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To correct for a large number of hypothesis tests, most researchers
rely on simple multiple testing corrections. Yet, new method-
ologies of selective inference could potentially improve power
while retaining statistical guarantees, especially those that enable
exploration of test statistics using auxiliary information (covari-
ates) to weight hypothesis tests for association. We explore
one such method, adaptive P-value thresholding (AdaPT), in
the framework of genome-wide association studies (GWAS) and
gene expression/coexpression studies, with particular emphasis
on schizophrenia (SCZ). Selected SCZ GWAS association P values
play the role of the primary data for AdaPT; single-nucleotide
polymorphisms (SNPs) are selected because they are gene expres-
sion quantitative trait loci (eQTLs). This natural pairing of SNPs
and genes allow us to map the following covariate values to these
pairs: GWAS statistics from genetically correlated bipolar disorder,
the effect size of SNP genotypes on gene expression, and gene–
gene coexpression, captured by subnetwork (module) member-
ship. In all, 24 covariates per SNP/gene pair were included in the
AdaPT analysis using flexible gradient boosted trees. We demon-
strate a substantial increase in power to detect SCZ associations
using gene expression information from the developing human
prefrontal cortex. We interpret these results in light of recent
theories about the polygenic nature of SCZ. Importantly, our
entire process for identifying enrichment and creating features
with independent complementary data sources can be imple-
mented in many different high-throughput settings to ultimately
improve power.

multiple hypothesis testing | false discovery rate | GWAS | eQTL |
neuropsychiatric disorders

Large-scale experiments, such as scanning the human genome
for variation affecting a phenotype, typically result in a

plethora of hypothesis tests. To overcome the multiple testing
challenge, one needs corrections to limit false positives while
maximizing power. Introduced in ref. 1, false discovery rate
(FDR) control has become a popular approach to improve
power for detecting weak effects by limiting the expected false
discovery proportion (FDP) instead of the more classic family-
wise error rate. The Benjamini–Hochberg (BH) procedure was
the first method to control FDR at target level α using a step-
up procedure that is adaptive to the set of P values for the
hypotheses of interest (1). Other methods for FDR control
have led to improvements in power over BH by incorporating
prior information, such as by the use of P-value weights (2).
In the “omics” world—genomics, epigenomics, proteomics, and
so on—the challenge of multiple testing is burgeoning, in part
because our ability to characterize omics features grows continu-
ally and in part because of the realization that multiple omics are
required for describing phenotypic variation. One might imag-
ine merging complementary omics data and tests using a priori
hypothesis weights to improve power; however, until recently,
it was not clear how to choose these weights in a data-driven
manner.

Recent methodologies have been proposed to account for
covariates or auxiliary information while maintaining FDR con-
trol (3–7). We implement a selective inference approach, called
adaptive P-value thresholding [AdaPT (8)], to explore prior aux-
iliary information while maintaining guaranteed finite-sample
FDR control. A recent review compared the performance of
AdaPT with other covariate-informed methods for FDR control
with off-the-shelf one-dimensional and two-dimensional covari-
ate examples (9). One of the weaknesses they ascribe to AdaPT
is the unintuitive modeling framework for incorporating covari-
ates; however, AdaPT is not a specific algorithm that one can
simply apply to a dataset but rather, a metaalgorithm for mar-
rying machine learning methods to multiple testing problems
without compromising FDR control. We fully embrace AdaPT’s
flexibility via gradient boosted trees in a much richer, high-
dimensional setting. Our boosting implementation of AdaPT
easily scales with more covariates, enabling practitioners to cap-
ture interactions and nonlinear effects from the rich resources of
prior information available.

In this manuscript, we demonstrate our gradient boosted trees
implementation of AdaPT on results from genome-wide associa-
tion studies (GWAS), incorporating covariates constructed from
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We apply AdaPT to results from genomic association studies
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more complex and interpretable model with far greater power
than classic multiple testing procedures.

Author contributions: R.Y., M.G., K.R., and B.D. designed research; R.Y., M.G., K.R., and
B.D. performed research; R.Y., M.G., K.R., and B.D. contributed new reagents/analytic
tools; R.Y. analyzed data; and R.Y., M.G., K.R., and B.D. wrote the paper.y

Reviewers: W.F., University of California, Berkeley; and M.S., The University of Chicago.y

The authors declare no competing interest.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: A modified version of the adaptMT R package to implement the
AdaPT CV tuning steps with XGBoost models is available at GitHub (https://github.
com/ryurko/adaptMT). All code used to generate the manuscript’s results is also available
at GitHub (https://github.com/ryurko/AdaPT-GWAS-manuscript-code).y
1 To whom correspondence may be addressed. Email: roeder@andrew.cmu.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1918862117/-/DCSupplemental.y

First published June 10, 2020.

15028–15035 | PNAS | June 30, 2020 | vol. 117 | no. 26 www.pnas.org/cgi/doi/10.1073/pnas.1918862117

http://orcid.org/0000-0001-9677-6599
http://orcid.org/0000-0002-8869-6254
http://orcid.org/0000-0003-2524-4290
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ryurko/adaptMT
https://github.com/ryurko/adaptMT
https://github.com/ryurko/AdaPT-GWAS-manuscript-code
mailto:roeder@andrew.cmu.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918862117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918862117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1918862117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1918862117&domain=pdf


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

independent GWAS and gene expression studies. Specifically, we
apply AdaPT to GWAS for detecting single-nucleotide polymor-
phisms (SNPs) associated with schizophrenia (SCZ) using bipo-
lar disorder (BD) GWAS results from an independent dataset as
a covariate. Additionally, we incorporate results from the recent
BrainVar study to identify a set of expression single-nucleotide
polymorphisms (eSNPs) based on 176 neurotypical brains, sam-
pled from pre- and postnatal tissue from the human dorsolateral
prefrontal cortex (10). Along with the genetically correlated BD
z statistics, we create additional features from this complemen-
tary data source by summarizing the associated developmental
gene expression quantitative trait loci (eQTL) slopes and mem-
bership in gene coexpression networks. We demonstrate that this
process of identifying an enriched set of eSNPs and applying
AdaPT with covariates summarizing gene expression from the
developing human prefrontal cortex yield substantial improve-
ment in power with each additional piece of information from
the BrainVar study. Furthermore, we validate the replication of
our results using more recent, independent SCZ studies.

This study had two goals: to explore the use of AdaPT in a
realistic high-dimensional multiomics setting and to determine
what can be learned about the neurobiology of SCZ by this
exploration. Our results revealed the power of incorporating
auxiliary information with flexible gradient boosted trees. While
each covariate independently provided at best a modest increase
in power, our adaptive search discovered a more complex model
with far greater power. These discoveries also led to increas-
ing support for the polygenic basis of SCZ, complementing
recent findings and suggesting that there are many physiologi-
cal avenues to its underlying neurobiology. We emphasize that
the process and analysis undertaken with this implementation of
AdaPT can be extended to a variety of omics and other settings
to utilize the rich contextual information that is often ignored by
standard multiple testing corrections. We highlight this feature
by analyzing two other sets of GWAS studies, type 2 diabetes
(T2D) and body mass index (BMI), using results from these
analyses to interpret findings from SCZ.

Results
Methodology Overview. AdaPT is an iterative search proce-
dure, introduced in ref. 8, for determining a set of discover-
ies/rejections, R, with guaranteed finite-sample FDR control
at target level α under conditions outlined below. We apply
AdaPT to the collection of P values and auxiliary information,
(pi , xi)i∈n , testing hypothesis Hi regarding SNP i’s associa-
tion with the phenotype of interest (e.g., SCZ). The covari-
ates from some feature space, xi ∈X , capture information col-
lected independently of pi but potentially related to whether
or not the null hypothesis for Hi is true and the effect size
under the alternative. AdaPT provides a flexible framework
to incrementally learn these relationships, potentially increas-
ing the power of the testing procedure, while maintaining valid
FDR control.

For each step t = 0, 1, . . . in the AdaPT search, we first deter-
mine the rejection set Rt = {i : pi ≤ st(xi)}, where st(xi) is the
rejection threshold at step t that is adaptive to the covariates xi .
This provides us with both the number of discoveries/rejections
Rt = |Rt | as well as a pseudoestimate for the number of false
discoveries At = |{i : pi ≥ 1− st(xi)}| [i.e., number of P values
above the “mirror estimator” of st(xi)]. These quantities are
used to estimate the FDP at the current step t ,

F̂DPt =
1 +At

max{Rt , 1} . [1]

If F̂DPt ≤α, then the AdaPT search ends, and the set of dis-
coveries Rt is returned. Otherwise, we proceed to update the
rejection threshold while satisfying two protocols: 1) the updated

threshold must be more stringent st+1(xi)≤ st(xi), and 2) P
values determining Rt and At are partially masked,

p̃t,i =

{
pi , if st(xi)< pi < 1− st(xi),

{pi , 1− pi}, otherwise.
[2]

Under these protocols, the rejection threshold can be updated
using Rt ,At , and (xi , p̃t,i)i∈[n]. The flexibility in how this update
takes place is one of AdaPT’s key strengths and allows it to easily
incorporate other approaches from the multiple testing litera-
ture, such as a conditional version of the two-groups model (11)
with estimates for the probability of being nonnull, π1, and the
effect size under the alternative, µ.

The algorithm proceeds by sequentially updating the thresh-
old st+1(xi) to discard the most likely null element in the current
rejection region, as measured by the conditional local false dis-
covery rate (fdr): that is, i∗= arg max

i∈Rt

fdrt,i is removed fromRt .

With the threshold updated, the AdaPT search repeats by esti-
mating FDP and updating the rejection threshold until the target
FDR level is reached: F̂DPt ≤α orRt = 0.

This procedure guarantees finite-sample FDR control under
independence of the null P values and as long as the null distri-
bution of P values is mirror conservative (i.e., the large “mirror”
counterparts 1− pi ≥ 0.5 are at least as likely as the small
P values pi ≤ 0.5). To address the assumption of independence,
we select a subset of weakly correlated SNPs detailed in Data
and additionally provide simulations in SI Appendix showing
that AdaPT appears to maintain FDR control in relevant posi-
tive dependence settings. However, one practical limitation we
encounter with the FDP estimate in Eq. 1 is observing P val-
ues exactly equal to one. While this can understandably occur
with publicly available GWAS summary statistics, P values equal
to one will always contribute to the estimated number of false
discoveries At . This nuance can lead to a failure of obtaining
discoveries at a desired target α, such as the reported AdaPT
results by ref. 9 for multiple case studies. However, we demon-
strate in SI Appendix an adjustment to the P values for T2D and
BMI GWAS applications that alleviates this problem, although
future work should explore modifications to the FDP estimator
itself.

The modeling step of AdaPT estimates conditional local fdr
with an expectation–maximization (EM) algorithm. In this con-
text, we use gradient boosted trees, which construct a flexible
predictive function as a weighted sum of many simple trees, fit
using a gradient descent procedure that minimizes a specified
objective function. The two objective functions considered cor-
respond to estimating the probability of a test being nonnull and
the distribution of the effect size for nonnull tests. The advan-
tage of this approach to function fitting is that it is invariant to
monotonic variable transformations, automatically incorporates
important variable interactions, and is able to handle a large
number of covariates without degrading significantly in perfor-
mance due to the high dimensionality. In contrast, less effective
methods might fail to capture useful information because the
covariates are poorly transformed for a linear model, because
the important information is only revealed through a combi-
nation of covariates, or because the important signal is simply
swamped by the number of possible predictors to search through.
Our choice of method gives the flexibility to include many poten-
tially useful covariates without being overly concerned about the
functional form with which they enter or their marginal utility.
In our implementation, we employ the XGBoost library (12) to
capitalize on its computational advantages. Fig. 1 displays the
full pipeline of our implementation of AdaPT to GWAS sum-
mary statistics for SNPs using eQTL to select the SNPs under
investigation.
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Fig. 1. Summary of AdaPT GWAS implementation for selected set of SNPs. SI Appendix, Fig. S1 has a summary of the AdaPT EM algorithm.

Data. Our investigation includes AdaPT analyses of published
GWAS P values, {pi , i = 1, . . .n}, for BMI (13), T2D (14), and
SCZ (15), but we focus our presentation on SCZ results. SCZ
is a highly heritable, severe neuropsychiatric disorder. It is most
strongly correlated, genetically, with another severe disorder, BD
(16, 17). Because of this genetic correlation, reported z statistics
from BD GWAS, zBD

i , can be used as informative covariates for
determining the SCZ rejection threshold. As an application of
our AdaPT implementation, we use the GWAS summary statis-
tics reported in ref. 15, specifically 19,779 subjects diagnosed with
either SCZ or BD with 19,423 control subjects (data are avail-
able from the Psychiatric Genomics Consortium). SCZ and BD
subjects were completely independent, and independent controls
were bulk matched to the sample sizes of the two case samples.
Results from more recent studies in ref. 18 are used for replica-
tion analysis of our results (combined 53,555 SCZ and BD cases
with 54,065 controls). However, the 2014-only studies from ref.
15 are a subset of the all-2018 studies from ref. 18. Although we
do not have access to the raw genotype data, we use the fact that
both papers report inverse variance-weighted fixed effects meta-
analysis results (19). We then separate the summary statistics
for the 2018-only studies exclusive to ref. 18, thus independent
of the 2014-only studies, and create an appropriate holdout for
replication analysis.

After matching alleles from both 2014-only and all-2018 stud-
ies and limiting SNPs to those with imputation score INFO > 0.6
for both BD and SCZ in 2014-only (15), we obtained 1,109,226
SNPs. Rather than test all SNPs, we chose to investigate a
selected subset of SNPs, eSNPs, whose genotypes are corre-
lated with gene expression; this additional filtering step captures
a set of SNPs that are more likely to be functional and not
highly correlated (20). These eSNPs were identified from two
sources. First, we evaluated the BrainVar study of dorsolat-
eral prefrontal cortex samples across a developmental span (10).
BrainVar included cortical tissue from 176 individuals falling
into two developmental periods: prenatal, 112 individuals; and
postnatal, 60 individuals. We identified nSCZ = 25,076 eSNPs
as any eQTL SNP–gene pairs provided by ref. 10 meeting BH
α≤ 0.05 for at least one of the three sample sets (prenatal, post-
natal, and complete = all). These eSNPs were used for the SCZ
analysis, which is a neurodevelopmental disorder, and thus, a
developmental cohort seemed most appropriate for our analyses.

The second source was the Genotype-Tissue Expression
(GTEx) V7 project dataset (21) with adult samples from 53
tissues. As the first winnowing step, we identified the set of
GTEx eQTLs for any of the available tissues at target FDR level
α= 0.05. Rather than use all GTEx eQTLs, however, we selected
eQTL SNP–gene whose genotypes are most predictive of expres-
sion for each gene. The GTEx eSNPs were used for analysis of
T2D and BMI, both of which typically onset in adults (details are
in SI Appendix).

For each eSNP i , we created a vector of covariates xi to
incorporate auxiliary information collected independently of pi ,
including P values from GWAS studies of related phenotypes,
and relationships inferred from gene expression studies. First,

we utilize the mapping of eSNPs to genes derived from eQTLs
assessed in a relevant tissue type r . Although the majority of
observed eSNPs have one unique cis-eQTL gene pairing, 14% of
SNPs in BrainVar were eQTL for multiple genes. Let Gri denote
the set of genes whose expression is associated with eSNP i and
summarize the level of expression as the average absolute eQTL
slope for variants in Gri to obtain β̄r

i . Additionally, we account for
gene coexpression networks as covariates using the J = 20 mod-
ules reported in the BrainVar study, which were generated using
weighted gene coexpression network analysis [WGCNA (22)].
For each of the j = 1, . . . , J WGCNA modules, we create an
indicator variable `ri,j denoting whether or not eSNP i has any
associated cis-eQTL genes in module j .

For the nSCZ eSNPs, we calculate β̄type
i where type ∈

{pre, post, complete} to capture the eSNP’s overall expres-
sion association across different epochs of the developmental
span. Additionally, we use the 20 WGCNA modules (includ-
ing unassigned gray) reported in ref. 10 to create indicator
variables `SCZ

i,j for j = 1, . . . , 20. This culminates in a vector
of 24 covariates x SCZ

i = (zBD
i , β̄

pre
i , β̄

post
i , β̄

complete
i , `SCZ

i,1 , . . . , `SCZ
i,20).

Although we use WGCNA modules to make use of the results
from the BrainVar study, future applications could explore other
approaches to account for gene set and pathway analysis (23).

AdaPT Discoveries. As noted elsewhere (24), eSNPs are more
likely to be associated with a GWAS phenotype than are ran-
domly chosen SNPs. This is true for the eSNP from BrainVar too,
when evaluated in light of the SCZ GWAS P values (Fig. 2A). To
evaluate the performance of the AdaPT search algorithm using
the eSNP data, we compare the fitted full covariate model with
results from its intercept-only version (Fig. 2B vs. Fig. 2C). As
expected, the intercept-only analysis performs better than BH,
with all 269 BH discoveries contained within the intercept-only
discoveries because it incorporates an estimate for the pro-
portion of nonnull tests. The full model rejects RSCZ = 843 of
the nSCZ = 25,076 BrainVar eSNPs vs. 361 discoveries for the
intercept-only model. For insight into AdaPT’s performance,
we sequentially include 1) only the BD z statistics, then 2)
eQTL slope summaries, and then 3) the WGCNA indicators
(Fig. 2 D and E).

The largest number of discoveries occurs when all 24 covari-
ates are fitted (Fig. 2D), highlighting that all three types of
information together are required. Notably, only 540 associa-
tions are discovered using all covariates without interactions,
fewer discoveries than only using module-based covariates with
interactions. This highlights the improvement in AdaPT’s per-
formance from modeling the interactions between covariates via
gradient boosted trees. As might be expected from their counts
of discoveries (Fig. 2D), the greatest overlap with the full model
occurs by fitting all covariates, but without interactions, or by
fitting the module-based covariates (Fig. 2E).

Additional discoveries are of little interest if they consist
primarily of SNPs in linkage disequilibrium (LD) with SNPs
already discovered using a simpler model, such as the logit model
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Fig. 2. AdaPT results from analysis of SCZ P values. (A) Comparison of quantile–quantile plots revealing SCZ enrichment for both BrainVar eSNPs compared
with the full set of SNPs from 2014 studies. (B and C) Manhattan plots of SCZ AdaPT discoveries (in orange) using (B) intercept-only model compared with
(C) covariate-informed model at target α= 0.05. (D and E) Comparison of the number of discoveries at target α= 0.05 for AdaPT with (D) varying levels of
covariates and (E) their resulting discovery set intersections.

typically used for SCZ GWAS. For context, however, of the ini-
tial 25,076 eSNPs we analyzed, only 4 have P values < 5× 10−8,
the standard GWAS threshold, and all 4 occur in the discovery
sets for the AdaPT full and intercept-only models. To investigate
how the AdaPT procedure performs using completely indepen-
dent eSNPs, we identified the “lead” SNP in each LD block
using the approach delineated in ref. 24 and compared model
performance for this set of approximately independent SNPs
(SI Appendix). This thinning results in roughly 3,960 eSNPs to
be analyzed by the different models (Fig. 2). (Ties in q val-
ues add or subtract a few SNPs to this 3,960 count, depending
on the model analyzed.) When AdaPT is fit to these indepen-
dent SNPs, we obtain analogous improvements in performance
compared with the larger set of SNPs (SI Appendix, Figs. S2
and S3): the full AdaPT model discovers 95 independent loci,
while the intercept-only model discovers only 42 loci. Like-
wise, the full model is the best model, and interactions remain
important. Finally, no location in the genome exerts unusual
influence on the results, which is also the case for the analyses
of 25,076 eSNPs.

As described previously, we performed similar analyses of
T2D and BMI GWAS P values. All results for these analyses,
as well as more details regarding analyses of SCZ, are available
in Dataset S1 and SI Appendix.

Variable Importance and Relationships. We examine the variable
importance and partial dependence plots from the gradient
boosted models to provide insight into the relationships between
each of the covariates and SCZ associations. Fig. 3A displays the
change in variable importance for the probability of being non-
null (π1) at each model fitting iteration, with the top variables
in the final model highlighted. We see that the BD z statistics
are estimated as the most important for each π1 model, but
they decrease in importance in the final steps. In contrast, the
unassigned gray module increases in importance throughout the
AdaPT search. This change in variable importance across the
AdaPT search highlights that the difference in the discriminatory
power of covariates depends on the remaining masked P values.

Fig. 3B displays the partial dependence plot (25) at each
AdaPT model fitting iteration for the estimated marginal rela-
tionship between the BD z statistics and the probability of

being nonnull, evaluated at the 0, 2.5, 5, . . . , 100% percentiles.
Because the goal of the AdaPT two-groups model (detailed in
Methods) is to order the remaining masked P values, the π1

model predicts values relative to the remaining masked P val-
ues: as the rejection threshold st(xi) becomes more stringent,
the masked P values are more likely nonnull (assuming there is
signal). However, for each model iteration, Fig. 3B reveals an
increasing likelihood for nonnull results as the BD z statistics
grow in magnitude from zero, as well as a diminished impact
of BD z statistics on the estimated π1 for later model iter-
ations. Fig. 3C displays the clear enrichment for eSNPs with
cis-eQTL genes that are members of the salmon WGCNA mod-
ule reported by ref. 10, which was the most important WGCNA
module indicator in the first model fitting step. This differs from
the unassigned gray module variable: it is predictive of SNPs
that are classified as null, rather than associated with the pheno-
type. Taken together, Fig. 3 emphasizes the use of all covariates
across different steps of the AdaPT search. SI Appendix has more
analyses highlighting the advantages of accounting for interac-
tions between covariates.

Replication in Independent Studies. Next, we examine the replica-
bility of the 2014-only SCZ AdaPT results using independent
2018-only studies. We find (Fig. 4) an increasing smoothing
spline relationship between these sets of values, with notice-
ably increasing evidence indicated by the 2018-only P values for
the set of AdaPT discoveries at α= 0.05. Additionally, of the
843 discoveries from the 2014-only studies at target FDR level
α= 0.05, approximately 55.2% (465 eSNPs) were nominal repli-
cations for 2018 only (P values < 0.05), comparable with the
replication fraction expected on the basis of power (SI Appendix
has supporting simulations).

Gene Ontology Comparison. Using the SNP discoveries, which
span the genome, we next sought biological insights. We applied
gene ontology enrichment analysis (26, 27) to the 136 genes
obtained from the eQTL variant–gene pairs associated with the
843 discoveries. This analysis produced no clear signal, yield-
ing only a minor enrichment for biological processes related to
peptide antigen assembly. Several explanations are plausible; we
explore two: either AdaPT is discovering SNPs of such small
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Fig. 3. Variable importance and relationships. (A) Change in variable importance for AdaPT estimated probability of nonnull π1 model across the search,
with top variables in final model highlighted. (B) Change in partial dependence for estimated probability of being nonnull π1 and BD z statistics across π1

models in AdaPT search. (C) SCZ enrichment of eSNPs based on salmon WGCNA module membership, the most important WGCNA module indicator in the
first model fitting step.

effect that the discoveries are not meaningful, or SCZ is a highly
complex disorder with a large number of biological processes
involved. For comparison, we applied our full pipeline to GWAS

summary statistics for T2D (14). This comparison is of interest
because T2D is a disease with a well-understood functional basis
and this is a well-powered study (74,124 T2D cases and 824,006

Fig. 4. Relationship between the 2018-only P values and the resulting 2014-only q values from the AdaPT search. Black line displays smoothed relationship
between SCZ P values from 2018-only studies and AdaPT q values from 2014-only studies. Blue region indicates the 2014-only AdaPT discoveries at target FDR
level α= 0.05 that are nominal replications (2018-only P values < 0.05), while red region denotes 2014-only discoveries that failed to replicate (2018-only
P values > 0.05).
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controls). We restricted our analysis to 176,246 eSNPs based on
eQTLs obtained using GTEx data. Next, we created eQTL-based
covariates using pancreas, liver, and adipose tissue samples (SI
Appendix has more details). After creating a vector of covariates
from GTEx, AdaPT returned 14,920 eSNPs at α= 0.05, resulting
in 5,970 associated genes. Applying gene ontology (GO) enrich-
ment analysis to this gene list, we discovered enrichment for
biological processes related to lipid metabolic process (Fig. 5),
consistent with previous literature (28). These results provide
some reassurance that the lack of specificity in the SCZ results
can be attributed to the complex etiology of SCZ. For compar-
ison with the well-powered BMI GWAS (339,224 subjects), we
found a lack of gene ontology enrichment in our gene discoveries
(SI Appendix).

Pipeline Results for All-2018 Studies. In addition to applying the
pipeline to SCZ P values from the 2014-only studies in ref. 15, we
also modeled P values from all-2018 studies. The latter yields far
more discoveries due to smaller SEs from increased study sizes,
even though the covariates were the same: for x SCZ

i , we find 2,228
discoveries at target FDR level α= 0.05 when the pipeline was
applied to the P values for the most up-to-date set of studies vs.
843 for the 2014-only studies. Notably, the intercept-only version
of AdaPT returned 1,865 discoveries at α= 0.05, meaning the
covariates contributed to≈19% increase in discovery rate for all-
2018 studies vs. the ≈134% increase (361 to 843 eSNPs) from
using the covariates for the 2014-only studies. This reinforces
the value of using auxiliary information in studies with lower
power. Complementary to this observation, AdaPT applied to
BMI GWAS with covariate informed models did not yield more
discoveries than the intercept-only version (details presented in
SI Appendix). Simply accounting for more auxiliary information
does not guarantee an improvement in power, and the advan-
tages thereof diminish as power increases, as witnessed by results
for all-2018 studies for SCZ and the large-scale BMI GWAS.
Additionally, the larger number of discoveries for the SCZ all-
2018 studies, 2,228, maps onto 382 genes. Despite this increase,
these genes did not reveal any clear signal from the gene ontology
enrichment analysis, comporting with results from the 2014-only
results.

Discussion
Our goals in this study were to explore the use of AdaPT for
high-dimensional multiomics settings and investigate the neuro-
biology of SCZ in the process. AdaPT was used to analyze a
selected set of GWAS summary statistics for SNPs, together with
numerous covariates. Specifically, SNPs were selected if they
were documented to affect gene expression; these SNP–gene
pairs were dubbed eSNPs. Covariates for these eSNPs included
GWAS test statistics from a genetically correlated phenotype,
BD, which were mapped to eSNPs through SNP identity, as
well as features of gene expression and coexpression networks,
which were mapped to eSNPs through genes. By coupling flexible
gradient boosted trees with the AdaPT procedure, relationships

among eSNP GWAS test statistics and covariates were uncov-
ered, and more SNPs were found to be associated with SCZ,
while maintaining guaranteed finite-sample FDR control. The
tree-based handling of covariates addresses a perceived weak-
ness of AdaPT, namely the unintuitive modeling framework for
incorporating covariates (9). Moreover, it is worth noting that
the original approach implemented by ref. 8, a generalized linear
model with spline bases, yields similar results (361 discoveries at
target α= 0.05) when applied to the univariate case of only using
BD z statistics. This is an even more straightforward implemen-
tation for handling covariates without interactions. The pipeline
we built should be simple to mimic for a wide variety of omics
and other analyses.

The results shed light on the level of complexity underlying
the neurobiology of SCZ. If the origins of SCZ arose by pertur-
bations of one or a few pathways, we would expect to converge
on those pathways as we accrue more and more genetic associa-
tions. On the other hand, if the ways to generate vulnerability
to SCZ were myriad—even if there is a single ultimate cause
shared across all cases—then we might expect no such conver-
gence, at least with regards to the common variation assessed
through GWAS. Gene ontology analysis of associated discovery
genes from either the 2014-only or all-2018 studies reveals no
enrichment for biological processes for SCZ. There are many
possible explanations for these null findings, one of which is
simply a lack of power or specificity of our results. However,
the result stands in stark contrast to the results for T2D, for
which the gene ontology analysis converges nicely on accepted
pathways to T2D risk; yet, they comport with those for BMI,
which is known to have myriad genetic and environmental ori-
gins. Therefore, our results are consistent with myriad pathways
to vulnerability for SCZ, although it is impossible to rule out
other explanations: for example, the possibility that we under-
stand so little about brain functions that gene ontology analyses
lack specificity. In any case, our results are consistent with two
recent theories underlying the genetics of SCZ, namely extreme
polygenicity (29) and “omnigenic” origins (30).

Although the examples considered in this manuscript pertain
to omics data, this process can be adapted for a large variety
of settings. We demonstrate in SI Appendix simulations showing
that AdaPT appears to maintain FDR control in positive depen-
dence settings emulating LD block structure underlying GWAS
results. There is a clear need, however, for future work to explore
AdaPT’s properties and computational challenges under vari-
ous dependence regimes. The growing abundance of contextual
information available in omics settings provides ample opportu-
nity to improve power for detecting associations, using a flexible
approach such as AdaPT, when addressing the multiple testing
challenge.

Methods
Two-Groups Model. The most critical step in the AdaPT algorithm (8) involves
updating the rejection threshold st(xi). Following (8), we use a condi-
tional version of the classic two-groups model (3, 11) where the null
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Fig. 5. T2D gene ontology (GO) enrichment analysis results for top 10 biological processes based on positive fold enrichment.
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P values are modeled as uniform [f0(p|x)≡ 1], and we model the non-
null P-value density with a beta distribution density parametrized by µi =

E[−log(pi)], resulting in a conditional density for a beta mixture model,
f(p|xi) =π1(xi) 1

µi
p1/µi−1 + 1−π1(xi). In this form, we can model the non-

null probability π1(xi) =E[Hi|xi] and the effect size for nonnull hypotheses
µ(xi) =E[−log(pi)|xi , Hi = 1] with two separate gradient boosted tree-based
models. The XGBoost library (12) provides logistic and gamma regression
implementations, which we use for π1(xi) and µ(xi), respectively.

There are two categories of missing values in these regression problems:
Hi is never observed, and at each step t of the search, the P values for tests
{i : pi ≤ st(xi) or pi ≥ 1− st(xi)} are masked as p̃t,i . An EM algorithm can be
used to estimate both π̂1(xi) and µ̂(xi) by maximizing the partially observed
likelihood. We briefly restate the EM algorithm from ref. 1 and provide
details in SI Appendix that reflect the approach taken in the R adaptMT
package by the same authors, which differs slightly from ref. 1.

During the E step of the d = 0, 1, . . . iteration of the EM algorithm,
conditional on the partially observed data fixed at step t, (xi , p̃t,i)i∈[n], we

compute both Ĥ(d)
i and b̂(d)

i , where b̂(d)
i indicates how likely p′t,i = min(p̃t,i)

equals pi for nonnull hypotheses. The explicit calculations of Ĥ(d)
i and b̂(d)

i
are available in the supplementary materials of ref. 8.

The M step consists of estimating π̂(d)
1 and µ̂(d) with separate gradi-

ent boosted trees, using pseudodatasets to handle the partially masked
data. In order to fit the model for π1(xi), we construct the response vec-
tor y(d)

π = (1, . . . , 1, 0, . . . , 0)∈R2n and use weights w(d)
π = (Ĥ(d)

1 , . . . , Ĥ(d)
n , 1−

Ĥ(d)
1 , . . . , 1− Ĥ(d)

n )∈R2n. Then, we estimate π̂(d)
1 (xi) using the first n pre-

dictions from a classification model using y(d)
π as the response vari-

able with the covariate matrix (xi)i∈[n] replicated twice and weights

w(d)
π . Similarly, for estimating µ̂(d)(xi), we construct a response vector

y(d)
µ = (−log(p1), . . . ,−log(pn),−log(1− p1), . . . ,−log(1− pn))∈R2n with

weights w(d)
µ = (b̂(d)

1 , . . . , b̂(d)
n , 1− b̂(d)

1 , . . . , 1− b̂(d)
n )∈R2n and again take the

first n predicted values using the duplicated covariate matrix.
We follow the procedure detailed in section 4.3 of ref. 8 to estimate the

conditional local fdr for each p′t,i and then update the rejection threshold to
st+1(xi) by removing test i* = arg max i∈Rt

fdrt,i fromRt .

AdaPT Gradient Boosted Trees with Cross-Validation Steps. As a flexi-
ble approach for modeling the conditional local fdr, we use gradi-
ent boosted trees (25) via the open-source XGBoost implementation
(12). Gradient boosted trees are an ensemble of many small tree mod-
els that jointly contribute to predictions. Let fp ∈F be an individual
regression tree; then, the sum-of-trees model can be written as ŷi =∑P

p=1 fp(xi) to minimize
∑n

i L(yi , ŷi) +
∑P

p=1 Ω(fp) where L is the loss func-
tion and Ω measures the complexity of each tree such as the maxi-
mum depth, regularization, etc. Ref. 12 details the algorithms for fitting
the model in an additive manner as well as determining the splits for
each tree.

To tune the variety of parameters for gradient boosted trees within
AdaPT, such as the number of trees P and maximum depth of each tree,
we use the cross-validation (CV) approach recommended in ref. 8. If we
are considering M different options of boosting parameters, then we eval-
uate each of the M choices during the modeling phase of the AdaPT
search. At step t, we divide the data into K folds, preserving the relative

proportions of masked and unmasked hypotheses. Then, for each set of
boosting parameters m = 1, . . . , M and for each fold k = 1, . . .K, 1) apply
EM algorithm to estimate π̂(m)

1 (xi) and µ̂(m)(xi) using parameters m with

data from folds {1, . . . , K}\{k}; 2) compute expected log-likelihood l̃(m)
k

on holdout set k using two-groups model parameters from m following
convergence, and compute total across folds as l̃m =

∑K
k=1 l̃(m)

k . Finally, we

use the set of parameters m* = arg max m l̃(m) in another instance of the EM

algorithm to estimate π̂(m*)
1 (xi) and µ̂(m*)(xi) on all data.

Computational Aspects of AdaPT. Practical decisions are necessary to imple-
ment the AdaPT search. In addition to the covariates and P values
(xi , pt,i)i∈[n], an initial rejection threshold s0(xi) is required to begin the
search. Rather than begin the search with a high starting threshold, such
as s0* = 0.45, recommended by ref. 8, we instead begin the AdaPT search
with s0* = 0.05. Our decision to lower the starting threshold is advanta-
geous for multiple reasons. First, intuitively, this starts our search in the
regime of interest for target level α= 0.05, whereas we would not expect
to detect discoveries with larger P values using this flexible multiple testing
correction. Additionally, by lowering the starting threshold, more true infor-
mation is available to the gradient boosted trees at the start of the AdaPT
search. For instance, with the set of BrainVar eSNPs, 21,248 true P values
are immediately revealed with s0* = 0.05 as compared with only 2,290 when
s0* = 0.45. Simulations detailed in SI Appendix show that on average our
choice for using a lower threshold results in higher power.

The most computationally intensive part of the procedure is updating
the rejection threshold via the EM algorithm. Instead of updating the
model for estimating fdrt,i at each step of the search, we reestimate every
[n/20] steps as recommended by ref. 8. However, the inclusion of the previ-
ously described K-fold CV procedure (we use K = 5) for tuning the gradient
boosted trees obviously adds computational complexity to the AdaPT search
and would be expensive to apply every time the model fitting takes place.
Rather, we apply the CV step once at the beginning and then another
time halfway through the search based on the similarity of simulation per-
formance with varying number of CV steps in SI Appendix. Additionally,
one needs to choose the potential M model parameter choices. Technically,
unique combinations can be used for both models, π1 and µ, but for sim-
plicity, we only consider matching settings for both models (i.e., both models
have the same number of trees and maximum depth). As a reminder, AdaPT
guarantees finite-sample FDR control regardless of potentially overfitting
to the data when using the CV procedure. Simulations are provided in SI
Appendix showing how extensively increasing the number of trees P leads
to decreasing power but maintains valid FDR control.

Code Availability. We provide a modified version of the adaptMT R pack-
age to implement the AdaPT CV tuning steps with XGBoost models
at https://github.com/ryurko/adaptMT and provide all code used to gen-
erate the manuscript’s results at https://github.com/ryurko/AdaPT-GWAS-
manuscript-code.
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