. Image post-processing 
Parametric maps were extracted from the DSC-PWI by circular sin-

gular value decomposition of the tissue concentration curves (Olea 

Fig. 1. Patient inclusion flowchart.  
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Sphere, Olea Medical, La Ciotat, France): cerebral blood flow (CBF), 
cerebral blood volume (CBV), mean transit time (MTT), time to 
maximum (Tmax) and time to peak (TTP). Lesions on the baseline DWI 
and final FLAIR were segmented by an expert (THC) blinded to the 
clinical data with a semi-automated method (3D Slicer, https://www. 
slicer.org/). Specifically, a region-of-interest-controlled thresholding 
was used with manual corrections when required (for the DWI lesion, an 
ADC upper threshold of 620x10− 6 mm2/s was used). 

Images from HIBISCUS-STROKE were coregistered within subjects to 
the baseline DWI MRI using non-linear registration with Ants (Avants 
et al., 2011). Images from I-KNOW were coregistered within subjects to 
the PWI-DSC MRI (matrix 128x128) using affine registration with Sta-
tistical Parametric Mapping 8. Once co-registration was performed, 
HIBISCUS-STROKE patients had all MRI slices of size 192x192 compared 
to 128x128 for I-KNOW patients. As I-KNOW patients were largely in the 
minority (17 patients out of the 109 total patients), we up-sampled the 
images of I-KNOW patients to 192x192. The skull from all patients was 
removed using FSL (Smith et al., 2001). Finally, images were normalized 
between 0 and 1 to ensure inter-patient standardization. 

2.2. Early reperfusion and training sets 

We describe reperfusion criteria and we define the training sets. 

2.2.1. Assessment of early reperfusion 
In HIBISCUS-STROKE, early reperfusion was assessed at the end of 

the endovascular procedure with the modified Thrombolysis in Cerebral 
Infarction (mTICI) score (grade 0: no reperfusion; grade 1: anterograde 
reperfusion past the initial occlusion, but limited distal branch filling 
with little or slow distal reperfusion; grade 2a: anterograde reperfusion 
of less than half of the occluded target artery previously ischemic ter-
ritory; grade 2b: anterograde reperfusion of more than half of the pre-
viously occluded target artery ischemic territory; grade 2c: near 
complete reperfusion, i.e. >90% but less than mTICI 3; grade 3: com-
plete anterograde reperfusion) (Zaidat et al., 2013). Angiographic 
reperfusion was defined by mTICI scores of 2b-3, while patients without 
reperfusion had mTICI scores of 0-2a. 

In I-KNOW, no patient was treated by endovascular procedures. 
Early reperfusion was assessed 3 h after the first MRI (H3) and was 
defined as voxels with Tmax ⩾6 s at admission (H0) and Tmax < 6 s at H3. 
Acute reperfusion was defined by a reperfusion ratio (volume of reper-
fused voxels at H3/perfusion lesion volume at H0) of ⩾50%. 

2.2.2. Training sets 
Three distinct training sets and corresponding models were built to 

assess the impact of reperfusion on the accuracy of final infarct pre-
diction: a ‘general’ model, trained on the entire cohort irrespective of the 
reperfusion status (all training set); a ‘reperfused’ model, trained only 
with reperfused patients (reperfused training set); a ‘non-reperfused’ 

Fig. 2. Overview of the proposed deep learning architecture. Top left: The network takes five MRI images (2D slices from DWI, ADC, CBV, CBF, Tmax volumes) as 
input. Below: Each input image is processed independently on 5 separate branches. Pink, purple, yellow, red and green feature maps result from 2D-convolutions and 
maxpooling. The output of the 5 branches are then concatenated, and upsampled through 2D-deconvolution layers. The network produces an output map with 3 
classes (lesion, healthy tissue and background). Top Right: The predicted lesion has to be compared to the true lesion from the final FLAIR. 
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model, trained only with non-reperfused patients (non reperfused 
training set). Given the high rate of angiographic success in patients 
treated by thrombectomy (mTICI score of 2b-3 in >70% of patients) 
(Goyal et al., 2016), we expected a limited proportion of non-reperfused 
patients from HIBISCUS-STROKE. We thus included patients without 
early reperfusion from I-KNOW (identified by the H3 perfusion MRI 
follow-up) in order to improve this imbalance. I-KNOW patients were 
only included in the training set of the general and the non-reperfused 
models, but were not included in any testing set. 

2.3. Proposed CNN architecture 

We used a U-Net architecture, a multi-scale network that has already 
shown its potential for infarct prediction tasks (Winzeck et al., 2018; Yu 
et al., 2020). Perfusion and diffusion MRI were used as inputs, as both 
modalities are complementary to evaluate the risk of infarction (Barber 
et al., 1998). More precisely, a total of five inputs were used: DWI and 
ADC for diffusion MRI, as well as Tmax, CBF and CBV for perfusion MRI. 
Previous studies in other medical applications have evaluated methods 
for combining the input data into CNNs, showing the merit of late fusion 
strategies (Nie et al., 2016; Aygün et al., 2018; Dolz et al., 2018; Dolz 
et al., 2018). Late fusion incorporates each input independently into 
distinct convolutional branches, subsequently merging features at a 
higher level. This strategy was chosen for its potential to better integrate 
each MRI input and the impact of reperfusion status. The comparison of 
the early and late fusion strategies is presented in C. 

The five inputs (DWI, ADC, Tmax, CBV, CBF) were fed into our late 
fusion network of 5 distinct convolution branches. The proposed ar-
chitecture is depicted in Fig. 2, and its encoding layers are detailed in 
Table 1. Each input consisted of whole 2D images (192x192). No patches 
were used in order to secure a large spatial context for lesion prediction. 
The network produced probability maps with 3 classes: lesion, healthy 
tissue, background. The lesion probability map was thresholded at 0.5 to 
define the final infarct. Training and configuration of the network are 
detailed in B. 

2.4. Evaluation 

2.4.1. Ground truth 
The final lesion is given by the FLAIR MRI, which was performed 

several days after admission (specifically, 6 and 30 days in HIBISCUS- 
STROKE and I-KNOW, respectively). The brain mask and the final 
lesion on the FLAIR MRI were segmented by experts using semi- 
automatic intensity-based thresholding. The ground truth for each pa-
tient was therefore a 3D mask with 3 classes: one class for background, 
one class for healthy tissues and one class for the lesion. 

2.4.2. Metrics 
Standard metrics for assessing image segmentation/prediction tasks 

were used: the Dice similarity coefficient (DSC), precision, recall, 
volumetric similarity (VS), and Hausdorff distance (HD) (Taha and 
Hanbury, 2015). The DSC measures the relative overlap of the predic-
tion with the ground truth (TP, FN and FP are respectively the true 
positive, false negative and false positive voxels): 

DSC =
2⋅TP

FN + FP + 2⋅TP
. (1) 

Precision (also know as positive predictive value) measures the 
percentage of voxels identified as lesion that have been classified 
correctly, while recall (also know as sensitivity) measures the percent-
age of actual lesion voxels that have been classified correctly: 

Precision =
TP

TP + FP
, (2)  

Recall =
TP

TP + FN
. (3) 

The VS gives a relative ratio between the prediction and the ground 
truth volumes, without considering any overlap of the two volumes: 

VS = 1 −
|FN − FP|

2⋅TP + FP + FN
, (4) 

The HD is a measure of the distance of the largest error between the 
prediction (A) and ground truth (B): 

HD(A,B) = max(h(A,B), h(B,A)) where h(A,B) = max
a∈A

min
b∈B

||a − b||.

(5) 

The area-under-the-curve (AUC) is widely used in medical evalua-
tion. Based on the ROC curve (Hajian-Tilaki, 2013), it provides an 
aggregated performance measure of an image modality or parametric 
map across all possible threshold values. However, the overwhelming 
number of non-infarcted voxels relative to infarcted ones can drive high 
AUC values while the extent and location of the infarct is poorly pre-
dicted (Jonsdottir et al., 2009). Several studies thus favored the DSC, 
which is more specific for lesion prediction (Winder et al., 2019; Yu 
et al., 2020). We presented AUC values in order to facilitate comparisons 
with some previous studies, notably when comparing CNN-based 
models and the clinical perfusion-diffusion mismatch model (Nielsen 
et al., 2018; Yu et al., 2020). 

2.4.3. Perfusion-diffusion mismatch model 
Our CNN-based predictive models were compared with the current 

reference method used in clinical practice. According to the perfusion- 
diffusion mismatch model, the projected final infarct can be defined as 
follows: (1) in reperfused patients, the final infarct is represented by the 
baseline diffusion lesion; (2) in non-reperfused patients, the final infarct 
is defined as the union of the acute diffusion lesion and the ischemic 
penumbra (voxels with a Tmax > 6 s and normal DWI)(Olivot et al., 
2009). The AUC of the perfusion-diffusion mismatch model to predict 
the final infarct was assessed in patients with and without reperfusion. 
Non-infarcted voxels were those not included in the diffusion lesion in 
reperfused patients, and those not included in the diffusion ∪ penumbra 
in non-reperfused patients. Infarcted voxels were the complementary 
voxels. The AUC was computed as in Jonsdottir et al., 2009. 

2.4.4. Statistical analyses 
A two-sided Wilcoxon signed-rank test was performed in order to 

compare the performances of: (1) reperfused vs general, non-reperfused 
vs general and reperfused vs non-reperfused models; (2) models with all 
MRI inputs vs models with ablation of one or more MRI inputs; (3) 
reperfused model vs diffusion lesion model; (4) non-reperfused model vs 
diffusion ∪ penumbra lesion model. Statistical analyses were performed 
using R version 3.5.1. 

Table 1 
Encoding layers of the proposed late fusion U-net. The encoder is 
composed of 5 convolution blocks (Conv Block), maxpooling op-
erations (2D MaxPooling) and dropout. The Conv Block is made of: 
2D convolution (3*3)+ batch normalization + 2D convolution 
(3*3)+ batch normalization.  

Layer (type) Output shape 

Conv Block 1 192*192*8 
2D MaxPooling 96*96*8 
Conv Block 2 96*96*16 
2D MaxPooling 48*48*16 
Conv Block 3 48*48*32 
2D MaxPooling 24*24*32 
Conv Block 4 24*24*64 
Dropout + 2D Maxpooling 12*12*64 
Conv Block 5 + Dropout 12*12*128 
Concatenation 12*12*640  
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3. Results 

3.1. Performance of the general, reperfused and non-reperfused CNNs 

The performances and comparisons of the general, reperfused and 
non-reperfused models tested in reperfused and non-reperfused patients 
are presented in Table 2. 

Among reperfused patients, the non-reperfused model was inferior to 
either the reperfused or general models for all metrics except for pre-
cision (Tables 2-a and 2-b). The model seems to predict many false 
negative voxels (low recall), many outlier voxels (high hausdorff dis-
tance), and a different volume than expected (low VS). Conversely, no 
clear-cut performance difference was found between the reperfused and 
general models. 

Among non-reperfused patients, the non-reperfused model had bet-
ter or similar performance than the reperfused model for all metrics 
except for recall (Tables 2-c and 2-d). The model seems to predict the 
lesion well in terms of volume and localisation (high VS and high DSC), 
with few false positive voxels (high precision) but some false negative 
voxels (medium recall). No clear overall difference was observed 

between the non-reperfused and general models, or between the 
reperfused and general models. 

The predicted infarct volumes were significantly larger with the non- 
reperfused compared to the reperfused model (39.7 mL (61.3–20) vs 
17.5 mL (28–5.1), p = 4.5e − 16 for the non-reperfused and reperfused 
models, respectively; median with interquartile range). Accordingly, 
significant differences of VS between these two models were observed 
(Tables 2-b and -d). Fig. 3 illustrates and compares the output of the two 
CNNs (reperfused and non-reperfused) for two patients with distinct 
reperfusion status. 

3.2. Comparison of CNN-based models and the perfusion-diffusion 
mismatch model 

In both reperfused and non-reperfused patients, the DSC, VS and 
recall of CNN-based models were superior to those of the perfusion- 
diffusion mismatch models (Table 3). Final lesion predicted by CNNs 
are therefore more spatially and volumetrically coherent (high DSC and 
VS), and have fewer false negative voxels than the mismatch model. At 
the patient level, higher DSC values were achieved with CNN-based 
models in 68% and 89% of the reperfused and non-reperfused pa-
tients, respectively. Conversely, the precision of mismatch models was 
higher than that of CNN, suggesting more false positive voxels with the 
latter methods. 

CNN-based models achieved higher AUC values compared to those of 
perfusion-diffusion mismatch models (reperfused patients: 0.87 ± 0.13 
vs 0.79 ± 0.17, P < 0.001; non-reperfused patients: 0.81 ± 0.13 vs 0.73 
± 0.14, P < 0.01, in CNN vs perfusion-diffusion mismatch models, 
respectively). Cases illustrating successful or suboptimal outputs from 
CNN and mismatch models are presented in Fig. 4. 

The comparison of CNNs and perfusion-diffusion mismatch model 
was included as the latter remains the reference method in clinical 
practice. The mismatch model only provides a crude threshold-based 
segmentation of baseline images, and may not match the feature 
extraction potential of CNNs. Also, the mismatch model is only based on 
ADC and Tmax in order to predict the final lesion outcome, whereas our 
model is based on more inputs (DWI, ADC, Tmax, CBV, CBF). 

3.3. Value of the MRI inputs for predicting the final infarct 

An ablation study was performed with the reperfused and non- 
reperfused models (tested only in reperfused and non-reperfused pa-
tients, respectively) in order to evaluate the relative importance of the 
different MRI inputs for predicting the final infarct. In both reperfused 
and non-reperfused patients, the full CNN models (i.e. including DWI, 
ADC, Tmax, CBF and CBV) had similar performances compared to models 
without CBF and CBV, suggesting these latter inputs had limited pre-
dictive value (lines 1 and 2 from Tables 4-a and 4-b). Conversely, adding 
the diffusion data (DWI and ADC) to Tmax maps significantly increased 
the DSC of these CNNs. This performance increase was more pronounced 
among reperfused patients compared to those without reperfusion. 

4. Discussion 

4.1. Impact of the reperfusion status on CNN performance 

Our study showed that the performance of CNN-based models 
improved when trained from reperfusion status-specific subgroups. The 
predicted lesion had better overlap (i.e. higher DSC) with the final 
infarct in both reperfused and non-reperfused patients, when using the 
corresponding reperfusion status-specific CNN. 

Baseline imaging features do have significant predictive value, and 
CNNs trained without data on reperfusion can successfully predict the 
final lesion in some patients (Yu et al., 2020). This may in part reflect the 
mostly homogenous profile of patients currently treated by thrombec-
tomy (i.e. limited cerebral damage at baseline and successful 

Table 2 
Performance metrics of the general, reperfused and non-reperfused models 
among (a) reperfused and (c) non-reperfused patients (average values ±
standard deviation). Bold values correspond to the best value of the respective 
evaluation metric (column-wise). P-values from two-sided wilcoxon signed-rank 
tests comparing the general, reperfused and non-reperfused models among (b) 
reperfused and (d) non-reperfused patients. Bold values correspond to sig-
nificant differences, with (*) indicating P < 0.05, (**) indicating P < 0.01 and 
(***) indicating P < 0.001. Note that tests were not corrected for multiple 
comparisons, and correspond to independent two-by-two comparisons.  

(a) Performance metrics among reperfused patients 

Model DSC VS Precision Recall HD 

General 0.43 ±
0.24 

0.69 ±
0.27 

0.55 ±
0.28 

0.43 ±
0.25 

33.23 ±
15.6 

Reperfused 0.44 ±
0.25 

0.70 ±
0.27 

0.50 ±
0.27 

0.50 ±
0.26 

38.58 ±
18.1 

Non- 
reperfused 

0.35 ±
0.21 

0.57 ±
0.28 

0.60 ±
0.25 

0.31 ±
0.24 

40.05 ±
15.6  

(b) Model comparisons among reperfused patients 

Two-sided Test DSC P- 
value 

VS P- 
value 

Precision P- 
value 

Recall P- 
value 

HD P- 
value 

General vs 
Reperfused 

0.43 0.53 3.7e-6 (***) 1.4e-6 
(***) 

0.048 (*) 

General vs Non- 
Reperfused 

1.4e-8 
(***) 

4.3e-6 
(***) 

0.0069 (**) 1.0e-10 
(***) 

0.0041 
(**) 

Reperfused vs 
Non- 
Reperfused 

2.3e-8 
(***) 

1.6e-5 
(***) 

2.9e-7 (***) 2.7e-11 
(***) 

0.65  

(c) Model performance among non-reperfused patients 

Model DSC VS Precision Recall HD 

General 0.44 ±
0.21 

0.66 ±
0.26 

0.39 ±
0.25 

0.63 ±
0.21 

30.61 ±
16.1 

Reperfused 0.44 ±
0.22 

0.63 ±
0.25 

0.36 ±
0.23 

0.69 ±
0.22 

44.53 ±
16.7 

Non- 
reperfused 

0.47 ±
0.17 

0.74 ±
0.13 

0.49 ±
0.22 

0. 52 ±
0.21 

37.70 ±
17.7  

(d) Model comparisons among non-reperfused patients 

Two-sided Test DSC P- 
value 

VS P- 
value 

Precision P- 
value 

Recall P- 
value 

HD P- 
value 

General vs 
Reperfused 

0.93 0.55 0.13 0.021 (*) 0.0023 
(**) 

General vs Non- 
Reperfused 

0.17 0.21 0.0016 (**) 0.00084 
(***) 

0.11 

Reperfused vs 
Non- 
Reperfused 

0.13 0.034 
(*) 

0.00067 
(***) 

5.3e-5 
(***) 

0.12  
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reperfusion). Indeed, the training set for our general CNN consisted of 
∼70% of reperfused patients, and this case-mix likely accounts for the 
lack of significant difference between the general and reperfused 
models. 

Still, the pathophysiological rationale for integrating the reperfusion 
status in predictive models is strong. Timely reperfusion is closely 
associated with increased penumbra salvage and reduced final infarct 

size (Cho et al., 2015). We propose that a new patient’s eligibility to 
treatment could be assessed by using both CNNs (the one trained from 
reperfused and the other from non-reperfused patients). The clinician 
would thus have a dual set of predictive maps allowing a comparison of 
the projected infarct with and without reperfusion, and an estimation of 
the treatment effect. A mismatch between these two models (i.e. a 
smaller infarct in case of a successful thrombectomy that achieved 
reperfusion, than in the no-reperfusion model) would indicate that this 
patient is likely to benefit from therapy (responder). Conversely, a 
similar output from the reperfused and non-reperfused models would 
suggest a limited effect of therapy (non-responder). In our selected 
dataset, the final predicted infarct was substantially larger with the non- 
reperfused CNN in 53 (∼50%) patients when considering the following 
criteria: DSC between the two CNNs < 0.5 and non-reperfused CNN 
lesion volume ⩾20% larger than the output of the reperfused CNN. 
Conversely, the absence of a clear difference between the two models 
would suggest limited benefit from reperfusion therapies. Reliable pre-
dictions of the final infarct may also help in evaluating novel neuro-
protection strategies, by comparing the projected vs observed infarct size 
in patients with ischemia–reperfusion (Hougaard et al., 2013). This 
approach may facilitate the screening of a larger number of putative 
neuroprotectants at lesser cost than full-sized controlled trials. 

Our results indicate that CNN can successfully take into account 
reperfusion by conditioning the training dataset according to this clin-
ical status, in order to achieve more robust predictions. The full vali-
dation of this approach will require a multicentric collaboration in order 
to collect high quality longitudinal data, including cases without 
reperfusion. 

4.2. Comparison to current clinical prediction methods 

Our CNN models achieved higher AUC and DSC than the perfusion- 
diffusion mismatch models currently used in clinical practice (patient A 

Fig. 3. CNN-based predictions of the final infarct using the reperfused and non-reperfused models, applied in: patient 1 (no reperfusion, TICI = 2a); patient 2 
(reperfused, TICI = 2b). 

Table 3 
Comparison of CNN-based and perfusion-diffusion mismatch models. Among 
reperfused patients (upper rows), the CNN-based reperfused model was 
compared to the threshold-based diffusion lesion. Among non-reperfused pa-
tients (lower rows), the CNN-based non-reperfused model was compared to the 
threshold-based diffusion ∪ penumbra lesion. Bold values correspond to the best 
value of the respective evaluation metric (column-wise). A two-sided wilcoxon 
signed-rank test was performed between the proposed models and the clinical 
models, with (.) indicating P < 0.10, (*) indicating P < 0.05, (**) indicating P <
0.01 and (***) indicating P < 0.001.  

Reperfused patients 

Model DSC VS Precision Recall HD 

CNN 0.44 ±
0.21 (*) 

0.66 ±
0.26 
(***) 

0.39 ± 0.25 0.63 ±
0.21 
(***) 

30.61 ±
16.1 

Perfusion- 
diffusion 
mismatch 

0.41 ±
0.23 

0.56 ±
0.27 

0.71 ±
0.31 (***) 

0.33 ±
0.20 

19.34 ±
10.3 (***)  

Non-reperfused patients 

Model DSC VS Precision Recall HD 

CNN 0.47 ±
0.17 
(***) 

0.74 ±
0.13 
(***) 

0.49 ± 0.22 0.52 ±
0.21 
(***) 

37.70 ±
17.7 (***) 

Perfusion- 
diffusion 
mismatch 

0.26 ±
0.17 

0.31 ±
0.21 

0.84 ±
0.16 (***) 

0.17 ±
0.13 

69.15 ±
7.7  
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and B in Fig. 4 are illustrative cases). Our results were in the same range 
as those of recently reported CNNs: the best model of the ISLES chal-
lenge achieved a DSC of 0.38 (Winzeck et al., 2018); Nielsen et al., 2018 
reported a mean AUC of 0.88, while Yu et al., 2020 reported a mean DSC 
and AUC of 0.53 and 0.89, respectively. However, a strict comparison is 
not possible as the cited studies were all performed on different datasets, 
and in the light of different time-windows of prediction. 

We also confirmed that predicting the final infarct remains a chal-
lenging task. Mean DSC were modest (0.44 and 0.47 for the reperfused 
and non-reperfused model, respectively), corresponding to an assort-
ment of highly accurate predictions (DSC>0.7) and failure of both CNNs 
and perfusion-diffusion mismatch models in other cases (e.g. patient C, 
D and E in Fig. 4). Partial and sometimes extensive reversal of the 

diffusion lesion can be observed (patients C and D in Fig. 4), especially in 
the event of early reperfusion (Yoo et al., 2019). This phenomenon may 
particularly affect patients with small baseline DWI lesion, in whom 
even limited discrepancies between the predicted and observed infarct 
may result in very low DSC values. Still, no significant correlation was 
found between the DSC and baseline DWI lesion volume (r = 0.038, p =
0.72). Also, baseline imaging cannot account for subsequent events that 
may alter the progression of ischemic lesions (e.g. patient E in Fig. 4: a 
possible case of reocclusion after a successful reperfusion). These pa-
tients illustrate the heterogeneity and complexity of stroke lesion pro-
gression. Reinforcement learning could help improve the performance 
of CNNs by training more specifically on these underrepresented pa-
tients (Arulkumaran et al., 2017). 

Fig. 4. Output predictions from CNN models compared with the PWI-DWI mismatch model. Five tested patients are shown: two successful cases when CNN models 
outperform PWI-DWI mismatch in reperfused and non-reperfused patients (patient A with TICI = 2a and patient B with TICI = 3) and three difficult patients to 
predict, for both CNN and PWI-DWI mismatch models (patient C with TICI = 2a, patient D with TICI = 3 and patient E with TICI = 2b). For each prediction model, 
patient-wide DSC is specified. 
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4.3. Predictive value of the MRI inputs 

The ablation study showed that CBF and CBV had limited impact on 
the performance of our CNN. This result is in line with the common 
qualitative observation that the perfusion lesion is less conspicuous on 
CBF or CBV maps compared to Tmax maps. A previous voxel and 
threshold-based study had also observed that these parameters were 
poor predictors of the final infarct (Christensen et al., 2009). 

Thus, ADC, DWI and Tmax could constitute the main inputs for the 
network predicting the final infarct. Similarly, Livne et al. have shown 
that both perfusion parameters and DWI made significant predictive 
contributions, albeit with a different method (extreme gradient tree 
boosting) and among patients who were not treated by thrombectomy 
and thus had a significantly lower rate of reperfusion (Livne et al., 
2018). Our study was conducted among thrombectomy-treated patients 
with a reperfusion rate of 80%, in whom the baseline DWI lesion is 
known to have a strong correlation with the final infarct. Our results 
further suggest that Tmax maps may have a greater predictive value 
among non-reperfused patients, which would be consistent with previ-
ously available data. Wheeler et al., 2013 had shown a strong correlation 
between the baseline diffusion lesion and final infarct volume in 
reperfused patients, and a high correlation between the Tmax > 6 s lesion 
and final infarct volume for non-reperfused patients. 

These observations support our chosen deep learning architecture. 
The late fusion configuration allows for better integration of the distinct 
information contained in perfusion and diffusion imaging. Training 
reperfusion status-specific models entail assigning distinct weights to 
each MRI input. The performance of CNNs built with an early fusion 
configuration are presented in C. Early fusion had overall worse per-
formance than late fusion. Fewer performance differences were also 

observed between the general, reperfused and non-reperfused models, 
suggesting that early fusion may overlook the reperfusion status. 

4.4. Limitations 

Our study presents several limitations. Patients were included from 
two cohorts with different treatment protocols: HIBISCUS-STROKE 
involved patients treated by thrombectomy, whereas I-KNOW was a 
multicentric observational study of patients managed conservatively or 
with intravenous thrombolysis without any endovascular procedure. 
However, I-KNOW only contributed patients with proximal occlusions 
without reperfusion, who likely have a very similar course to failed 
thrombectomy cases. Methods for assessing early reperfusion differed 
between these two cohorts. Nevertheless, as proposed in a previous 
study, MRI and angiographic data can be pooled when evaluating 
reperfusion (Marks et al., 2014). Several precautions were observed to 
limit potential biases: (i) TICI score assessment strictly followed stan-
dard recommandations (Zaidat et al., 2013) and was thus not a surrogate 
for recanalization; (ii) both TICI score and DSC-PWI assess tissue 
perfusion; similar criteria for both methods were used to identify 
reperfusion (TICI ⩾2b and DSC-PWI reperfusion ratio ⩾50%); (iii) in I- 
KNOW, the follow-up DSC-PWI used to assess reperfusion was per-
formed with a median delay of 170 min from the baseline MRI, and was 
thus in a similar ultra-early time frame as HIBISCUS patients undergoing 
endovascular treatment. Furthermore, no significant difference was 
found between the non-reperfused patients of the two cohorts for the 
following baseline variables: gender, age, baseline NIHSS score, time 
from symptoms onset to MRI, baseline DWI lesion size. The HIBISCUS 
cohort had a majority of M1 occlusions (15/18; 3 patients had a M2 
occlusion), while most I-KNOW patients had M2 occlusions (12/17; 5 
had a M1 occlusion. This significant difference in occlusion level (p =
0.002, Fisher’s exact test) is likely related to the distinct inclusion 
criteria of these two cohorts (HIBISCUS specifically included patients 
with proximal intracranial occlusions). Other clinical parameters such as 
age and time from symptoms onset to imaging and reperfusion are 
recognized prognostic factors. Their integration in predictive CNNs may 
enhance model performance and warrants further investigation. Finally, 
the interval between stroke onset and the follow-up MRI was 6 days. 
Other studies used different or similar delays: 3 to 7 days (Yu et al., 
2020), 1-month (Nielsen et al., 2018) or 90 days (Winzeck et al., 2018). 
A previous study has shown that the 24-h DWI lesion volume was well 
correlated with day 90 FLAIR lesion volume (Campbell et al., 2012). 
Infarct volume at either time points predicted functional outcome. 
Studies using different intervals may be compared provided a successful 
coregistration of baseline and final images was achieved. 

5. Conclusion 

The performance of deep learning models improved when the 
reperfusion status was incorporated in their training. CNN-based models 
outperformed the clinically-used perfusion-diffusion mismatch model. 
Comparing the predicted infarct in case of a successful vs failed reper-
fusion may help in estimating the treatment effect and guiding thera-
peutic decisions in selected patients. 
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Table 4 
Evaluation metrics of the reperfused and non-reperfused models after successive 
ablation of the MRI inputs, tested among (a) reperfused and (b) non-reper-
fused patients, respectively (average values ± standard deviation). Bold values 
correspond to the best value of the respective evaluation metric (column-wise). 
A two-sided wilcoxon signed-rank test was performed between the full models 
with all 5 MRI inputs and the ablated ones, with (.) indicating P < 0.10, (*) 
indicating P < 0.05, (**) indicating P < 0.01 and (***) indicating P < 0.001.  

(a) Reperfused model: ablation study among reperfused patients 

Input MRI DSC VS Precision Recall HD 

DWI + ADC +
Tmax+CBF +
CBV 

0.44 ±
0.21 

0.66 ±
0.26 

0.39 ± 0.25 0.63 ±
0.21 

30.61 ±
16.1 

DWI + ADC +
Tmax 

0.44 ±
0.25 

0.70 ±
0.26 

0.54 ±
0.28 (***) 

0.46 ±
0.27 (**) 

35.13 ±
15.6 (.) 

DWI 0.42 ±
0.24 (*) 

0.70 ±
0.26 

0.51 ± 0.28 0.44 ±
0.27 
(***) 

31.28 ±
16.1 (**) 

ADC 0.40 ±
0.24 
(***) 

0.67 ±
0.28 (.) 

0.47 ± 0.27 
(.) 

0.43 ±
0.27 
(***) 

34.35 ±
20.4 (*) 

Tmax 0.32 ±
0.20 
(***) 

0.63 ±
0.30 (*) 

0.44 ± 0.25 
(*) 

0.35 ±
0.25 
(***) 

29.99 ±
13.7 (**)  

(b) Non-reperfused model: ablation study among non-reperfused patients 

Input MRI DSC VS Precision Recall HD 

DWI + ADC +
Tmax+CBF +
CBV 

0.47 ±
0.17 

0.74 ±
0.13 

0.49 ±
0.22 

0.52 ±
0.21 

37.70 ±
17.7 

DWI + ADC +
Tmax 

0.47 ±
0.18 

0.74 ±
0.16 

0.52 ±
0.22 

0.50 ±
0.22 

35.77 ±
20.2 

DWI 0.45 ±
0.17 

0.71 ±
0.17 

0.50 ±
0.22 

0.50 ±
0.25 

33.20 ±
17.2 

ADC 0.42 ±
0.15 (.) 

0.73 ±
0.23 

0.47 ±
0.18 

0.46 ±
0.21 (.) 

28.35 ±
12.9 (**) 

Tmax 0.40 ±
0.19 (*) 

0.65 ±
0.21 

0.50 ±
0.29 

0.46 ±
0.24 (**) 

26.86 ±
13.3 (.)  
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Appendix A. Data 

A.1. Inclusion criteria of HIBISCUS-STROKE and I-KNOW 

Inclusion criteria for HIBISCUS-STROKE were: (1) patients with an anterior circulation stroke related to a proximal intracranial occlusion (internal 
carotid artery, M1 or M2 occlusion), directly admitted to our comprehensive stroke unit (‘mothership’ paradigm); (2) diffusion and perfusion MRI as 
baseline imaging; (3) patients treated by thrombectomy with or without intravenous thrombolysis. 

Inclusion and exclusion criteria for I-KNOW were: (1) NIHSS ⩾4; (2) diffusion and perfusion MRI consistent with an acute anterior circulation 
ischemic stroke; and (3) admission MRI completed within 6 h for patients treated with intravenous thrombolysis, or within 12 h for those managed 
without thrombolysis. Patients with lacunar or posterior circulation stroke, unknown time of onset or intracerebral hemorrhage were excluded. No 
patient received intra-arterial therapy. For the present study, additional inclusion criteria were applied, as follows: (1) both admission and acute 
follow-up diffusion and perfusion MRI obtained 3 h after initial imaging (H3) available and assessable; (2) visible occlusion on the baseline MRA; and 
(3) H3 perfusion without significant reperfusion. (see Table A.5). 

A.2. Patients’ baseline characteristics 

. 

A.3. MRI protocol 

All patients underwent DWI (IKNOW: repetition time 6000 ms, field of view 24 cm, matrix 128× 128 (IKNOW) or 192× 192 (HIBISCUS-STROKE), 
slice thickness 5 mm), Fluid-attenuated-inversion-recovery (repetition time 8690 ms, echo time 109 ms, inversion time 2500 ms, field of view 21 cm, 
matrix 224× 256, section thickness 5 mm), T2-weighted gradient echo (repetition time 800 ms, echo time 28 ms, flip angle 20◦, field of view 230 mm, 
matrix 512× 512, section thickness of 5 mm), MRA and DSC-PWI (echo time 40 ms, repetition time 1500 ms, field of view 24 cm, matrix 128× 128, 
slice thickness 5 mm; gadolinium contrast at 0.1 mmol/kg), both for the admission and follow-up MRI. 

Appendix B. Network training and parameters 

Only slices including the final infarct were used to train the U-net and no data augmentation was employed. We used a multi-class Dice function as 
a loss function (Milletari et al., 2016), for which the lesion class was assigned a weight 8 times higher than those of healthy and background classes. We 
used the Adam optimizer (lr = 1 × 10− 4 and decay = 5× 10− 4) and a batch size of 12. To prevent overfitting, we applied dropout (set to 0.5), used a L2 
regularizer reg at each convolution layer (reg = 2× 10− 4) and the number of epochs (set to 500) was regulated by early stopping (i.e. the training was 
stopped once the best validation multi-class dice did not increase more than 0.005 on 100 epochs). The evaluation of each model was performed using 
a 5-fold cross-validation. Note that patients from I-KNOW dataset were added in the training set of the general and the non-reperfused models for data- 
augmentation purposes, but were not used in the testing set. Specifically, the number of training patients was, depending on the fold: between 89 and 
91 patients for the general model, between 59 and 60 patients for the reperfused model, and between 30 and 31 patients for the non-reperfused model. 
The number of test patients varied between 17 and 19 (reperfused and non-reperfused patients combined). 

The number of parameters is proportional to the number of U-Net path: thus, the number of trainable parameters is 1997851 for a U-Net 

Table A.5 
Baseline characteristics (median with interquartile range, unless otherwise 
indicated). NIHSS: National Institutes of Health Stroke Scale; DWI: diffusion- 
weighted imaging; ICA: internal carotid artery.  

Clinical variables  

Women, n (percentage) 45 (41.3) 
Age 70 (57–79) 
NIHSS score 15 (10–19) 
Time from symptoms onset to MRI 105 (78–154) 
Intravenous tPA, n (percentage) 59 (54.1) 
Site of occlusion, n (percentage):  

intracranial ICA + M1 27 (24.8) 
M1 54 (49.5) 
intracranial ICA + M2 23 (21.1) 
M2 5 (4.6) 
cervical ICA, n (percentage) 19 (17.4) 

DWI lesion size, mL 24.9 (7.4–50.9)  

N. Debs et al.                                                                                                                                                                                                                                    



NeuroImage: Clinical 29 (2021) 102548

10

architecture with 5 MRI sequence inputs, 1242603 for 3 MRI inputs, and 487355 when using only one input. The higher the number of paths, the less 
the information is compressed and the more the architecture offers the possibility of learning different information on each input data. Thus, we chose 
not to balance the number of parameters between each architecture. However, to ensure a fair comparison, each network’s hyperparameters were 
independently fine-tuned on a fixed search space. The best parameters were found to be the same in all tested architectures. We used Keras 2.1.3 
library with Python 3.6.3 interface. The training phase took approximately 1 h on a work station with an NVIDIA GeForce GTX 1080 GPU with 128 GB 
memory. 

Appendix C. Impact of the multiple MRI fusion configuration 

We compared our proposed late fusion deep learning architecture to an early fusion one, where all patient input images are combined at the 
beginning of the CNN. This fusion strategy reduces both the computational complexity and training parameters (Chen et al., 2019). Each patient being 
represented by DWI, ADC, Tmax, CBV, CBF, the early fusion architecture stacks channel-wise these 5 MRI inputs and does not process them inde-
pendently. Results are shown in Table C.6. 

It appears that best metric values are obtained when performing a late fusion strategy rather than an early fusion: average values of DSC, VS, 
precision and recall are higher whatever the training set (all, reperfused, non reperfused). However, lowest values for HD metric are obtained when 
performing early fusion. Early fusion seems to offer a better spatial delineation of the final lesion: fewer outliers seem to be predicted, which drastically 
decreases HD values. 

With early fusion configuration, differences observed between the global model and the reperfused and non-reperfused submodels are smaller and 
not significant. This type of architecture seems less adapted to take into account the status of reperfusion. 
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Table C.6 
Evaluation metrics after training models on different training set (all, reper-
fused, and non-reperfused) with different fusion strategies (early and late) and 
evaluating them on reperfused testing patients (a) and non-reperfused testing 
patients (b) (average values ± standard deviation). Bold values correspond to 
the best value of the respective evaluation metric (column-wise). A two-sided 
wilcoxon signed-rank test was performed between global model and the two 
other models (reperfused and non-reperfused) for a given fusion strategy, with 
(.) indicating P < 0.10, (*) indicating P < 0.05, (**) indicating P < 0.01 and (***) 
indicating P < 0.001.  

(a) Evaluation on reperfused testing patients 

Fusion Training DSC VS Precision Recall HD 

early all 0.39 ±
0.25 

0.59 ±
0.30 

0.56 ±
0.31 

0.40 ±
0.26 

29.51 ±
16.26 

early reperfused 0.41 ±
0.25 

0.64 ±
0.30 

0.46 ±
0.29 (***) 

0.49 ±
0.30 
(***) 

31.24 ±
15.61 

early non- 
reperfused 

0.36 ±
0.22 
(*) 

0.63 ±
0.27 

0.54 ±
0.26 

0.33 ±
0.24 
(***) 

26.64 ±
11.16  

late all 0.43 ±
0.24 

0.69 ±
0.27 

0.55 ±
0.28 

0.43 ±
0.25 

33.23 ±
15.64 

late reperfused 0.44 ±
0.25 

0.70 ±
0.27 

0.50 ±
0.27 

0.50 ±
0.26 
(***) 

38.58 ±
18.15 

late non- 
reperfused 

0.35 ±
0.21 
(***) 

0.57 ±
0.28 
(***) 

0.60 ±
0.25 (***) 

0.31 ±
0.24 
(***) 

40.05 ±
15.66 
(**)  

(b) Evaluation on non-reperfused testing patients 

Fusion Training DSC VS Precision Recall HD 

early all 0.42 
± 0.24 

0.62 
± 0.27 

0.42 ±
0.28 

0.55 ±
0.29 

30.98 ±
18.23 

early reperfused 0.41 
± 0.26 

0.51 
± 0.31 

0.36 ±
0.29 

0.69 ±
0.24 

30.94 ±
16.30 

early non- 
reperfused 

0.42 
± 0.18 

0.66 
± 0.17 

0.42 ±
0.24 

0.55 ±
0.22 

28.48 ±
13.63  

late all 0.44 
± 0.21 

0.66 
± 0.26 

0.39 ±
0.25 

0.63 ±
0.21 

30.61 ±
16.15 

late reperfused 0.44 
± 0.22 

0.63 
± 0.25 

0.36 ±
0.23 

0.69 ±
0.22 (*) 

44.53 ±
16.79 
(**) 

late non- 
reperfused 

0.47 
±

0.17 

0.74 
±

0.13 

0.49 ±
0.22 (**) 

0. 52 ±
0.21 
(***) 

37.70 ±
17.74  
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