Related bifunctional restriction endonucleasemethyltransferase triplets: TspDTI, Tth111II/ TthHB27I and Tsol with distinct specificities

Agnieszka Zylicz-Stachula¹, Olga Zolnierkiewicz ${ }^{2}$, Arvydas Lubys ${ }^{3}$, Danute Ramanauskaite ${ }^{3}$, Goda Mitkaite ${ }^{3}$, Janusz M Bujnicki ${ }^{4}$ and Piotr M Skowron ${ }^{2^{*}}$

Abstract

Background: We previously defined a family of restriction endonucleases (REases) from Thermus sp., which share common biochemical and biophysical features, such as the fusion of both the nuclease and methyltransferase (MTase) activities in a single polypeptide, cleavage at a distance from the recognition site, large molecular size, modulation of activity by S -adenosylmethionine (SAM), and incomplete cleavage of the substrate DNA. Members include related thermophilic REases with five distinct specificities: TspGWI, Taqll, Tth111II/TthHB27I, TspDTI and Tsol. Results: TspDTI, Tsol and isoschizomers Tth1111/TthHB27I recognize different, but related sequences: 5'-ATGAA-3', $5^{\prime}-T A R C C A-3^{\prime}$ and 5^{\prime}-CAARCA-3' respectively. Their amino acid sequences are similar, which is unusual among REases of different specificity. To gain insight into this group of REases, TspDTI, the prototype member of the Thermus sp. enzyme family, was cloned and characterized using a recently developed method for partially cleaving REases. Conclusions: TspDTI, Tsol and isoschizomers Tth111I/TthHB27I are closely related bifunctional enzymes. They comprise a tandem arrangement of Type I-like domains, like other Type IIC enzymes (those with a fusion of a REase and MTase domains), e.g. TspGWI, Taqll and Mmel, but their sequences are only remotely similar to these previously characterized enzymes. The characterization of TspDTI, a prototype member of this group, extends our understanding of sequence-function relationships among multifunctional restriction-modification enzymes.

Background

Subtype IIS enzymes are a growing group of atypical REases that recognize a specific DNA sequence and cleave outside it at a defined distance, up to 21 nt , within any sequence $[1,2]$. Since their discovery, they have attracted considerable attention as objects of basic research in the field of protein-DNA interactions and as advanced tools for genetic engineering. One of the most intensively studied REases is FokI, specific to 5'-GGATG (N9/13)-3' sites, where asymmetry of the recognition site apparently imposes an unusual type of interaction with DNA: the large protein, monomeric in solution, transiently forms dimers and binds two recognition sites while the DNA loop is being generated [3]. Another

[^0]subtype IIS REase - MmeI - not only cleaves DNA at 20/18 nt - one of the sites furthest removed from the recognition site - but also represents a model of a minimal restriction-modification system, where only one (the top) strand of the recognition site is methylated [4]. Molecular applications of subtype IIS enzymes, especially FokI, have been developed since the 1980s, including universal REase, cleaving DNA at a pre-programmed site [5-8], Achilles' Heel Cleavage [9,10], gene amplification [11], gene fusion [12], unidirectional DNA trimming [13], locating methylated bases in DNA [14], gene mutagenesis using excision linkers [1], and others [1,5-8]. Chandrasegaran et al. have developed a series of genetically engineered fusions of a non-specific C-terminal nuclease domain of FokI and specific DNA binding proteins, such as zinc-finger [15,16], $U b x$ homeodomain [17] or structure-specific Z-DNA nuclease [18]. Such artificial constructs have been used to rearrange
mammalian genomes [16]. A recently discovered family of enzymes from Thermus sp. $[19,20]$ belongs not only to subtype IIS, but also to subtypes IIC and IIG. These enzymes are bifunctional, with REase and MTase activities within a single polypeptide (Type IIC) and their cleavage is affected by SAM (subtype IIG). The experimentally characterized members of this family include TspGWI [5'-recognition sequence-3': ACGGA (11/9) [19], TaqII [GACCGA (11/9) [21]], TspDTI [(ATGAA (11/9) [20]], and the TsoI [TARCCA (11/9) [2]] as well as Tth111II/TthHB27I isoschizomer pair [(CAARCA (11/9) [2,22]]. The family shares several functional aspects, including a large molecular size of approximately 120 kDa (larger than typical REases and averagesized prokaryotic proteins, but similar to other subtype IIC enzymes [2]), similarity of amino acid sequences despite distinct specificities (unusual for REases), an identical cleavage distance of $11 / 9 \mathrm{nt}$, an acidic isoelectric point around 6 (except for TsoI), a domain structure related to simplified Type I REases, REase activity affected by SAM, and an origin from within the same genus Thermus, suggesting that they have evolved from one or a few common ancestors [19,20,23]. We recently reported for TspGWI enzyme a new type of substrate specificity change, induced by the replacement of SAM with its analogue - sinefungin (SIN) [24]. The chemi-cally- induced recognition site relaxation changes the cleavage frequency of the REase from 5 -bp to 3 -bp. Such a molecular tool may be useful for generating quasi-random genomic libraries, as it is the second (after CviJI/CviJI*) most frequently cleaving REase [25]. In this paper we describe the cloning, expression and characterization of TspDTI, followed by a bioinformatics analysis of a subfamily of closely related enzymes (TspDTI, Tth111II/TthHB27I and TsoI), which appears to be distinct from the more remotely related sub-family that includes TspGWI and TaqII REases [23].

Results and discussion

Sequencing, cloning and expression of the tspDTIRM gene In the course of studying the new Thermus sp. family of enzymes, we cloned the genes coding for TaqII, TthHB27I, TsoI (manuscripts in preparation) and TspGWI [23]. Initial data referring to TspDTI sequence we have previously deposited in GenBank (EF095489.1). In this work the sequencing data were confirmed and the TspDTI coding gene was de novo cloned into different expression system to improve protein yield. In our attempts to clone the $t s p D T I R M$ gene we experienced serious difficulties. Neither the biochemical selection for the methylation phenotype approach nor the 'whiteblue' screen for DNA damage/modification resulted in the isolation of recombinant clones, which was also the case with tspGWIRM gene cloning [23]. Apparently, low
enzymatic turnover of the enzymes of the Thermus sp. family, greatly reduced activity at $37^{\circ} \mathrm{C}$ and the incomplete cleavage of the plasmid DNA precluded positive results with the classic methods listed above, even though complete cleavage is not required for DNA damage detection in the 'white-blue' method. We therefore used a modification of the previously established, successful $t s p G W I R M$ cloning protocol ([23]; see Additional file 1). The protocol includes two stages: (i) a gene nucleotide sequence prediction starting from N terminal and internal amino acid sequences of REase proteolytic fragments followed by PCR using degenerated and non-degenerated primers, and (ii) direct inframe insertion of an amplified tspDTIRM gene into a strictly temperature-regulated Escherichia coli (E.coli) pACYC184-derived expression vector, containing a P_{R} bacteriophage lambda promoter and overexpressing the bacteriophage lambda thermolabile CI repressor. The system makes use of low temperature cultivation under permissive conditions (at ca $28^{\circ} \mathrm{C}$), both of which prevent REase expression and suppress the activity of any leaking thermophilic REase.
The $t s p D T I R M$ gene nucleotide sequence was determined using an approach similar to that of TspGWI [23]; however, there are substantial differences in the execution of the method. The native TspGWI N-terminus could not be sequenced, so we had to initiate sequencing starting from internal proteolytic peptides and perform the PCR/sequencing divergently with degenerated primers, followed by non-degenerated ones. In contrast, native TspDTI N -terminus sequencing was not problematic. The sequencing of intact protein resulted in a long 35- amino acid stretch with a relatively good signal - MSPSREEVVAHYADRLHQVLQKTIAQNPNEAEFRR. In addition short internal 18-, and 12- amino acid sequences - LGAPVFSALAAADGGTLQ (peptide 1) and REPREPEFYGIMDIG (peptide 3) - were obtained from proteolytic fragments (Figure 1; Additional file 1). Based on the amino acid sequences, the primers were designed in most part arbitrarily, being founded on a back-translated amino acid sequence using codons, which were assumed to exist with the highest probability, as concluded from codon usage data from ORFs of Thermus sp. genes available in GenBank. The high GC content of Thermus genes (app. 70\% GC) was also considered in codon selection, whenever applicable. Sets of combined primers were used to complete entire $t s p D T I R M$ ORF as well as short stretches of flanking regions (see the Methods section).
The verified $t s p D T I R M$ ORF was cloned into a P_{R} promoter vector and subjected to E. coli expression optimization experiments (data not shown). Recombinant TspDTI protein was purified using a 6 -step procedure, with the protein expression optimized in E. coli

Figure 1 Limited proteolytic digestion of TspDTI. Purified native TspDTI was subjected to proteolytic digestion on immobilized TPCK-trypsin. Lane M, protein marker (GE Healthcare), bands marked: 97 kDa , phosphorylase b; 66 kDa , bovine serum albumin; 45 kDa , ovoalbumin; 31 kDa , carbonic anhydrase; 20.1 kDa , trypsin inhibitor; 14.4 kDa , lysozyme. Lane 1, proteolysis products. All the peptides obtained are marked with horizontal arrows. Of the 5 polypeptides obtained, only peptides 1,2 and 3 were subjected to N-terminal sequencing.
(Figure 2). Interestingly, in spite of the cloning being under the control of a strong P_{R} promoter, the protein becomes detectable in the induced cells after only 3 h of growth under non-permissive conditions, and keeps accumulating until the late stationary phase, even after 12 h cultivation at $42^{\circ} \mathrm{C}$. This is probably due to the combination of the following factors: (i) the GC rich ORF sequence distant from E. coli optimum codon usage, (ii) the slow transcription of the GC-rich tspDTIRM gene, (iii) the presence of numerous hairpin structures within the gene, and (iv) the very large size of the protein to be translated. Nevertheless, optimization of expression culture growth/induction conditions yielded adequate amounts of TspDTI (about 0.4 mg of the protein per litre of bacterial culture).

Properties of the tspDTIRM gene

The $t s p D T I R M$ gene ORF coding for the REase-MTase bifunctional protein is 3339 bp in length coding for the 1112 amino acid polypeptide [GenBank: EF095489,

Figure 2 SDS/PAGE analysis of the induction pattern of recombinant TspDTI endonuclease. Lane 1, control culture crude lysate from E. coli expressing the cloned tspDTIRM gene, without induction $\left(\mathrm{OD}_{600}=0.7\right)$; lane 2, control culture after 12 h of cultivation; lane 3, crude lysate from E. coli expressing the cloned gene, before induction $\left(\mathrm{OD}_{600}=0.7\right)$; lane 4, crude lysate from E. coli expressing the cloned gene 3 h after induction; lane 5, crude lysate 6 h after induction; lane 6, crude lysate 12 h after induction; lane 7, purified, homogeneous recombinant TspDTI protein; lane M, protein marker (Thermo Fisher Scientific/Fermentas).

ABO26711]. The calculated molecular weight of the TspDTI is 126885 Da , atypically large for a prokaryotic protein. The sizes of the Thermus sp. family enzymes were compared and shown to match the estimation from the SDS/PAGE (Figures 2 and 3) and molecular sieving of the native protein [20], indicating its monomeric organization, just like other Thermus sp. family members (Table 1). The calculated isoelectric point is 6.68, indicating that TspDTI is a slightly acidic protein. Typically, REases and other DNA-interacting proteins are rather basic proteins. The low pI is associated with 5 out of 6 Thermus sp. family enzymes: TspDTI, Tth111II, TthHB27I, TaqII and TspGWI. Only TsoI is moderately basic, with a calculated pI of 8.11 (Table 1). No sequence similarity of TspDTI to any MTase or DNA-binding protein was found in the flanking regions of the TspDTI ORF. The ORF begins with the ATG START codon and contains 3 putative upstream RBSs: -8 AG, - 11 AGAAA and -18 GGA (see Additional file $2)$. The ORF is GC rich (57.99\%); however, it is markedly lower than the $t s p$ GWIRM gene (69.19\%) (GenBank: EF095488, ABO26710) and TaqII (Table 1 GenBank: AY057443, AAL23675) (Table 1) and other

Figure 3 SDS/PAGE comparison of purified, recombinant homogeneous TspDTI, Tsol and TthHB27I (extended run on 6\% gel). Lane M1, protein marker (GE Healthcare); lane M2, protein marker (Thermo Scientific); lane 1, Tsol; lane 2, TspDTI, lane 3, TthHB24I.

Thermus genes $[20,26]$, suggesting that $t s p$ TIRM might have been acquired/evolved differently, at least diverging at a later stage, which may have included horizontal gene transfer from a non-related bacteria.

Bioinformatics analyses of TspDTI: Prediction of domains and functional motifs

Isolation and sequencing of the $t s p D T I R M$ gene revealed the predicted amino acid sequence of the encoded protein. Searches of REase sequences deposited in REBASE exhibited an overall similarity to a number of genuine and putative Type IIC enzymes, including the previously characterized nucleases TthHB27I and Tth111II (BLAST e-value 0 , alignment covering essentially the whole protein length). Despite very high sequence similarity, these two enzymes exhibit different sequence specificity (CAARCA) [2,22] than TspDTI. Interestingly, two other Type IIC enzymes from Thermus, i.e. TspGWI (GenBank: EF095488, ABO26710) and TaqII (GenBank: AY057443, AAL23675), showed very low sequence similarity to TspDTI in pairwise comparisons (BLAST evalue 0.001 limited to a very short region of ~ 75 residues) and were thus excluded from the alignment (Figure 4).
Further bioinformatics analyses, in particular the comparison of sequence profiles, which is more sensitive to pairwise sequence comparisons (see Methods), showed that the central and C-terminal regions of TspDTI (aa $\sim 370-1050$) exhibit significant similarity to DNA:m ${ }^{6}$ A MTase M.TaqI, whose structure is known (HHSEARCH e-value 0). M.TaqI belongs to the γ-class of DNA:m ${ }^{6}$ A MTases, which is characterized by the following primary
structure: the N -terminal catalytic Rossmann-fold MTase (RFM) domain with the order of motifs: X-I-II-III-IV-V-VI-VII-VIII, followed by the DNA binding domain, the so-called 'target recognition domain' (TRD) in the C-terminus [27,28]. The alignment between TspDTI and M.TaqI spanned both RFM and TRD domains. The N-terminal region of the TspDTI sequence, which extends beyond the region of homology to M.TaqI, exhibited a limited sequence similarity (HHSEARCH e-value 0.087) only to the HSDR_N family, which belongs to the PD-(D/E)XK superfamily of nucleases (accession number pfam04313/g in the PFAM database). Further, a multiple sequence alignment of TspDTI homologues revealed the presence of a candidate PD-(D/E)XK motif (Figure 4), resembling the active site of many REases and other nucleases [29]. Thus, TspDTI appears to comprise domains homologous to known nuclease and DNA:m ${ }^{6}$ A MTase catalytic domains, and to the 'TRD' domain characteristic of γ class DNA:m ${ }^{6}$ A MTases.
To confirm the sequence-based predictions, we carried out a protein fold-recognition (FR) analysis (see Methods) with the aim of predicting the structures of individual domains in TspDTI. Since the FR method is designed to identify remote homology and predict structure for domain-size sequence fragments (20-500 aa), the TspDTI sequence was split into a series of overlapping segments and submitted to the GeneSilico metaserver [30]. FR analysis of the TspDTI sequence confirmed the existence of enzymatic and DNA-recognizing domains predicted by sequence analysis, albeit with low scores for the N -terminal and C-terminal domains (Table 2). Structure prediction also revealed the presence of a helical linker between the PD-(D/E)XK and RFM domains. The sequence of this region alone displayed no significant similarity to any known protein domain. When this region was analysed together with the neighbouring RFM domain, some of the fold-recognition methods proposed Type I enzyme structures as templates, with the alignment spanning both the RFM domain (present in all DNA MTases), and the helical domain characteristic only of Type I enzymes, which is involved in mediating protein-protein interactions [31]. However, the alignment of the helical linker regions of TspDTI and Type I MTases was too poor to establish with confidence whether they have similar tertiary structures.
Combined sequence analysis and structure prediction (Figures 4 and 5) enable us to propose the key functional residues of TspDTI. In the PD-(D/E)XK domain, the putative catalytic residues are D66, E75, and E77. Thus, the nuclease domain of TspDTI exhibits an atypical D-EXE pattern, which has been observed previously, e.g. in the R.BamHI enzyme [32]. Interestingly, the same

Table 1 Summary of features of the Thermus sp.enzyme family

REase	TspDTI	Tth111II	TthHB27I	Tsol	TspGWI	Taqll
Bacterial host	Thermus sp. DT	Thermus thermophilus 111	Thermus thermophilus HB27	Thermus scotoductus	Thermus sp. GW	Thermus aquaticus YTI
Recognition and cleavage site	ATGAA(11/ 9)	CAARCA(11/9)	CAARCA(11/9)	TARCCA(11/9)	ACGGA(11/9)	GACCGA(11/ 9)
Recognition site length (bp)	5	6, (degenerated)	6 (degenerated)	6 (degenerated)	5	6
ORF GC\%	57.99	61.67	61.59	56.54	69.19	66.27
Polypeptide length (aa)	1112	1106	1121	1116	1097	1106
Molecular weight (kDa)	126.885	125.956	127.672	126.474	120.202	125.675
Native molecular size (kDa)/ protein organization	110-130 monomer	110-130 monomer	ND	ND	110-130 monomer	110-130 monomer
Optimum reaction temperature	$65^{\circ} \mathrm{C}$	${ }^{65-70^{\circ} \mathrm{C}}$	ND	$55^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
Single site cleavage	Yes	ND	ND	ND	Two sites preferred	Yes
Isoelectric point (calculated)	6.68	6.60	6.80	8.11	6.58	5.40
Specific DNA + methylation		ND	ND	$+$	+	+
Cleavage stimulation with SAM	Yes	ND	ND	Yes	Slight inhibition	Yes
Cleavage stimulation with SIN (SAM analogue)	Yes	ND	ND	ND	Yes, specificity change	Yes, specificity change
Methylation stimulation with Ca^{2+}	No	ND	ND	ND	Yes	Yes
Cleavage stimulation with divalent cations	Ca^{2+}	ND	ND	ND	$\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}$ not stimulated by Ca^{27}	ND
Domain organization*	R-Mh-Mc-S	R-Mh-Mc-S	R-Mh-Mc-S	R-Mh-Mc-S	R-Mh-Mc-S	R-Mh-Mc-S
Cleavage catalytic motif (B/E) **	atypical D-EXE (B)	atypical D-EXE (B)	atypical D-EXE (B)	atypical D-EXE (B)	$\mathrm{PDX}_{13} \mathrm{EX}_{1} \mathrm{~K}(\mathrm{~B}+\mathrm{E})$	$\begin{aligned} & \mathrm{PDX}_{13} \mathrm{EX}_{1} \mathrm{~K}(\mathrm{~B} \\ & +\mathrm{E}) \end{aligned}$
SAM binding motif: (B/E)**	DPACGSG (B)	DPACGSG (B)	DPACGSG (B)	PPACGSG (B)	DPAVGTG ($\mathrm{B}+\mathrm{E}$)	$\begin{aligned} & \text { DPAMGTG (B } \\ & + \text { E) } \end{aligned}$
Methylation catalytic motif $(\mathrm{B} / \mathrm{E})^{* *}$	NPPW (B)	NPPW (B)	NPPW (B)	NPPW (B)	NPPY (B + E)	NPPY (B+E)
Subfamily homology*	Subfamily TspDTI	Subfamily TspDTI	Subfamily TspDTI	Subfamily TspDTI	Subfamily TspGWI	Subfamily TspGWI
Reference	[20]	$\begin{aligned} & \text { GenBank: } \\ & \text { AY726624.1, } \\ & {[20,26]} \end{aligned}$	GenBank: AE017221.1	This work, manuscript in preparation	[19,23]	GenBank: AY057443, 21

* Domain organization: R, REase catalytic domain; Mh, MTase helical domain; Mc, MTase catalytic domain; S, putative specific DNA recognition domain
** B, determined by bioinformatics analysis; E, experimentally determined by site-directed mutagenesis.
pattern is present in the nuclease active sites of TthHB27I, Tth111II and TsoI (see Additional file 3), while other homologues of TspDTI (putative nucleases) exhibit the typical D-EXK pattern (Figures 4 and 5). In the RFM domain, the SAM-binding site includes the carboxylate residues D422, D464, and D500 (from motifs I, II and III respectively), while the target ade-nine-binding site includes the NPPW626 tetrapeptide (motif IV) and F732 (motif VIII). At this stage of the analysis, the details of sequence-specific DNA recognition by TspDTI cannot be predicted. However, based on the identification of homologous loops in the sequence of TspDTI and in the protein-DNA complex of M.TaqI,
we suggest that the following regions may harbour specificity determinants of TspDTI: WTRLAK968, PQET987 and KSMGS1028. In accordance with this prediction, while the corresponding regions in TthHB27I and Tth111II (enzymes that recognize a DNA sequence other than TspDTI) possess significantly different amino acid residues, they show greater similarity to TspDTI in surrounding regions that are not expected to make direct contact with the DNA. The testing of these predictions, however, is beyond the scope of this article.

Summarizing, the results of the bioinformatics analyses suggest that TspDTI is a fusion protein

Figure 4 Sequence alignment between TspDTI and its close homologues in REBASE (BLAST E-value < 1E-40).

Table 2 Bioinformatics analysis of TspDTI domains and functional motifs

Residues	domain	HHPRED	PCONS score	predicted function
$1 \sim 160$	PD-(D/E)XK	1m0d (Endo I) 21	1avq ($\boldsymbol{\lambda}$ exonuclease) 0.18	Mg $^{2+}$-binding/DNA cleavage
$\sim 160-360$	helical linker	no match	no match	interactions between domains
$\sim 360-790$	RFM	2ar0 (M.EcoKI) 4.6e-36	2adm (M.Taql) 1.9	SAM-binding/methylation
$\sim 790-$	TRD	1ih2 (M.TaqI) 1.9e-13	1yf2 (S.MjaORF132P) 0.374	DNA-binding

comprising a tandem arrangement of the following domains: a PD-(D/E)XK nuclease domain, a helical domain, an RFM MTase domain and a TRD substratebinding domain (Figure 5). This domain organization resembles the structure of the recently analysed Type IIC enzymes TspGWI [19] and MmeI [33]), to which TspDTI exhibits only very limited sequence similarity, restricted primarily to the central RFM domain (data not shown). The presence of related domains in a common linear arrangement suggests that all these enzymes evolved from a common ancestor, but that they diverged greatly in all regions except the RFM domain. This analysis indicates a low sequence similarity between TspDTI and TspGWI, dividing the Thermus sp. family group into two subfamilies: TspDTI, TsoI (see Additional file 3) and Tth111II/ TthHB27I ('subfamily TspDTI') as opposed to TspGWI and TaqII REases ('subfamily TspGWI') [23]. In spite of the remote sequence similarities between REases, certain structural analogies are emerging. Particularly, based on the crystal structure of a Type IIG bifunctional enzyme BpuSI, an alpha-helical domain that connects the endonuclease and MTase domains has been suggested to regulate and physically couple their relative conformations and activities and that it may establish the cleavage distance from the enzyme's target site [34]. The helical domain in TspDTI and its

Figure 5 Schematic organization of the domains of the bifunctional TspDTI enzyme. (A) TspDTI domain architecture. (B, C, and D) Typical HsdR, HsdM, and HsdS subunit domain architecture, illustrated by way of example with EcoR124I.
relatives is likely to fulfil a similar role as its counterpart in BpuSI.

Enzymatic properties of TspDTI

Native and recombinant TspDTI proteins were purified to homogeneity ([20]; Figure 2) and used to study the biochemical features and reaction conditions of DNA cleavage and methylation activity of the enzyme. The apparent molecular mass of the native protein under denaturing conditions was found to be 114.5 kDa [20], corresponding to the molecular mass of cloned TspDTI isolated from E. coli DH11S [pRZ-TspDTI] ([20]; Figure 2). A comparative assay of recognition specificity, cleavage distance and reaction buffer requirements of both enzymes revealed no difference (not shown). Controlled purification from E. coli (limited to the first chromatographic step), devoid of pRZTspDTI, did not show any DNA cleaving activity (not shown). The molecular mass was evidently very similar between three members (TspDTI, TsoI and TthHB27I) of the 'TspDTI subfamily', as only prolonged SDS/ PAGE showed a slight differentiation between the enzymes (Figure 3). Recombinant TspDTI was also subjected to analytical gel filtration in a buffer with a composition close to the physiological, containing 3 $\mathrm{mM} \mathrm{MgCl}_{2}$ (in the absence of DNA), using conditions described previously [20]. The experiment showed that the recombinant REase behaved like a monomer, just as the native TspDTI (Table 1).

We showed previously that the temperature activity range extended from $42^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}(10 \%$ or more activity), with the maximum observed at $65-75^{\circ} \mathrm{C}$, while a 20 min incubation at $89^{\circ} \mathrm{C}$ deactivated the enzyme. Incubation at $37^{\circ} \mathrm{C}$ resulted in approx. 5% activity. The optimal ionic strength is in Tris- HCl buffered ($\mathrm{pH} 8.0-8.5$) MgCl_{2} solution, without any added salt [20]. As expected, TspDTI maintains the absolute requirement for Mg^{2+} for cleavage activity. Remarkably, the effect of Ca^{2+} ions differs from that of TspGWI [23]. TspGWI MTase activity is strongly stimulated by Ca^{2+} and SAM, whereas restriction activity is not supported [23]. Compared with the effect of Mg^{2+} ions, TspDTI restriction activity is stimulated by Ca^{2+} ions, but to a lesser extent and there is no difference in the digestion patterns in the presence and absence of SAM (Figure 6A, lanes 2 and 3).

B.

Figure 6 Bifunctionality of TspDTI: restriction and methylation activities of the enzyme. (A) Effect of divalent metal cations on restriction activity of TspDTI. The DNA substrate used contains two TspDTI sites $(\rightarrow \rightarrow)$. Partial digestion bands are marked in italics. Samples of 7.8 pmol 390 bp PCR fragment were incubated with an excess of TspDTI REase for 1 h at $70^{\circ} \mathrm{C}$ in 'primary TspDTI REase' buffer devoid of $\mathrm{Mg}^{2+}(10 \mathrm{mM}$ Tris- $\mathrm{HCl} \mathrm{pH} 8.0,1 \mathrm{mM} \mathrm{DTT}$) in the presence or absence of $50 \mu \mathrm{M} \mathrm{SAM}$. The reaction buffer was supplemented with EDTA, Mg^{2+} or Ca^{2+} ions. Lane M2, 100 bp DNA ladder (selected bands marked); lane 1, undigested 390-bp PCR fragment; lane 2, incubation with TspDTI and Ca² ${ }^{2+}$; lane 3, incubation with TspDTI, Ca^{2+} and SAM; lane 4, incubation with TspDTI and Mg^{2+}; lane 5, incubation with $\operatorname{TspDTI}, \mathrm{Mg}^{2+}$ and SAM; lane 6, incubation with TspDTI and EDTA; lane 7, incubation with TspDTI, EDTA and SAM. (B) MTase activity of TspDTI. The DNA substrate used contains two TspDTI sites $(\rightarrow \rightarrow)$. Partial digestion bands are marked in italics. Samples of 7.8 pmol 390 bp PCR fragment were incubated with 78 pmol TspDTI protein in the TspDTI MTase buffer (10 mM Tris-HCl, pH 8.0, 1 mM DTT, $200 \mu \mathrm{M}$ SAM) in the presence of either EDTA or Ca ${ }^{2+}$ ions. Proteins were removed by proteinase K digestion. The resulting DNA was purified and challenged with an excess of TspDTI REase for 1 h at $70^{\circ} \mathrm{C}$ in the 'primary TspDTI REase' buffer (10 mM Tris- HCl pH 8.0, $1 \mathrm{mM} \mathrm{DTT)} \mathrm{supplemented} \mathrm{with} 10 \mathrm{mM} \mathrm{MgCl2}$; Lane M1, 1 kb DNA ladder (selected bands marked); lane M2, 100 bp DNA ladder (selected bands marked); lane 1, undigested 390-bp PCR fragment; lane 2, incubation of PCR fragment with TspDTI in REase buffer; lane 3, incubation with TspDTI in MTase buffer + EDTA/no subsequent incubation; lane 4, incubation with TspDTI in MTase buffer $+\mathrm{Ca}^{2+} /$ no subsequent incubation; lane 5 , incubation with TspDTI in MTase buffer + EDTA/subsequent incubation with TspDTI in REase buffer; lane 6, incubation with TspDTI in MTase buffer $+\mathrm{Ca}^{2+} /$ subsequent incubation with TspDTI in REase buffer.

Essentially the same TspDTI digestion patterns were observed, regardless of whether the substrate DNA was incubated with enzyme and Ca^{2+} ions in the MTase buffer only or subjected to subsequent cleavage with TspDTI in the presence of Mg^{2+}, following previous incubation with the enzyme and Ca^{2+} ions (Figure 6B, lanes 4 and 6). These results indicate that after the incubation of TspDTI and substrate DNA in the MTase buffer with Ca^{2+} ions, the TspDTI cannot further cleave such DNA, even though the $\mathrm{Ca}^{2+} / \mathrm{TspDTI}$-treated DNA is carefully purified and subjected to subsequent incubation with an excess of TspDTI in the optimal TspDTI REase buffer supplemented with Mg^{2+} ions (Figure 6B, lanes 4 and 6). The observed predominance of 'resistant' DNA indicates that Ca^{2+} ions: (i) do not inhibit MTase activity, while stimulating REase only marginally, or else (ii) stimulate both enzyme activities, with a bias towards methylation activity. Hence, it is possible that after the incubation both the restriction and methylation processes are completed, leaving the substrate DNA either cleaved or methylated. The observed effect could also be explained by the existence of methylation-independent (unmodified), REase resistant sites. Such possibility, however, is rather remote, as in comparison to the Ca^{2} ${ }^{+} /$TspDTI-treated DNA (Figure 6B, lane 6) the previously non-incubated substrate DNA, subjected to cleavage in the presence of Mg^{2+} ions, is cut to a greater extent (Figure 6A, lanes 4-5; Figure 6B, lane 2).
These results corroborate those of enzymology investigations into the mode of action of another subclass IIG/ IIC bifunctional enzyme Eco57I (Lubys Arvydas, personal communication). This may reflect differences in the structure of the catalytic sites. In the standard restriction buffer with Mg^{2+} ions TspDTI restriction activity is not stimulated by S-adenosylhomocysteine (SAH) and ATP (Figure 7, lanes 4 and 5), but is stimulated equally by both SAM and its analogue - SIN, which is not a methyl group donor (Figure 7, lanes 2 and 3). This leads to the conclusion that both restriction and methylation activities are SAM-stimulated. Nevertheless, it is important to note that the enzymes of the Thermus sp. family exhibit a spectrum of responses to SAM, which makes this group interesting. TspGWI restriction activity is actually slightly inhibited by SAM [23]. The observed negative response suggests that the enzyme is still capable of binding SAM. But then, conformational allosteric stimulation of TspGWI is somehow anti-functional. Alternatively, the effect described above may be associated with two competing reactions: DNA restriction and methylation. The addition of SAM may shift the equilibrium of the reactions in favour of DNA methylation. On the other hand, the inhibition of REase activity by SAM may play a role in the regulation of TspGWI REase versus MTase activities in vivo. Two analogues of

Figure 7 Effect of allosteric cofactors on TspDTI REase activity. $1 \mu \mathrm{~g}$ ($=5.58$-pmol restriction sites) bacteriophage λ DNA was digested with 2.79 pmol TspDTI ($0.5: 1 \mathrm{M}$ ratio of enzyme to recognition sites) for 30 min at $70^{\circ} \mathrm{C}$ and electrophoresed on 1.2% agarose/TBE gel. Lane M1, 1 kb ladder (selected bands marked); lane M2, 100 bp ladder (selected bands marked); lane K, undigested λ DNA; lane 1, (+ TspDTI, no allosteric cofactor; lane 2, (+ TspDTI, + 50 $\mu \mathrm{M}$ SIN); lane 3, (+ TspDTI, + $50 \mu \mathrm{M}$ SAM); lane 4, (+ TspDT, + 50 $\mu \mathrm{M}$ SAH); lane 5, (+ TspDTI, + $50 \mu \mathrm{M}$ ATP).

SAM - SIN with charge distribution reversed compared to SAM and SAH - exert a very different influence on TspDTI (Figure 7, lanes 2 and 4). SIN stimulates REase activity, which also suggests that the Thermus sp. family enzymes may have two physically separate binding sites for SAM: one for allosteric stimulation of the REase activity and another one for typical SAM binding/ methylation. Alternatively, binding to a single SAM-specific protein region may induce a conformational change in this large protein, also affecting the distant REase catalytic domain, so that cleavage activity is enhanced several times. Another possibility is that SIN, being an analogue mimicking an 'unreacted' methyl group donor (SAM), causes the enzyme to maintain a conformation different from that maintained in the presence of the MTase reaction product - SAH. These results also suggest a mixed type of mutual dependence of REase and MTase activities: while autonomous enough to perform functions independently, some sort of intertwined communication still occurs between functional domains. We managed to separate REase and MTase activities using site-directed mutagenesis of the genes encoding TspGWI and TaqII enzymes ([23], manuscript in
preparation). Since the recombinant tspDTIRM gene alone was cloned into E. coli without an additional MTase (which has thus far not been found) and stably maintained at $28^{\circ} \mathrm{C}$, it is possible that built-in MTase activity is sufficient to protect the recombinant host DNA from autorestriction. Moreover, a much reduced restriction activity $<5 \%$ at low temperature and the presence of cellular SAM appear to favour methylation in vivo.

Further research is needed to evaluate the existence of a separate MTase, contributing to the overall TspDTI modification activity and SAM influence. The gene encoding such an MTase may be located at a greater distance than the flanking regions of the tspDTIRM gene sequenced so far.

Conclusions

(i) The modified protocol for cloning thermophilic REases was applied.
(ii) The tspDTIRM gene coding for 126.9 kDa TspDTI was sequenced and cloned.
(iii) Active bifunctional REase-MTase protein was expressed in E. coli and purified to homogeneity.
(iv) Bioinformatics studies predicted REase and MTase binding/catalytic motifs: the atypical D-EXE pattern as opposed to the TspGWI/TaqII PD-(D/E)XK pattern, DPACGSG and NPPW, and showed a modular structure of TspDTI.
(v) The TspDTI/TsoI/Tth111II/TthHB27I subfamily was differentiated using a bioinformatics comparison with the TspGWI-TaqII subfamily.

Methods

Bacterial strains, plasmids, media and reagents

Thermus $s p$. DT was obtained from Piotr Skowron's collection. The optimum cultivation conditions were a temperature of $60^{\circ} \mathrm{C}$ in a modified Luria broth $(0.5 \%$ tryptose; 0.3% yeast extract; $0.2 \% \mathrm{NaCl} ; 0.001 \%$ dilution of $2.1 \mathrm{~g} / \mathrm{L}$ stock Nitsch's trace elements; pH 7.2). The bacteria were harvested at OD600 $=1.6$.
E.coli DH11S \{mcrA $\Delta[m r r h s d R M S(\mathrm{rK}-, \mathrm{mK}+)$ - $m c r B C]$ $\Delta($ lac-proAB $) \Delta($ recA1398) deoR, rpsL, srl-thi, supE/F' proAB + lacIQZ $\triangle M 15\}$ (Life Technologies, Gaithersburg, MD, USA) was used for all procedures. In most cases bacteria were grown in $2 \times$ yeast extract/tryptone (YT); for protein expression, bacteria were cultivated in Terrific Broth (TB) medium [35]. Media were supplemented with chloramphenicol ($40 \mathrm{mg} / \mathrm{mL}$) and 0.2% maltose. Difco media were from Becton- Dickinson (Franklin Lakes, NJ, USA), phosphocellulose P11 resin was from Whatman (Springfield Mill, UK) and hydroxyapatite HTP from Bio-Rad Laboratories (Hercules, CA, USA). Other chromatographic resins were from GE Healthcare (Uppsala, Sweden). Immobilized TPCK-
trypsin and the BCA Protein Assay Reagent Kit were supplied by Pierce (Rockford, IL, USA). The miniprep DNA purification kit, SmaI endonuclease, T4 DNA polymerase, proofreading Taq DNA Polymerase blend (OptiTaq), Perfect Perfect 100-bp ladder and Perfect Plus 1-kb ladder were from Eurx Molecular Biology Products (Gdańsk, Poland). T4 polynucleotide kinase, antarctic phosphatase, BspHI and Sall REases were from New England Biolabs. Protein standards were from GE Healthcare (Uppsala, Sweden) and Thermo Fisher Scientific/Fermentas (Vilnius, Lithuania).

The cloning vectors pAPS (Cm^{R}, MCS, col E1 ori, $f 1$ ori, $\mathrm{P}_{\mathrm{lac}}$ and T7 promoters) and pRZ4737 ($\mathrm{Cm}^{\mathrm{R}}, \mathrm{P} 15 \mathrm{~A}$ ori, $f 1$ ori, PR promoter) were from Bill Resnikoff [36] and further modified. λ DNA and plasmids pBR322 and pUC19 were from Vivantis (Shah Alam, Malaysia). T4 DNA ligase was from Epicenter (Madison, WI, USA). The DNA sequencing and PCR primer synthesis were performed at Genomed (Warsaw, Poland). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Native TspDTI purification and proteolysis of TspDTI and amino acid sequence determination

The native TspDTI enzyme was isolated from Thermus sp. DT as described previously [20]. Purified native TspDTI was subjected to limited TPCK-trypsin digestion to obtain internal polypeptides. Proteolysis of TspDTI was conducted in buffer $\mathrm{T}(20 \mathrm{mM}$ Tris- HCl pH 8.3, $25 \mathrm{mM} \mathrm{KCl}, 3 \mathrm{mM} \mathrm{MgCl} 2$, 5% glycerol, 0.05% Tween 20, 0.5 mM DTT) with gel-immobilized TPCKtrypsin with shaking at $24^{\circ} \mathrm{C}$ for 3 h . The immobilized TPCK-trypsin was removed by centrifugation. Purified native TspDTI and the supernatant, containing TspDTI protein fragments were run on 10% SDS/ PAGE denaturing gel and electroblotted onto a PVDF membrane in 100 mM CAPS- NaOH buffer pH 11.0. The N-terminal amino acid sequence analysis of polypeptides was performed on a gas-phase sequencer (Model 491, Perkin Elmer-Applied Biosystems). The phenylthiohydantoin derivatives were analysed by online gradient high performance liquid chromatography on a Microgradient Delivery System Model 140 C equipped with a Programmable Absorbance Detector Model 785A and Procise software (Perkin ElmerApplied Biosystems).

Determination of the nucleotide sequence and cloning of the tspDTIRM gene

The gene nucleotide sequence was obtained using a combination of PCR employing degenerated and nondegenerated primers (Additional file 1). In the first step, sets of degenerated/arbitrary primers, forming alternative pairs, were designed. The primers were designed
arbitrarily on the basis of a back-translated amino acid sequence using codons, as concluded from codon usage data from ORFs of Thermus sp. genes and assumed from the high GC content of Thermus genes (app. 70\% GC). A $105 \mathrm{bp} t s p D T I R M$ gene fragment was amplified with primers designed on the basis of 35 amino acid Nterminal sequences of TspDTI (Additional file 1). The forward primer 5'-ATGT(GC)CCCCTCCCGGGAG-GAGGT(GC)GT(GC)GC(GC)CACTA-3' and the reverse primer 5'-CCG(GC)CGGAACTC(GC)GCCTCGTTGG GGTTCTG-3' were used. PCR was performed using an Applied Biosystems 2720 thermocycler in $100 \mu \mathrm{l}$ of a reaction mixture containing 10 mM Tris- HCl pH 9.1 , $50 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{MgCl} 2,0.1 \%$ Triton X-100, 6% formamide, 100 ng Thermus sp. DT genomic DNA, 0.25 $\mu \mathrm{M}$ of each primer, $100 \mu \mathrm{M}$ of each dNTP and 5 U Taq DNA Polymerase. The cycling conditions employed a denaturation step of 3 min at $97^{\circ} \mathrm{C}$, followed by the addition of the Taq DNA Polymerase at $85^{\circ} \mathrm{C}$ and 30 cycles of 30 s denaturation at $95^{\circ} \mathrm{C}, 30 \mathrm{~s}$ annealing at $55^{\circ} \mathrm{C}$ and 1 min elongation at $72^{\circ} \mathrm{C}$. A 105 bp PCR product was agarose gel isolated and cloned into the pAPS vector at the SmaI site and sequenced. Insert sequencing established an internal 50 bp native sequence, non-primer modified, and thus used as a new non-degenerated primer (FdtN-ter: 5'-TGACAGGCTTCACCAAGTTCTT CAGAAAACCA-3') anchor for amplification with downstream degenerated/arbitrary reverse primers (Additional file 1).
The downstream portion of the $t s p D T I R M$ gene was obtained using amino acid sequences of internal proteolytic fragments. Homogeneous native (isolated from Thermus sp. DT) [20] TspDTI was subjected to limited proteolysis (Figure 1). Digestion yielded five bands of a stable partial digestion pattern (with limiting amounts of the protease used) (Figure 1). Three of the five bands of approximate sizes $60,35,25,21$ and 14.4 kDa were subjected to protein sequencing (Figure 1, peptide 1, 2 and 3) and yielded short internal 18-, and 12- amino acid sequences: LGAPVFSALAAADGETLQ (peptide 1) and REPEFYGIMDIG (peptide 3). Two reverse primers, designed on the basis of the amino acid sequences obtained - 1RDTpep1 5'-TCGGCGGCGGCGAGGG CGCTGAACAC-3' and 1RDTpep3 5'-CC(GT)AT(GA) TCCAT(GT)AT(ACGT)CCGTAGAACTC(GT)GGC TCCC-3' - resulted in PCR products of approx. 800 bp and 2800 bp (Additional file 1). These DNA fragments were cloned into the pAPS vector at the SmaI site and sequenced.
Combination of both standard PCR and the 'promiscuous PCR' setup yielded a sequence of 3943 bp contig with the complete $t s p D T I R M$ gene. Each strand was resequenced from de novo amplified entire contig using a Thermus sp. DT genomic DNA template. Regions
containing discrepancies were sequenced several times under various conditions.

Analysis of nucleotide sequences

DNA sequences were obtained using the ABI Prism 310 automated sequencer with the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer Applied Biosystems, Foster City, CA, USA). The sequence data were analysed using ABI Chromas 1.45 software (Perkin Elmer Applied Biosystems) and DNASIS 2.5 software (Hitachi Software, San Bruno, CA, USA).
Overexpression of the TspDTI enzyme employed the modified vector pRZ4737 [36], a derivative of pACYC184 plasmid [37], carrying a lambda DNA section with the PR promoter under the control of the CI thermolabile repressor. The $c I$ gene was located on the pRZ4737 backbone, allowing for host-independent expression in E. coli.
The $t s p D T I R M$ gene was PCR amplified with proofreading Taq-Pfu DNA polymerase using the oligonucleotides 5'-CGCCATGGCGAGCCCTTCCAGGGAA GAAGTTGTTG-3' and 5^{\prime}-CAAAGATAATTTCGTC-GACCCGCTCCTCTTC-3', which introduced the NcoI recognition site (underlined) at the 5'-end and the SalI recognition site (underlined) after the tspDTIRM gene STOP codon at the 3'-terminus. The introduction of the NcoI site, generating unique sticky ends, resulted in the addition of a GCG codon (encoding alanine) following the START codon. The PCR fragment obtained was digested with both NcoI and Sall REase and cloned into a pRZ4737 vector digested with compatible BspHI and Sall REases [35] to form a pRZ-TspDTI clone.

Expression of the tspDTIRM gene under P_{R} promoter in E. coli and purification of the recombinant TspDTI RM enzyme

The pRZ-TspDTI clones were subjected to protein expression experiments. E. coli DH11S [pRZ-TspDTI] was subjected to mini- scale expression in 50 ml TB media supplemented with chloramphenicol and maltose at $28^{\circ} \mathrm{C}$ with vigorous aeration, followed by PR promoter induction by a temperature shift to $42^{\circ} \mathrm{C}$ when OD_{600} reached 0.7. The culture growth was continued for 12 h at $42^{\circ} \mathrm{C}$. Uninduced control and induced cells were subjected to SDS/PAGE, and gels were analysed for the appearance of the expected band size of approx. 126 kDa and for endonucleolytic activity in crude lysates.
Expression of tspDTIRM in E. coli DH11S [pRZTspDTI] was initiated with bacteria inoculum washed out from a Petri dish into 1 L of rich TB media, supplemented with chloramphenicol at $28^{\circ} \mathrm{C}$. The culture was grown with vigorous aeration until OD_{600} reached 0.3 ; then the culture was transferred to a fermentor vessel containing 9 L of the media and grown until OD600
was 0.6. Induction was achieved with a rapid temperature increase to $42^{\circ} \mathrm{C}$ by the addition of 7 L of the medium warmed to $70^{\circ} \mathrm{C}$, and growth was continued for 17 h at $42^{\circ} \mathrm{C}$. Once an OD600 of 2.0 was reached, the culture was cooled down to $4^{\circ} \mathrm{C}$ and the cells were recovered by centrifugation. The purification steps used were as we have described previously for the native enzyme [20], with the following modifications:

1. Polyethyleneimine (PEI) removal of nucleic acids was performed with a bacterial pellet suspended in buffer A1 (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.0 ; 150 \mathrm{mM} \mathrm{NaCl} ; 5 \mathrm{mM}$ EDTA; $5 \mathrm{mM} \beta$ ME; 0.1% Triton-X-100, 1 mM AEBSF and $20 \mu \mathrm{~g} / \mathrm{ml}$ benzamidine).
2. Phosphocellulose chromatography was conducted in buffer B $\left(20 \mathrm{mM} \mathrm{K} / \mathrm{PO}_{4} \mathrm{pH} 7.2\right.$ at $25^{\circ} \mathrm{C}, 100 \mathrm{mM} \mathrm{NaCl}$, 0.5 mM EDTA, 0.02% Triton X-100, 0.02% Igepal, 0.02% Tween, $5 \mathrm{mM} \beta$ ME, 1 mM AEBSF, $20 \mathrm{mg} / \mathrm{ml}$ benzamidine).
3. Hydroxyapatite chromatography was used as the third chromatographic step in buffer C $\left(20 \mathrm{mM} \mathrm{K} / \mathrm{PO}_{4}\right.$ pH 7.2 at $25^{\circ} \mathrm{C}, 100 \mathrm{mM} \mathrm{NaCl}, 0.02 \%$ Triton $\mathrm{X}-100$, 0.02% Igepal, 0.02% Tween, $5 \mathrm{mM} \beta \mathrm{ME}, 1 \mathrm{mM}$ AEBSF, $20 \mathrm{mg} / \mathrm{ml}$ benzamidine).
4. DEAE-Sephadex chromatography was used as the fourth step, using buffer D (20 mM Tris- HCl pH 7.5 at $25^{\circ} \mathrm{C}, 70 \mathrm{mM} \mathrm{NaCl}, 0.02 \%$ Triton X-100, 0.02% Igepal, 0.02% Tween, $5 \mathrm{mM} \beta \mathrm{ME}, 1 \mathrm{mM}$ AEBSF, $20 \mathrm{mg} / \mathrm{ml}$ benzamidine).
5. Heparin-agarose chromatography was used as the fifth step, using buffer D.
6. Molecular sieving was omitted.

REase and MTase assays

For REase assays various conditions were used, depending on the experiment. The reactions were performed in $50 \mu \mathrm{l}$ of 'primary TspDTI REase' buffer (10 mM TrisHCl pH 8.5 at $25^{\circ} \mathrm{C} ; 1 \mathrm{mM}$ DTT), supplemented with appropriate additives and DNA substrates.
One unit of the TspDTI REase is defined as the amount of enzyme required to hydrolyse $1 \mu \mathrm{~g}$ of pUC19 in 1 h at $70^{\circ} \mathrm{C}$ in $50 \mu \mathrm{l}$ of 'primary TspDTI REase' buffer, enriched with $10 \mathrm{mM} \mathrm{MgCl}_{2}$ and $50 \mu \mathrm{M}$ SAM, resulting in a stable partial cleavage pattern.

The in vitro modification activity of TspDTI enzyme was tested by the DNA protection assay, where $0.5 \mu \mathrm{~g}$ of 390 bp PCR DNA fragment was used as a substrate in $50 \mu \mathrm{l}$ of TspDTI MTase buffer (10 mM Tris- HCl pH 8.5; 1 mM DTT; $200 \mu \mathrm{M}$ SAM) supplemented either with $10 \mathrm{mM} \mathrm{CaCl} 2_{2}$ or with 10 mM EDTA. After addition of TspDTI protein, the reaction mixture was incubated for 16 h at $70^{\circ} \mathrm{C}$. Proteinase K was added to the solution and the incubation continued for an additional 60 min at $55^{\circ} \mathrm{C}$. Samples were purified to remove all traces of proteins and divalent cations from the methylation
reaction mixture, and the resulting DNA was challenged with an excess of TspDTI (2:1 molar ratio of enzyme to recognition sites) for 1 h in $50 \mu \mathrm{l}$ of 'primary TspDTI REase' buffer supplemented with $10 \mathrm{mM} \mathrm{MgCl}_{2}$ at $70^{\circ} \mathrm{C}$. The reaction products were then resolved by agarose gel electrophoresis.

Bioinformatics analyses

Sequence searches of the REBASE database of RM systems were done with the BLAST utility at the REBASE website [2]. Further searches of the GenBank database were carried out at NCBI with PSI-BLAST [38] with a conservative e-value threshold of 1E-30. Multiple sequence alignment of TspDTI homologues retrieved from GenBank was calculated with MUSCLE [39]. Identification of matches between TspDTI and proteins with known structures was carried out using the GeneSilico MetaServer [30], which is a gateway for a variety of bioinformatics methods, in particular those for the prediction of secondary structure and structurally disordered regions, and also for protein fold-recognition (FR) analysis. Previously, this method was successfully used to predict the structures of several nucleases, for which subsequent crystallographic analyses confirmed the validity of predictions [40-42]. Alignments between the TspDTI sequence (or its fragments) and sequences of proteins of known structure reported by the FR methods were compared, evaluated and ranked by the PCONS method [43].

Additional material

> Additional file 1: Scheme of sequencing and cloning of the tspDTRM gene.
> Additional file 2: DNA and amino acid sequence of the tspDTIRM gene and its flanking regions. The predicted amino acid sequence of the $126.9 \mathrm{kDa} \mathrm{TspDTI} \mathrm{protein} \mathrm{is} \mathrm{indicated} \mathrm{in} \mathrm{capital} \mathrm{letters}$.The DNA sequences of the flanking regions are indicated in italics. The internal amino acid sequences of the TspDTI enzyme, determined by chemical analysis of proteolytic fragments, are underlined. The ATG start codon is in bold. The TGA stop codon is shown in red. The potential TspDTI Ribosome Binding Sites (RBS) are boxed and in italics. The crucial amino acids of the catalytic centres are dark red, bold and underlined.

Additional file 3: DNA and amino acid sequence of the tsolRM gene and its flanking regions. The predicted amino acid sequence of the 1116 amino acids/126.5 kDa Tsol protein as based on cloned tsolRM gene is shown in capital letters (manuscript in preparation). The crucial amino acids of the catalytic centres are dark red, bold and underlined.

Acknowledgements

The authors would like to express their gratitude to Monika Radlinska and Krzysztof Skowronek for their critical reading of the manuscript. The authors thank Katarzyna Maczyszyn for the digital picture imaging and her valuable technical assistance. N-terminal TspDTI proteolytic fragments sequencing and tsPDTIRM gene sequencing were supported by EURx Ltd. (Poland) (funds available for PMS) and deposited previously in GenBank EF095489.1 (31-OCT-2006; (PMS, AZS)). This work was supported by DS/8452-4-0135-1
(OZ), DS/8401-4-0170-10 (PMS), DS/8221 40140 1(AZS) Gdansk University, Chemistry Department fund and by Thermo Fisher Scientific Inc. (USA) (funds available for AL). JMB was supported by the statutory funds of the IIMCB and the UAM

Author details

${ }^{1}$ Division of Theoretical Physical Chemistry, Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk, Poland. ${ }^{2}$ Division of Environmental Molecular Biotechnology, Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk, Poland. ${ }^{3}$ Thermo Fisher Scientific, V.A.Graiciuno 8, LT-02241 Vilnius, Lithuania. ${ }^{4}$ Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109 Warsaw, and Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 69, Poznan, Poland.

Authors' contributions

AZS performed most of the experiments, participated in the design and interpretation of all the experimental analyses, prepared most of the figures and drafted the manuscript. OZ performed some experiments. JMB carried out the sequence analysis and bioinformatics studies, prepared Figures 4 and 5, wrote the bioinformatics section and helped to draft the manuscript. AL conceived and coordinated the Tsol project. DR and GM performed the Tsol-related experiments. PMS conceived the project, came up with the concept of the new Thermus sp. enzyme family, participated in the design and interpretation of the experiments and drafted the manuscript. All the authors read and approved the final manuscript.

Competing interests

Arvydas Lubys, Danute Ramanauskaite, Goda Mitkaite are affiliated with Thermo Fisher Scientific Inc. (USA), Fermentas branch (Vilnius, Lithuania) and provided scientific information concerning Tsol amino acid sequence and selected enzyme features. The authors declare that they have no competing interest.
N-terminal TspDTI proteolytic fragments sequencing and tspDTIRM gene sequencing were supported by EURx Ltd. (Gdansk, Poland), and the data obtained were deposited in the GenBank (EF095489.1; 31-OCT-2006; Skowron, P.M. and Zylicz-Stachula, A.). The DNA and proteolytic fragments sequencing data were re- confirmed in the course of this project. The authors declare that they have no competing interest.

Received: 19 January 2012 Accepted: 10 April 2012
Published: 10 April 2012

References

1. Szybalski W, Kim SC, Hasan N, Podhajska AJ: Class-IIS restriction enzymes a review. Gene 1991, 100:13-26.
2. The Restriction Enzyme Database. [http://rebase.neb.com]
3. Catto LE, Bellamy SR, Retter SE, Halford SE: Dynamics and consequences of DNA looping by the Fokl restriction endonuclease. Nucleic Acids Res 2008, 36(6):2073-2081.
4. Morgan RD, Bhatia TK, Lovasco L, Davis TB: Mmel: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection. Nucleic Acids Res 2008, 36(20):6558-6570.
5. Szybalski W: Universal restriction endonucleases: designing novel cleavage specificities by combining adapter oligo-deoxynucleotide and enzyme moieties. Gene 1985, 40:169-173
6. Podhajska AJ, Kim SC, Szybalski W: Conferring new specificities on restriction enzymes: cleavage at any predetermined site by combining an adapter oligodeoxynucleotide and a class-IIS enzyme. Meth Enzymol 1992, part G:303-309.
7. Kim SC, Skowron PM, Szybalski W: Structural requirements for the FoklDNA interaction and oligonucleotide-instructed cleavage. J Mol Biol 1996, 258:638-649.
8. Szybalski W: Universal restriction endonuclease. U.S. Patent No. 4, 935, 357 1990, 1-14.
9. Koob M, Grimes E, Szybalski W: Conferring operator specificity on restriction endonucleases. Science 1988, 241:1084-1086.
10. Skowron PM, Harasimowicz R, Rutkowska SM: GCN4 eucaryotic transcription factor/Fokl endonuclease mediated 'Achilles Heel

Cleavage': quantitative study of protein-DNA interaction. Gene 1996, 170:1-8.
11. Kim SC, Szybalski W: Amplification of cloned DNA as tandem multimers using BspMI-generated asymmetric cohesive ends. Gene 1988, 71:1-8.
12. Kim SC, Pósfai G, Szybalski W: A novel gene-fusing vector: construction of a $5^{\prime}-G G m C C$-specific chimeric methyltransferase, M.BspRI/M.BsuRI. Gene 1991, 100:45-50.
13. Hasan N, Kur J, Szybalski W: An Mboll/Fokl trimming plasmid allowing consecutive cycles of precise 1- to 12-base-pair deletions in cloned DNA. Gene 1989, 82:305-311.
14. Pósfai G, Szybalski W : A simple method for locating methylated bases in DNA using class-IIS restriction enzymes. Gene 1988, 74:179-181.
15. Kim YG, Cha J, Chandrasegaran S: Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996, 93:1156-1160.
16. Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V, Civin Cl, Chandrasegaran S: Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun 2009, 388:56-61.
17. Kim YG, Chandrasegaran S: Chimeric restriction endonuclease. Proc Natl Acad Sci USA 1994, 91:883-887.
18. Kim YG, Kim PS, Herbert A, Rich A: Construction of a Z-DNA-specific restriction endonuclease. Proc Natl Acad Sci USA 1997, 94:12875-12879.
19. Zylicz-Stachula A, Harasimowicz-Slowinska RI, Sobolewski I, Skowron PM: TspGWI, a thermophilic class-IIS restriction endonuclease from Thermus s., recognizes novel asymmetric sequence 5^{\prime}-ACGGA(N11/9)-3'. Nucleic Acids Res 2002, e33:30.
20. Skowron PM, Majewski J, Zylicz-Stachula A, Rutkowska SM, Jaworowska I, Harasimowicz-Slowinska RI: A new Thermus sp. class-IIS enzyme subfamily: isolation of a 'twin' endonuclease TspDTI with a novel specificity 5'-ATGAA(N(11/9))-3', related to TspGWI, Taqll and Tth111II. Nucleic Acids Res 2003, 31:e74
21. Zylicz-Stachula A, Zolnierkiewicz O, Sliwinska K, Jezewska-Frackowiak J, Skowron PM: Bifunctional Taqll restriction endonuclease: redefining the prototype DNA recognition site and establishing the Fidelity Index for partial cleaving. BMC Biochem 2011, 12:62.
22. Shinomiya T, Kobayashi M, Sato S: A second site specific endonuclease from Thermus thermophilu 111, Tth111II. Nucleic Acids Res 1980, 8:3275-3285.
23. Zylicz-Stachula A, Bujnicki JM, Skowron PM: Cloning and analysis of bifunctional DNA methyltransferase/nuclease TspGWI, the prototype of a Thermus sp. family. BMC Mol Biol 2009, 10:52.
24. Żylicz-Stachula A, Żołnierkiewicz O, Jeżewska-Frąckowiak J, Skowron PM: Chemically-induced affinity star restriction specificity: a novel TspGWI/ sinefungin endonuclease with theoretical 3-bp cleavage frequency Biotechniques 2011, 50:397-406.
25. Fitzgerald MC, Skowron PM, Van Etten JL, Smith LM, Mead DA: Rapid shotgun cloning utilizing the two base recognition endonuclease Cvill. Nucleic Acid Res 1992, 20:3753-3762.
26. Zhu Z, Robinson D, Benner J, Xu S-Y: Method for cloning and expression of Tth111II restriction endonuclease-methylase in E.coli. United States Patent Office 2005, US 6,919,194 B2
27. Malone T, Blumenthal RM, Cheng X: Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltrasnferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 1995, 253(4):618-632.
28. Bujnicki JM: Sequence permutations in the molecular evolution of DNA methyltransferases. BMC Evol Biol 2002, 2:3
29. Kosinski J, Feder M, Bujnicki JM: The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function. BMC Bioinforma 2005, 6:172.
30. Kurowski MA, Bujnicki JM: GeneSilico protein structure prediction metaserver. Nucleic Acids Res 2003, 31:3305-3307.
31. Kennaway CK, Obarska-Kosinska A, White JH, Tuszynska I, Cooper LP Bujnicki JM, Trinick J, Dryden DTF: The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein. Nucleic Acids Res 2009, 37(3):762-770.
32. Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK: Structure of restriction endonuclease BamHI phased at 1.95 A resolution by MAD analysis. Structure 1994, 2(5):439-452.
33. Nakonieczna J, Kaczorowski T, Obarska-Kosinska A, Bujnicki JM: Functional analysis of the Mmel restriction-modification enzyme from a methanol utilizer Methylophilus methylotrophus: A subtype IIC enzyme related to Type I enzymes. Appl Environ Microbiol 2008, doi:10.1128/AEM.01322-08.
34. Shen BW, Xu D, Chan SH, Zheng Y, Zhu Z, Xu SY, Stoddard BL: Characterization and crystal structure of the type IIG restriction endonuclease RM.BpuSI. Nucleic Acids Res 2011, 39(18):8223-8236.
35. Sambrook J, Fitsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. . 2 edition. Cold Spring Harbor NY: CSH Press; 1989.
36. Weinreich MD, Yigit H, Reznikoff WS: Overexpression of the Tn5 transposase in Escherichia coli results in filamentation, aberrant nucleoid segregation and cell death: analysis of E.coli and transposase suppressor mutations. J Bacteriol 1994, 176:5494-5504.
37. Chang AC, Cohen SN: Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 1978, 134:1141-1156.
38. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
39. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
40. Kosinski J, Kubareva E, Bujnicki JM: A model of restriction endonuclease Mval in complex with DNA: a template for interpretation of experimental data and a guide for specificity engineering. Proteins 2007, 68(1):324-336.
41. Orlowski J, Boniecki M, Bujnicki JM: I-Ssp6803I: the first homing endonuclease from the PD-(D/E)XK superfamily exhibits an unusual mode of DNA recognition. Bioinformatics 2007, 23(5):527-530.
42. Feder M, Bujnicki JM: Identification of a new family of putative PD-(D/E) XK nucleases with unusual phylogenomic distribution and a new type of the active site. BMC Genomics 2005, 6(1):21.
43. Lundstrom J, Rychlewski L, Bujnicki J, Elofsson A: Pcons: a neural-networkbased consensus predictor that improves fold recognition. Protein Sci 2001, 10:2354-2362.
doi:10.1186/1471-2199-13-13
Cite this article as: Zylicz-Stachula et al.: Related bifunctional restriction endonuclease-methyltransferase triplets: TspDTI, Tth111II/TthHB27I and Tsol with distinct specificities. BMC Molecular Biology 2012 13:13.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

[^0]: * Correspondence: skowronp@chem.univ.gda.pl
 ${ }^{2}$ Division of Environmental Molecular Biotechnology, Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk, Poland Full list of author information is available at the end of the article

