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Abstract: The biology of aging is focused on the identification of novel pathways that regulate the
underlying processes of aging to develop interventions aimed at delaying the onset and progression
of chronic diseases to extend lifespan. However, the research on the aging field has been conducted
mainly in animal models, yeast, Caenorhabditis elegans, and cell cultures. Thus, it is unclear to what
extent this knowledge is transferable to humans since they might not reflect the complexity of
aging in people. An organoid culture is an in vitro 3D cell-culture technology that reproduces the
physiological and cellular composition of the tissues and/or organs. This technology is being used
in the cancer field to predict the response of a patient-derived tumor to a certain drug or treatment
serving as patient stratification and drug-guidance approaches. Modeling aging with patient-derived
organoids has a tremendous potential as a preclinical model tool to discover new biomarkers of
aging, to predict adverse outcomes during aging, and to design personalized approaches for the
prevention and treatment of aging-related diseases and geriatric syndromes. This could represent
a novel approach to study chronological and/or biological aging, paving the way to personalized
interventions targeting the biology of aging.

Keywords: organoids; aging; precision medicine

1. Introduction: Organoids, Spheroids, and Matrix-Embedded 3D Cultures

Patient-derived organoids (PDOs) are self-organized 3D tissue cultures that are de-
rived from stem cells. Isolated patients’ stem cells differentiate to form an organ-like
tissue comprising multiple cell types. Organoids have self-renewal and self-organization
capabilities and retain the characteristics of the physiological structure and function of their
source [1,2]. Recent culturing advances aim to create the right environment for the stem
cells so they can follow their own genetic instructions to self-organize, forming organoid
structures that resemble miniature organs composed of many cell types. This approach
provides tractable in vitro models of human physiology and pathology, thereby enabling
interventional studies that are difficult or impossible to conduct in human subjects [1,3].
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Attempts to model the biology of human organs—including the differentiation of human
stem cells in 2D, in either the presence or absence of a 3D matrix; bio-printing of human
cells; and the culture of cells in a microfluidic device (“organ-on-a-chip”)—were made
prior to the emergence of organoids and have shown some potential for drug screening or
human disease research.

During the late twentieth and early twenty-first centuries, the use of classical cell
lines and animal model systems in biomedical research has helped to improve our under-
standing of cellular signaling pathways, to identify potential drug targets and to guide
the design of candidate drugs for pathologies including cancer and infectious diseases,
among others [3,4]. Recent studies have identified biological processes that are specific to
the human body, such as brain development, metabolism, and the test of drug efficacy that
cannot be modeled in animal or cell models. Nevertheless, extrapolating results from these
model systems to humans has become a major bottleneck in the drug discovery process.
Therefore, the emergence of human in vitro 3D cell cultures, such as organoids, spheroids,
and matrix-embedded 3D cultures has received widespread attention due to the potential
to overcome these limitations [4–6]. These 3D structures of cultured cells recapitulate
important aspects of in vivo organ development and biological function. Such cultures can
be crafted to replicate much of the complexity of an organ or to express selected aspects of
its physiology like producing only certain types of cells [1–3].

Spheroids form by spontaneous aggregation of cells followed by the binding of cell
surface integrins to the extracellular matrix (ECM). After initial cell–cell contact, cells up-
regulate E-Cadherin, which accumulates on the cell surface and then the spheroid becomes
a compact structure through strong intercellular E-cadherin interactions [6]. Different
spheroid models have been described based on their cellular sources. Multicellular tumor
spheroids (MCTS) are often made from cancer cell lines but rarely from tumor tissues.
MCTS show little histological resemblance to the original tumor, but they mimic metabolic
and proliferation gradients of the in vivo tumor and model clinically relevant resistance to
chemotherapy. The advantages of MCTS are that they are clonal, simple to expand into
large cultures, and suitable for high-throughput systems [5–7].

In contrast, organoids grow from stem cells, which can divide indefinitely and produce
different types of cells as part of their progeny. Organoids allow genetic and pharmaco-
logical manipulation in a complex cellular context that reflects human biology and enable
investigations of the early stages of organ development and disease onset. They com-
plement (and may eventually replace) animal models in many areas of preclinical drug
development. Moreover, they provide patient-specific “avatars” for drug development and
precision therapies, including treatments for cancer, rare genetic diseases (such as cystic
fibrosis), and complex multifactorial disorders (such as epilepsy). Finally, they promise
to contribute to regenerative medicine, with the goal of producing functional biological
structures that can be transplanted into patients [3–9].

2. Approaches to Generate a Patient-Derived Human Organoid: Surgical Resections,
Liquid Biopsy, and iPSC-Derivation

The first organoids were developed from tissues of animal models. However, some
biological aspects are unique to humans, and as a consequence, these models show lim-
itations recapitulating human pathology. In that sense, PDOs emerged as a model to
study cancer, infectious diseases, and inheritable genetic disorders [10–13]. The genera-
tion of organoids requires the use of stem cells, which can be either (a) pluripotent stem
cells (PSCs)—embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs)—or
(b) adult stem cells (ASCs) [7–9,13]. For instance, the source of PSC is restricted to iP-
SCs that are generated through the reprogramming of somatic cells, avoiding the ethical
concerns of the use of ESC. iPSCs have the potential to generate all three germ layers.
Differentiation into distinct cell and tissue types can be controlled in vitro by the sequential
use of different factors that mimic in vivo organ development [7,11]. In contrast, ASCs can
be obtained from tissues with regenerative ability, and they have a limited differentiation
potential. In that case, the starting material for the generation of the organoids is normal



Int. J. Mol. Sci. 2021, 22, 10547 3 of 12

or malignant human tissue that can be obtained from surgical resection or biopsy [10]. In
fact, the generation of organoids from these sources allow the expansion and maintenance
of this valuable material. The development of the organoids requires the use of specific
growth factors depending on the tissue of origin, and they are mainly restricted to the
growth of epithelial cells [14]. For that reason, the ASC-derived organoids are less complex
than the iPSCs-derived, which might include mesenchymal and epithelial constituents [12].
On the other hand, tissue-derived organoids may recapitulate the genetic and epigenetic
signature of the original organ [14], but iPSCs can lose this kind of information due to the
dedifferentiation process required for the establishment of the cell line [15], thus hampering
the use of iPSCs for preclinical models. In addition, liquid biopsies contain circulating
tumor cells (CTCs), which although scarce in material could be good candidates to generate
3D structures, expanding the approaches that could be used to generate organoids [16]. In
any case, the procedures to establish organoids rely on the self-renewal and differentiation
of tissue-resident stem cells that expand in culture and self-organize into complex three-
dimensional structures. Once established, organoids can be initiated from cryopreserved
material, cultured using largely traditional cell culture techniques and equipment, and
then expanded and cryopreserved for future use [17].

3. Organoids as a Model to Study Aging Signature across Tissues

Aging is the major risk factor for most chronic diseases. As a consequence of an
increase in lifespan over the years, the elderly population is growing [18]. Frequently,
this extension in longevity is not being accompanied with an increase in health-span [19].
Therefore, studying the underlying mechanisms of aging and developing interventions that
target the aging process has become a priority field of research for most of the governments
and private research agencies worldwide [19].

Organoids might provide a new valuable tool to model the changes that occur during
aging across tissues and to study the development of age-associated diseases. Impaired
processes and/or damage at the molecular and cellular levels accumulate as we age, lead-
ing to a decrease in the reserve capacity or resilience, ultimately developing the aging
phenotypes, which have been divided into four domains: body composition, energetic
imbalance between availability and demand, homeostatic dysregulation, and neurode-
generation [18–20]. Genomic instability, telomere attrition, epigenetic alterations, loss of
proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence,
stem cell exhaustion, and altered intercellular communication have been identified as
important hallmarks of aging in mammals [20]. Modeling these hallmarks using organoids
seems to be possible (Table 1).

Table 1. Summary of studies using organoids to model aging.

Type of
Organoid Addressed Hallmark of Aging Main Findings Reference

Gut

Stem cell exhaustion; deregulated nutrient sensing Lower O.F.E.; altered crypt formation [21–25]

Epigenetic changes; cellular senescence Increased senescence markers; altered
DNA methylation [21,26,27]

Stem cell exhaustion; deregulated nutrient sensing CR increased O.F.E.; reduced mTOR signaling [28,29]
Stem cell exhaustion; deregulated nutrient sensing NR supplementation increased O.F.E. [30]

Altered intercellular communication Chronic inflammation led to NF-κB activation and
cellular transformation [31]

Genomic instability Tissue-specific mutational profile; tumor development [32,33]

Liver Genomic instability Tissue-specific mutational profile; tumor development [32,34]

Skin

Cellular senescence; altered intercellular
communication

Increased senescence markers; decreased
ECM synthesis [35–37]

Cellular senescence; altered intercellular
communication Adipose stem cells prevent skin senescence [38]

Altered intercellular communication Altered TGF-β/Smad signaling [39]

Tendon Stem cell exhaustion; cellular senescence; altered
intercellular communication

Lower O.F.E; decreased ECM synthesis; increased
senescent markers [40]

Lung Stem cell exhaustion; cellular senescence;
telomer attrition

Lower O.F.E; shortened telomeres; increased
senescent markers [41]
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Table 1. Cont.

Type of
Organoid Addressed Hallmark of Aging Main Findings Reference

Breast Genomic instability Tumor development [42]

Gastric Genomic instability; epigenetic changes; altered
intercellular communication PDO characterization; altered Wnt signaling [43]

Pancreatic Genomic instability; altered
intercellular communication PDO characterization; altered Wnt signaling [44]

Brain Loss of proteostasis Amyloid plaques and tau aggregates [45,46]

O.F.E.: organoid formation efficiency; CR: calorie restriction; NR: nicotinamide riboside; ECM: extracellular matrix; PDO: patient-derived organoids.

For instance, aging is associated with a progressive loss of muscle mass and strength
and a decline in neurophysiological functions, due to a gradual loss of motor neurons [47].
Recently, neuromuscular 3D organoids in vitro have been developed successfully to ex-
amine the roles of human autoantibodies in the pathogenesis of myasthenia gravis [48].
Therefore, with this model we could test whether changes in the neuromuscular junction
precede or follow the decline of muscle mass and strength associated with aging. One of the
most common approaches to study aging with organoids is deriving organoids from young
and old donors. Reduced organoid formation efficiency has been described for aged mice
and humans compared to their younger counterparts, which was associated with stem cell
dysfunction and epigenetic changes resulting in a reduction in Wnt signaling [21–25]. Aged
organoids also show increased levels of senescence markers such as p21 and p16, as well
as decreased DNA methyltransferases [21]. Fasting and calorie restriction have been pro-
posed as an anti-aging strategy and have been validated in organoids. Mihaylova et al. [25]
showed that fasting for 24 h increased organoid formation and self-renewal potential of
organoids derived from old mice. Similarly, improved organoid formation efficiency was
observed in calorie-restricted mice, identifying the mTORC1 signaling in Paneth cells [28]
and SIRT1 in intestinal stem cells [29,30] as key pathways to ameliorate stem cell function.
On the other hand, long-term inflammation has also been modeled in intestinal organoids,
and NF-κB signaling has been proposed as a driver of cellular transformation [31].

Skin equivalents (SE) consisting of a 3D culture of fibroblasts and keratinocytes have
been developed to study skin aging, either by inducing senescence in vitro or by isolating
cells from aged donors. SE have successfully modeled some features of skin aging such as
decreased ECM synthesis, cellular loss, and thinner epidermal layer [35]. SE derived from
aged donors show some of these histological features of aging [36,38], and p16 has been
identified as a driver of these changes, as demonstrated by the modulation of p16 levels
in young- and old-derived SE [36]. Extended cultures of SE also recapitulate normal skin
aging, including p16 induction [37]. Moreover, Metral et al. [38] showed that the addition of
adipose-derived stem cells delayed the expression of senescence markers in SE. SE have also
been used to analyze the role of the microenvironment in age-associated changes in the skin.
Collagen fragmentation has been described as an important factor for skin aging. Aged
fibroblasts detach from the ECM, resulting in impaired TGF-β signaling and ultimately
leading to a decrease in the synthesis of ECM components [39,49], further aggravating skin
aging and fragility. Senescent melanocytes contribute to skin aging by inducing telomere
damage and decreased proliferation of keratinocytes in a paracrine manner [50], while
senescent fibroblasts induce changes in the secretome of SE, increasing IL-6, IL-1α, and
granulocyte macrophage colony-stimulating factor levels, which contribute to a decreased
epidermal layer [51]. ECM age-associated changes have also been analyzed with tendon-
derived organoids. Yan et al. [40] observed decreased organoid formation efficiency in
organoids from aged donors, lower cell density, and decreased matrix deposition. These
changes were associated with higher levels of the senescent markers p21 and p16 and stem
cell dysfunction.

Some reports show that human intestinal organoids preserve their original DNA
methylation pattern and their epigenetic age when cultured in vitro [26,52]. Notably, Lewis
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et al. [26] found that the epigenetic age of colon-derived organoids matched the actual age
of the donor, while organoids derived from the small intestine showed a slight decrease
in epigenetic age. Moreover, cultured mouse colon organoids seem to recapitulate age-
associated epigenetic changes [27], opening the possibility of using organoids as a plausible
model to study changes in DNA methylation patterns with aging. A lower organoid
formation efficiency was also observed in organoids derived from aged alveolar epithelial
type II cells. Furthermore, fibrotic cells and cells with shortened telomeres also decreased
the organoid formation rate, which was associated with increased senescence and decreased
stem cell function due to the activation of the Wnt signaling pathway [41]. Organoids
have also been used to model age-associated diseases. For instance, 3D cultures have been
developed to study osteoarthritis [53], macular degeneration [54], uterine leiomyoma [55],
or Alzheimer’s disease [56], which will be discussed in the next section. Before organoids
can become important aging models, some issues must be considered such as the lower
efficiency found when reprogramming cells to form organoids from aged donors compared
to young ones or the increase in senescence rate when cultured for long time [57–59].

4. Application of Organoids in Age-Related Diseases: Cancer, Alzheimer’s, and
Parkinson’s Disease

As we have stated along the review, organoids have emerged as an invaluable tool
in biomedical research and have been extensively developed in the cancer field [60,61].
Other age-related diseases, such as Alzheimer’s Disease (AD) and Parkinson’s Disease
(PD), could benefit from this technology.

4.1. Cancer

Cancer is considered an age-related disease because its incidence might be explained
by the combination of (a) the accumulation of mutations in tissues throughout life and
(b) the alterations of the tissue microenvironment that play a role as a selective pressure over
them [62]. Moreover, the technical developments primarily achieved in organoid-based
cancer research paves the way to the study of other age-related diseases by a patient-derived
organoid approach [63]. In that sense, the expansion of clonal organoids from a single stem
cell generates distinct mutational signatures, which allow the study of tumor genomic
evolution [61]. Blokzijl and colleagues assessed the mutation accumulation in ASCs of the
colon, the small intestine, and the liver, showing similar rates among them (36 mutations
per year) but with tissue-specific mutational profiles and different cycling rates [32].

Once the candidate driver mutations are described, organoids have the potential to
functionally validate them. Thus, wild-type organoids can be genetically engineered to
model cancer initiation and progression recapitulating the oncogenic process. CRISPR/Cas9
technology was first used to introduce mutations in the most frequently mutated genes in
colorectal cancer (APC, P53, KRAS, and SMAD4) in human small intestinal organoids in
order to recapitulate the development of colorectal cancer [33]. Similarly, the knockout of
tumor suppressor genes can recapitulate tumorigenesis in liver and breast human-derived
organoids [34,42]. Interestingly, organoids can also, in part, reproduce the growth fac-
tor dependency of tumor cells within their microenvironment. With this approach, the
genotype–phenotype correlation of the growth factor dependency was described in gastric
cancer and pancreatic tumors allowing the description of tumor subtypes [43,44]. Finally,
it is known that a link exists between cancer and infectious agents to which we can be
exposed during our lifespan. Thus, the co-culture of organoids with pathogens renders the
opportunity to mimic the host–pathogen interactions and pathogenic-induced oncogenesis.
In this regard, human gastric organoids were microinjected with Helicobacter pylori to model
the role of the microorganism in epithelial signaling and proliferation [64]. Recently, the role
of human papillomavirus (HPV) in carcinogenesis was studied in ecto- and endocervical-
derived organoids [65]. Besides, organoids can be co-cultured with microbiota [66], which
is relevant due to its role in cancer and other aging-related processes [67].
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4.2. Alzheimer’s Disease and Parkinson’s Disease

Even though Alzheimer’s Disease (AD) is one of the leading causes of death world-
wide, especially in late life, to date there are currently no available drug treatments to
cure the disease. Similarly, Parkinson’s Disease (PD) is the second most frequent neurode-
generative disorder after AD. Organoid systems based on human pluripotent stem cells
(hPSCs) and neural stem/precursor cells (NSCs) have shown a promising potential to
model neurodegenerative diseases, including AD and PD [45,68–70]. 3D brain organoid
systems generated from hPSCs can recapitulate important features of AD pathophysiology,
such as amyloid plaques and neurofibrillary tangle-like structures [46,68]. Similarly, NSCs
utilized to derive human midbrain-specific organoids (hMO) show abundant neurons with
dopaminergic identity, thus electrophysiologically functional neurons, as well as astroglia
and oligodendrocyte differentiation [70]. Most of the reports using brain organoids in PD
or AD have been focused on genetic risk factors, relying on CRISPR/Cas9 gene editing. In
both cases, these organoids models have been used to test the efficacy of pharmacological
agents in disease progression [45,69].

5. Precision Medicine: Using Organoids Systems as a Tool to Screen Anti-Aging
Drugs/ Patient-Specific Drug Testing

Precision medicine, or “personalized medicine,” has emerged as an approach for disease
treatment and prevention adapted to individual variability and personal characteristics allow-
ing the ability to predict or find the best treatments for a particular condition or disease [71].
This approach requires the integration of all the clinical data, including all the “omics” and
molecular information as well as the environment and lifestyle for each individual. Although
this will be the future, the use of precision medicine on a daily basis in healthcare is almost
restricted to some clinical fields, specifically cancer research, which uses this approach for
patient-specific tumor drug testing. Creating comprehensive collections of organoid biobanks
might be useful in the near future as a tool to validate candidate drug efficacy and safety as
well as to support pre-clinical studies aimed at personalized medicine [72].

Despite advances in the treatment of age-related diseases, the burden of deaths re-
mains high. A key limitation in age-related diseases treatment is the lack of valid predictive
biomarkers, which reduces the efficacy of treatments. As in other diseases like cancer,
gerontologists are largely unable to predict treatment response for individual patients,
resulting in patients receiving ineffective treatment with unnecessary exposure to toxic
side effects and high treatment costs. Effective predictive biomarkers are needed to en-
able personalized medicine and increase survival for patients [73]. Personalized medicine
strategies include protein-based, RNA-based, and genome-based stratification, though in
oncology, precision medicine has been largely based on genomic biomarkers [74]. However,
less than half of patients are eligible for genetically matched treatment, and, for the majority
of anticancer agents, no genetic markers are available. A promising predictive biomarker is
individualized tumor response testing using PDOs, in which anticancer agents are screened
ex vivo on PDOs to predict the clinical response. PDOs represent a superior preclinical
model system compared to previous models through their inherent heterogeneity, long-
term stability, applicability for high throughput screens, and enhanced capacity to capture
tumor characteristics [73,74].

In this regard, the description of potential aging-related biomarkers such as telomere
length, DNA damage, mitochondrial dysfunction, reactive oxygen species, autophagy, and
epigenetic marks [20] opens the possibility to use PDOs as a predictive tool of disease outcome.
In addition, the discovery and validation of new aging-related biomarkers using PDOs is a
promising field. PDOs could be exposed to panels of clinically relevant anti-aging drugs in
order to identify better treatment schemes in bench-to-bedside approaches (Figure 1).
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Figure 1. Patient-derived organoids (PDOs) as a personalized aging tool. PDOs can be obtained from reprogramming adult
stem cells into uncommitted induced pluripotent stem cells (iPSCs), which through a series of differentiation steps result
in the generation of the desired tissue type organoid. Alternatively, tumor resection or liquid biopsy/circulating-tumor
cells (CTC) can be the source of the adult stem cell (ASCs) required to establish the organoid. Modeling aging with PDOs
have a tremendous potential as a preclinical model tool to discover new biomarkers of aging, to predict adverse outcomes
during aging, and to design personalized approaches for prevention and treatment of aging-related diseases and geriatric
syndromes. This could represent a novel approach to study chronological and/or biological aging, paving the way to
personalized interventions targeting the biology of aging.

For the past decades several compounds have been found to delay the onset of age-
related diseases and increase health-span and lifespan [18,19,75] These compounds target
several pathways such as growth factor and insulin signaling pathways (e.g., mTOR
inhibitors), carbohydrate and fat metabolism (e.g., metformin), NAD+-dependent sirtuins
and NAD pathways (e.g., resveratrol, sirtuins, and NAD2), autophagy (e.g., spermidine),
and senescence (e.g., senolytics and senomorphics). Some of these drugs are currently used
to treat other age-related diseases such as cancer (senolytics and mTOR inhibitors) or type 2
diabetes (metformin), but they have recently been proposed also as “anti-aging” drugs [75].
Since organoids recapitulate the histological architecture of human tissues in vivo, they
can also be used to test potential anti-aging drugs that target one or more of the domains
and hallmarks of aging. This could also help to identify the molecular signatures related
to treatment efficacy and toxicity. To date and to our knowledge, the specific use of these
drugs in organoids with the main goal to directly address the aging mechanism in the
absence of disease has not yet been sufficiently studied.

Aging has been associated with a decrease in NAD+ levels [76,77]. NAD+ precursors
such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have been
proposed as potential anti-aging drugs [78]. Aged intestinal organoids treated with NMN
showed improvement in cell proliferation and a decrease in senescence markers [21].
Similarly, NR treatment improved organoid formation from crypts isolated from old mice
through activation of SIRT1 [30]. NMN has also been tested in cerebral organoids derived
from AD patients with different genetic backgrounds. Some organoids showed an increase
in mitophagy, while others showed mitochondrial biogenesis induction. In this study,
an inhibitor of the unfolded protein response, ISRIB, also showed potential as a drug
to protect against proteotoxic stress [79]. Some reports also tested different well-known
drugs in skeletal muscle organoids and validated this model to screen potential drugs to
treat age-associated sarcopenia [80,81]. Senolytic drugs, drugs that eliminate senescent
cells, have also been evaluated with organoids. Navitoclax, also known as ABT-263, is
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an anti-cancer drug that has senolytic activity. It successfully removed senescent cells
in a model of uterine leiomyoma in a time-dependent manner [55]. Fisetin, another
senolytic compound, has been found to decrease the levels of IL-6 and TNF-α, which
have been involved in inflammaging (age-related inflammation) [82], in skin models [83].
Lammermann et al. [84] tested a plant extract with senolytic properties in SE and prevented
the effects of the senescence-associated secretory phenotype (SASP). Similarly, the senolytic
compound ABT-737 also blocked the effects of the SASP, while mitoQ prevented telomere
damage and senescence induction in SE [50]. Another tested anti-aging compound is the
synthetic jasmonic acid derivative LR2412, which increased ECM proteins deposition in SE,
improving some of the aging effects on the skin [85].

6. Limitations, Challenges, and Future Prospects

Even though organoids could potentially become relevant aging models, there are
some issues that need to be addressed. Some reports show a lower efficiency of reprogram-
ming cells to form organoids from aged donors compared to young ones, and reprogram-
ming cells from an aged donor into iPSCs may erase some aging epigenetic marks [57,58].
This would introduce unacceptable bias when performing side-by-side experiments. An-
other important limitation is the lack of a standardized protocol to establish organoids
for many organs, which inevitably leads to high variability of this system from one lab to
another. Moreover, it is important to obtain stable organoids resembling the adult, mature
tissue to study aging. However, a protocol for long-term maintenance of organoids, espe-
cially for those derived from non-epithelial sources, is yet to be developed and accepted.
Notably, it has been described that mesenchymal stem cells show accelerated senescence
when cultured for an extended time [59].

Other limiting factors are the absence of a physiological niche, namely, innervation
and vascularization of organoids. Some important physiological functions are under the
control of the nervous system. Thus, for some applications, such as modeling normal func-
tion and disease, organoids need to include innervation. Some authors have successfully
generated innervated organoids [86,87], and several strategies are being studied [88]. On
the other hand, the intricate architecture of veins and arteries is difficult to include in the
organoid culture; although some studies are currently underway [89]. Overcoming this
issue would allow the co-culture of several types of organoids in order to mimic a complex
tissue organization and even multi-organ systems for the study of inter-organ communica-
tion, including the role of hormones and cytokines that are known to be involved in the
aging process.

Furthermore, some culture conditions may favor the selection of certain cell types, and
in the case of tumor organoids, cellular clones that are able to survive in this environment.
The effect of unintended clonal selection when establishing the organoid would hamper
the reproducibility of the experiments and hinder precision medicine applications. In this
regard, culture conditions must be closely monitored and results should be replicated
in multiple clones per experiment. On the other hand, the microenvironment is usually
absent in organoid culture, and thus, cell–stromal interaction is missing. In this sense,
the extracellular matrix composition, specific cell types, and the microbiome, which can
be critical for tissue function, are still to be defined to better model the complexity of the
studied tissue. Finally, not all tissues have been successfully engineered into organoids, as
some cell types are difficult to obtain and culture in vitro, especially those deriving from a
mesenchymal origin. Moreover, organoid culture is costly, and generating a comprehensive
collection representative of a patient’s complexity could be very time-consuming, which
hinders the use of organoids for clinical and translational applications.

Despite all the caveats, we believe that in the forthcoming era of precision medicine,
modeling aging with patient-derived organoids will help to find biological biomarkers
that could capture the inter-individual variability of biological processes of aging before it
becomes clinically detectable.
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