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Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, 
which are important defense compounds to protect the plant against herbivores and 
pathogens, and act as signaling molecules between the plant and its biotic environment. 
Legume-sourced secondary metabolites are well known for their potential benefits to 
human health as pharmaceuticals and nutraceuticals. During domestication, the color, 
smell, and taste of crop plants have been the focus of artificial selection by breeders. 
Since these agronomic traits are regulated by secondary metabolites, the basis behind 
the genomic evolution was the selection of the secondary metabolite composition. In this 
review, we will discuss the classification, occurrence, and health benefits of secondary 
metabolites in legumes. The differences in their profiles between wild legumes and their 
cultivated counterparts will be investigated to trace the possible effects of domestication 
on secondary metabolite compositions, and the advantages and drawbacks of such 
modifications. The changes in secondary metabolite contents will also be discussed at 
the genetic level to examine the genes responsible for determining the secondary 
metabolite composition that might have been lost due to domestication. Understanding 
these genes would enable breeding programs and metabolic engineering to produce 
legume varieties with favorable secondary metabolite profiles for facilitating adaptations 
to a changing climate, promoting beneficial interactions with biotic factors, and enhancing 
health-beneficial secondary metabolite contents for human consumption.
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INTRODUCTION

Climate change, farmland deterioration, and the resulting food insecurity are major challenges 
facing the world. An increase in food supply is required to feed the expanding human population. 
The cultivation of high-yield crops has been used as a strategy to improve food supply. Grain 
legumes have been suggested as the potential solution to maintaining food and protein security 
(Considine et al., 2017). Legumes are also beneficial for sustainable agriculture due to the reduced 
release of greenhouse gases compared to other crops (Stagnari et  al., 2017). Besides the beneficial 
effects on the improvement of soil fertility, legumes could enhance the resistance of soil to 
ecosystem disturbance, possibly due to the enhanced soil food web complexity (Gao et  al., 2020). 
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In agriculture, legumes are common candidates for crop rotation 
for promoting the growth of other crops such as cereals (Bagayoko 
et  al., 2000; Uzoh et  al., 2019). In addition, legumes produce 
unique secondary metabolites such as isoflavones, which are 
beneficial to human health (Gepts et  al., 2005; Ku et  al., 2020). 
Legumes are known to protect humans from chronic diseases, 
including cardiovascular diseases, diabetes, obesity, osteoporosis, 
or even cancer (Kushi et  al., 1999; Al-Anazi et  al., 2011). Based 
on the mode of consumption, legumes can be  classified into 
four groups: oil seeds, pulses, vegetable crops, and feed crops 
(McCrory et  al., 2010). Examples of oil seeds are soybean and 
peanut (McCrory et  al., 2010). Pulses are legumes, which are 
exclusively harvested as dry seeds, such as chickpea, lentils, and 
peas. Green bean and garden pea are examples of vegetable 
crops while clover and alfalfa are examples of feed crops (McCrory 
et  al., 2010). Human selection of legumes during domestication 
has resulted in the alteration, and even loss of diversity, of 
secondary metabolite contents in these crops, directly and indirectly 
through the selection pressure on the genes that control the 
production of secondary metabolites. Understanding the differences 
in secondary metabolites, and the underlying genetic differences, 
between the domesticated legume cultivars and their wild 
progenitors would promote the preservation of legume accessions, 
which possess the genes for the biosynthesis of beneficial secondary 
metabolites. This knowledge will facilitate breeding programs 
and metabolite engineering to produce legume crops with favorable 
traits for adapting to the changing climate and for human 
pharmaceutical/nutraceutical use.

SEVERAL DOMESTICATION-RELATED 
TRAITS ALTERED THE SECONDARY 
METABOLITE CONTENTS

Domestication traits refer to morphological, biochemical, 
developmental, or physiological traits that are different between 
domesticated plants and their immediate wild progenitors 
(Abbo et  al., 2014). A key part of domestication is the 
improvement of crop yield and harvestability compared to 
the wild progenitors (Dehaan et  al., 2016). Several crop traits, 
including pod shattering, peduncle length, floral color, days 
to flowering, 100-seed weight, pod length, leaf length, leaf 
width, and seed number per pod, have been regarded as 
domestication-related traits (Lo et  al., 2018).

Besides yield and harvestability related traits, other 
agronomic traits, such as seed size, appearance, and taste, 
are also subject to selection by breeders. These traits could 
be  regarded as improvements due to post-domestication 
selection (Abbo et  al., 2014). It has been suggested that the 
selection for larger seeds is related to facilitating single-seed 
planting (Kaplan, 1981). Breeders have also selected seeds of 
light colors. The ease of sowing and religious reasons have 
been proposed to be behind such conscious selections (Heiser, 
1988). Therefore, seeds of modern legumes tend to have larger 
sizes and lighter colors compared to their wild counterparts. 
Moreover, the bitter taste of seeds has been intentionally 

eliminated through breeding (Muzquiz et  al., 1994). Behind the 
loss of bitter taste is the loss of the corresponding bitter-tasting 
secondary metabolites such as alkaloids (Muzquiz et  al., 1994).

During domestication, secondary metabolite compositions 
which facilitate cultivation and improve the appearance and 
taste of food grains were intentionally selected for by breeders. 
In some cases, the secondary metabolite composition may 
be  unintentionally selected due to the close proximity of the 
genes or quantitative trait loci (QTLs) for secondary metabolite 
biosynthesis to those regulating other traits such as major 
nutrients and yield. The selection of favorable cultivation areas 
and the protection by breeders during crop growth limit natural 
selection pressures due to abiotic and biotic stresses. Domestication 
brings forth better yield, better taste, and better appearance but 
also reduces the availability of secondary metabolites in legumes. 
As a result, domesticated legumes are usually less resistant to 
biotic stresses compared to their wild counterparts (Muzquiz 
et  al., 1994; Pavan et  al., 2016; Bazghaleh et  al., 2018; Abraham 
et al., 2019). The reduced availability of health-beneficial secondary 
metabolites (Muzquiz et al., 1994; Wang et al., 2010; Fernández-
marín et  al., 2014; Kaur et  al., 2019) also limits the potential 
of legumes as sources of bioactive compounds for pharmaceutical 
use. For the growth of the legume plants, the loss of the secondary 
metabolites in modern cultivars possibly renders the plants more 
susceptible to abiotic stress and biotic stress. The importance 
of the secondary metabolites to combating these stresses will 
be  introduced in section “The Roles of Secondary Metabolites 
in Combating Abiotic and Biotic Interactions.”

INTRODUCTION TO SECONDARY 
METABOLITES IN LEGUMES

Definition of Plant Secondary Metabolites
Secondary metabolites are organic compounds derived from 
primary metabolism that serves key roles in defense and signaling 
in plants. They contribute to adaptive traits and ecological 
fitness, including defense mechanisms, tolerance to abiotic/biotic 
stresses, and interactions with insect pollinators, root-associated 
microbes, and herbivores. In contrast, primary metabolites are 
essential for cellular functions, such as growth, development, 
and reproduction. For example, secondary metabolites can attract 
insects for pollination or symbiotic rhizobia for nitrogen-fixing 
nodule formation. They can also be part of the defense mechanisms 
against herbivores, disease-causing bacteria, fungi, viruses, and 
parasites. There are also a wide range of secondary metabolites 
with pharmaceutical, nutraceutical, and toxicological values for 
humans (Wink, 2013). The contents of secondary metabolites 
vary among different plant species (Böttger et al., 2018). Legumes 
are rich in secondary metabolites, such as polyphenols, alkaloids, 
and saponins (Gupta, 1987).

The Health Benefits of Secondary 
Metabolites From Legumes
In the recent past, many secondary metabolites in legumes 
were considered non-nutritive. For example, tannins, 
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glycosides, alkaloids, and saponins affect the digestibility of 
beans (Gupta, 1987). However, more and more evidence 
suggests there are health benefits from the secondary 
metabolites of legumes (Dixon and Sumner, 2003). The 
health benefits of carotenoids, polyphenols, alkaloids, and 
saponins, all abundant in legumes, are discussed below and 
summarized in Table  1.

Carotenoids
Carotenoids are a type of tetraterpenoids, ranging from bright 
yellow and orange to red, found in algae, photosynthetic bacteria, 
and plants, including carrot, pumpkin, tomato, sweet potato, 
and papaya. They can be  classified into two groups, carotenes 
and xanthophylls (Roberts et  al., 2009). Xanthophylls differ 
from carotenes by having oxygenated substituents in their 
molecules (Roberts et al., 2009). Carotenoids with unsubstituted 

β-rings, including α-carotene, β-carotene, and β-cryptoxanthin, 
act as provitamin A (Roberts et  al., 2009). The carotenoid 
compositions in various legume seeds have been previously 
summarized (Tee et al., 1995). Lutein and zeaxanthin constitute 
the macular pigments in the retina of the mammalian eye. 
The oxygenated nature of the lutein and zeaxanthin molecules 
provides antioxidative protection for the eye from damage by 
free radicals (Roberts et al., 2009). The prevention of age-related 
macular degeneration by the consumption of carotenoid-rich 
foods has been recommended (Bernstein et  al., 2016).

Polyphenols
Polyphenols are the major determinants of tissue colors, and 
generally possess antioxidative activities (Abbas et  al., 2017). 
Polyphenols in plants can be classified into two groups: phenolic 
acids and flavonoids (Abbas et  al., 2017). The occurrence and 

TABLE 1 | Classification of secondary metabolites in legumes and their benefits to human health.

Groups Sub-groups Examples in legumes Occurrence in 
legumes

Benefit(s) to human health References

Polyphenols Flavonoids Quercetin, kaempferol Widely distributed Reduction in ischemic heart 
disease, reduction in body 
weight

(Knekt et al., 2002)

Isoflavones Genistein, daidzin Soybean seeds Phytoestrogen, antioxidant, 
antimicrobial and anti-
inflammatory properties, 
reduction of risk in 
cardiovascular diseases, 
diabetes, obesity, and 
osteoporosis

(Křížová et al., 2019)

Catechin Catechin, epicatechin, 
gallo-catechin

Broad bean, chickpea, 
cowpea, kidney-bean, 
lentil, peanut

Reduction in heart disease, 
improvement of sperm motility 
and viability

(Arts et al., 2000; 
Hollman and Arts, 2000; 
Ojwang et al., 2013; Dias 
et al., 2016; López-cortez 
et al., 2016; Quintero-
soto et al., 2018)

Anthocyanins Pelargonidin, cyanidin, 
malvidin, petunidin

Widely distributed Antioxidant and anti-
inflammatory properties, lipid 
peroxidation, DNA cleavage 
protection

(Acquaviva et al., 2003; 
Pietta et al., 2003; Rossi 
et al., 2012)

Terpenoids and steroid Triterpenoid saponins Saponins Chickpea, soybean, 
lentils, peanut, common 
bean, and alfalfa sprouts

Reduction of cholesterol 
content, antimicrobial and 
anti-cancer properties

(Shi et al., 2004, 2014; 
Hassan et al., 2010; Man 
et al., 2010; Marrelli 
et al., 2016)

Tetraterpenes Carotenoids Widely distributed Antioxidant, better visual 
function, reduction of 
cardiovascular diseases

(Voutilainen et al., 2006; 
Roberts et al., 2009)

Alkaloids Quinolizidine alkaloids (QA) Sparteine Lupinus spp. Antimicrobial properties (Romeo et al., 2018)
Pyrroloindole alkaloids Physostigmine Ordeal bean Treatment of Alzheimer’s 

disease and Parkinson’s 
disease

(Zhu et al., 2014; Kumar 
et al., 2015)

Peptides Polypeptide Lunasin Soybean anti-inflammatory properties, 
reduction of cholesterol 
content, antioxidant, 
anticancer and anti-
atherosclerotic activities

(Jeong et al., 2002, 
2003, 2007, 2009; Hsieh 
et al., 2017; Fernández-
tomé and Hernández-
ledesma, 2019)

Protease inhibitors Angiotensin-I converting 
enzyme inhibitors

Pea, chickpea, mung 
bean, soybean, lentil

Lowering blood pressure and 
risk of heart failure

(Zhang et al., 2018)

Amines Polyamine spermine, spermidine Common bean, white 
clover, mung bean

Antioxidant activities, 
reduction of cardiovascular 
diseases

(Soda, 2010; Menéndez 
et al., 2019; Muñoz-Esparza 
et al., 2019)
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health benefits of phenolic acids in grain legumes have been 
previously summarized (Singh et al., 2017). Flavonoids are classified 
into several sub-classes: flavones, flavonols, flavanones, flavanonols, 
anthocyanins, flavanols, and isoflavones (Ku et al., 2020). Among 
flavonoids, isoflavones are only found in legumes. Flavonoids 
have multiple functions in plants, for example, mediating the 
responses to biotic and abiotic stresses, controlling the transport 
of auxins, acting as UV radiation-absorbing pigments to protect 
the plant against UV damage, attracting pollinating insects, 
interacting with rhizobia to initiate nodulation for symbiotic 
nitrogen fixation, and regulating defense against pathogens and 
herbivores through phytoalexin activities (Kumar and Pandey, 
2013). For human health, it has been reported that flavonoids 
can act as protectants against cellular oxidation, inflammation, 
viral infections, and cancer (Kleemann et al., 2011). The molecular 
mechanisms of the health benefits of flavonoids have been recently 
reviewed (Ku et  al., 2020).

Alkaloids
Alkaloids are nitrogen-containing organic heterocyclic 
compounds that are biologically active. Many alkaloids have 
pharmaceutical properties. For example, some alkaloids were 
found to have anti-malarial activities (Onguéné et  al., 2013), 
anticancer activities (Gupta et al., 2015), and abilities to facilitate 
blood circulation in the brain and to prevent stroke (Kumar 
and Khanum, 2012). Moreover, several studies reported that 
alkaloids have potential therapeutic effects on neurodegenerative 
diseases, such as Alzheimer’s disease, Parkinson’s disease, and 
Huntington disease (Amirkia and Heinrich, 2014).

Saponins
Saponins are a group of terpenoids found in plants, including 
onion, ginger, garlic, ginseng, fenugreek, and legumes (Oakenfull, 
1981; Sauvaire et  al., 1996). These crops are important sources 
of saponins in the human diet (Oakenfull, 1981; Sauvaire et al., 
1996). Chickpea, soybean, lentils, peanut, garden pea, broad 
bean, and alfalfa are rich in saponins (Oakenfull, 1981). The 
antibacterial and foaming properties of saponins led to the 
use of saponins as vaccine adjuvants (Marciani, 2018). In the 
human body, saponins can bind to bile salts to reduce cholesterol 
absorption (Marrelli et  al., 2016). Moreover, in rats, it was 
shown that a saponin-rich diet resulted in the reduction of 
body weight, total cholesterol, triglycerides, very-low-density 
lipoproteins (VLDL), and low-density lipoproteins (LDL) in 
serum (Latha et  al., 2011; Reddy et  al., 2012). Alfalfa saponin 
extract (ASE) was found to have cholesterol-lowering effects 
(Wang et  al., 2011; Marrelli et  al., 2016). The treatment of 
rats with ASE led to the enhanced expression of cholesterol 
7-alpha-hydroxylase (Cyp7a1), an enzyme involved in the bile 
acid biosynthetic pathway in the livers of hyperlipidemic rats 
(Marrelli et  al., 2016). Besides, ASE treatment also enhanced 
the expression of low-density lipoprotein receptor (Ldlr), which 
promotes the uptake and clearance of LDL cholesterol in plasma 
(Marrelli et  al., 2016). Moreover, saponins also have anti-
microbial and antioxidant properties, and exhibit cancer-related 
immunomodulatory effects (Avato et  al., 2006).

The Roles of Secondary Metabolites in 
Combating Abiotic and Biotic Interactions
Polyphenols
Plant roots communicate actively with the soil microbes for 
mutualistic cycles. Flavonoids are important signaling molecules 
for the legume-microbe interactions. The ability to form nitrogen 
fixing nodules with rhizobia is a unique characteristic of legumes 
(Hirsch et  al., 2001). Such mutualism between legume and 
rhizobium is initiated by flavonoids. Flavonoids released from 
roots attract rhizobia to migrate toward the roots and stimulate 
the nod genes, which are essential genes to synthesize Nod 
factors for infecting the plants (Spaink, 1995). Flavonoids in 
the root exudates of various legumes for attracting rhizobia 
have been summarized in a previous review (Haldar and 
Sengupta, 2015). Moreover, flavonoids stimulate the germination 
of mycorrhizal fungus spores and enhance hyphal growth 
(Abdel-lateif et al., 2012). Mycorrhizal fungi form hyphae which 
penetrate plant roots for the transport of nutrients in rhizosphere 
to the host plant (Harrison, 2005).

The importance of polyphenols to combating abiotic stress 
has been discussed in recent reviews (Di Ferdinando et al., 2014; 
Isah, 2019; Sharma et al., 2019). The antioxidating characteristics 
of polyphenols help alleviate the oxidative stress brought forth 
by abiotic stress (Di Ferdinando et  al., 2014; Isah, 2019; Sharma 
et  al., 2019). A recent method for screening legume crops for 
abiotic stress tolerance suggested the accumulation of anthocyanin, 
which is also an osmolyte, as one of the indicators of abiotic 
stress tolerance of legume crops (Sinha et  al., 2020).

Strigolactones
Based on the molecular structure, strigolactones belong to a group 
of lactone, which is derived from carotenoid (Jia et  al., 2018). 
Functionally, strigolactones are plant hormones that are released 
by roots to attract symbiotic arbuscular mycorrhizal fungi and 
induce the germination of parasitic weed seeds (Jia et  al., 2018). 
Strigolactones have been identified from a broad range of legumes, 
including Arachis hypogaea, Astragalus sinicus, Cicer arietinum, 
Glycine max, Lupinus albus, Medicago sativa, Phaseolus vulgaris, 
Pisum sativum, Psophocarpus tetragonolobus, Trifolium incarnatum, 
Vicia faba, and Vigna angularis (Yoneyama et  al., 2008).

A study showed that the expression of several secretory 
proteins of Rhizophagus irregularis, an arbuscular mycorrhizal 
fungus, was induced by strigolactone treatment (Tsuzuki 
et  al., 2016). Among these proteins, Strigolactone-Induced 
Putative Secreted Protein 1 (SIS1) showed the highest induction 
fold by both strigolactone treatment and Medicago truncatula 
root symbiosis. SIS1 is important for colonization and the 
formation of stunted arbuscules (Tsuzuki et al., 2016). Therefore, 
the strigolactone-induced is an essential protein for the 
symbiosis (Tsuzuki et  al., 2016).

Broomrapes, especially Orobanche crenata, are believed 
to be  the major parasitic weeds of legumes. The effects of 
the parasitic weeds on legumes include local damage of the 
plants and yield loss (Rubiales and Fernández-Aparicio, 2012). 
The germination of Orobanche seeds is induced by  
strigolatones (Yoneyama et  al., 2008).
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Alkaloids and Saponins
Alkaloids and saponins are known for contributing to the bitter 
taste of plants (Drewnowski and Gomez-Carneros, 2000). The 
toxicity of alkaloids has been reported (Wink, 2013). Several 
studies report that alkaloids and saponins are related to the 
resistance to herbivores. For example, yellow lupin cultivar 
with higher level of alkaloids in the leaves is more resistant 
to aphid than the cultivar with lower level of alkaloids (Adhikari 
et  al., 2012). The removal of the bitter taste from modern 
lupin cultivars has enabled them to be  a protein source in 
animal feed to reduce the dependence on soybean (Abraham 
et  al., 2019). However, “sweet” lupins are more susceptible to 
predators (Muzquiz et  al., 1994). Saponins have been thought 
to be  responsible for the resistance to insect attacks, as the 
saponin preparation garden pea (Pisum sativum L.) resistant 
to Azuki bean beetle (Callosobruchus chinensis L.) inhibited 
the development of the beetle (Applebaum et  al., 1969).

ALTERATIONS OF SECONDARY 
METABOLITE PROFILES IN LEGUMES 
DURING DOMESTICATION

Polyphenols and Carotenoids Determine 
the Colors of Seeds and Flowers
The seed coat color is mainly determined by polyphenols such 
as tannins (Heiser, 1988; Espinosa-Alonso et  al., 2006). It is 
common for the pigmentation patterns of domesticated crops 
to be  altered compared to their wild relatives. The loss of 
pigment in the seed coat of cultivated P. vulgaris is an obvious 
example of the effects of domestication (McClean et  al., 2018). 
In a survey of 18 Lablab purpureus (L. purpureus) germplasms, 
including wild, semi-domesticated, and cultivated accessions, 
it was found that all the wild accessions have gray-brown and 
mottled seed coat (Maass, 2006). However, cultivated accessions 
display a spectrum of seed coat colors, including cream-white, 
cream, tan, and black (Maass, 2006). Unlike the wild accessions, 
some cultivated accessions do not have mottled seed coats 
(Maass, 2006). Among 11 landraces and two cultivated accessions 
of peanut (Arachis hypogaea L.), it was found that all the 
cultivated accessions have a single seed coat color: tan (Husain 
and Mallikarjuna, 2012), while the landraces are either red or 
tan (Husain and Mallikarjuna, 2012). Some landraces even 
have variegated seed coats (Husain and Mallikarjuna, 2012). 
In another study, it was shown that cultivated peanut 
(A. hypogaea) could have purple, brown, red, or white seed 
coats and some have variegated seed coats (Bertioli et  al., 
2011). In a survey of a soybean population consisting of 1,957 
domesticated and 1,079 wild accessions, it was found that 
almost all wild accessions have purple flowers and black seed 
coats (Jeong et  al., 2019), whereas the domesticated soybean 
accessions have more diverse seed coat colors, including colorless 
(yellow or green seeds), brown, or black, and more diverse 
floral colors, including white or purple (Jeong et  al., 2019). 
In another study on 110 cultivated, 130 landrace, and 62 wild 
soybean accessions, it was reported that all cultivated accessions 

have yellow seeds, and landrace accessions have yellow, green, 
brown, or black seeds, while all the wild accessions have black 
seeds (Wang et  al., 2018). Similarly, the modern cultivated 
pea cv. Cameor (P. sativum) has transparent seed coat while 
the wild accession (P. sativum subsp. elatius JI64) has pigmented 
seed coat (Smýkal et  al., 2014). In another study on cultivated 
(Lens culinaris ssp. Culinaris) and wild lentils (Lens culinaris 
ssp. orientalis, L. culinaris ssp. odemensis, L. culinaris ssp. 
tomentosus, Lens nigricans, and Lens ervoides, Lens lamottei), 
although wild accessions do not necessarily have darker seed 
coats, wild accessions have more complexed patterns on the 
seed coats (Singh et  al., 2014). The seed coats of the cultivated 
accessions have either no or dotted patterns (Singh et al., 2014). 
However, many of the wild accessions have marbled pattern 
on seed coats (Singh et  al., 2014). For chickpea (C. arietinum), 
the light color of the cultivated seeds is thought to 
be  non-existing in wild accessions (Penmetsa et  al., 2016). 
The seed coat color is related to the defense against herbivore. 
It has been suggested that a black seed coat protects the seed 
from night-time foragers (Porter, 2013).

Polyphenols also give rise to the colors of flowers (Wiesner 
et  al., 2017). In cowpea, cultivated accessions have a wide 
range of floral colors while most of the wild accessions have 
only purple flowers (Lo et al., 2018). Similarly, cultivated soybean 
accessions have purple, white, or other colors of flowers 
(Sundaramoorthy et al., 2015; Jeong et al., 2019), whereas most 
of the wild soybean accessions have only purple flowers 
(Sundaramoorthy et  al., 2015). On the contrary, in common 
bean, most of the cultivated accessions have only white flowers 
while the wild accessions have white, pink, or purple flowers 
(García et al., 1997). Cultivated lentils (L. culinaris ssp. Culinaris) 
have white or purple flowers but some wild lentils, L. culinaris 
ssp. odemensis, L. culinaris ssp. tomentosus and Lentil ervoides, 
have only purple flowers (Singh et al., 2014). The white flowers 
of cultivated chickpea (C. arietinum) is thought to be non-existing 
in wild accessions (Penmetsa et  al., 2016). For pea, cultivated 
peas (P. sativum) usually have white flowers while purple flowers 
are found in wild peas (Hellens et  al., 2010). The contrasting 
flower colors contributed to the establishment of the Mendel’s Laws.

The Co-Evolution of Seed and Floral Colors With 
Foragers and Pollinators
As discussed above, cultivated legumes usually have lighter seed 
coat colors compared to the wild counterparts. During 
domestication, light seed coat colors have been preferred by 
farmers. The loss of color is associated with the loss of secondary 
metabolites, such as tannins (Heiser, 1988). As mentioned before, 
a dark seed coat may protect the seeds from night-time foragers 
in the wild (Porter, 2013). However, the potential increase in 
loss of sown seeds to wild animals may not be  significant as 
farmers usually have measures to keep foragers away from crops. 
Another example is the loss of bitter compounds, such as alkaloids 
and saponins in domesticated legumes. The loss of such compounds 
would have enhanced the loss of seeds due to foraging by 
animals and is usually not advantageous for the survival of the 
crops without the protection provided by farmers. Therefore, 
the loss of bitter compounds in domesticated legumes is also 
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known as a conscious selection by breeders during domestication. 
In soybean, most of the elite cultivated soybean seeds are yellow. 
It was found that the stay-green G gene is associated with green 
seeds and it controls seed dormancy, but is lost in elite cultivated 
soybean seeds (Wang et al., 2018). In the survey of 110 cultivated, 
130 landrace, and 62 wild soybean accessions, it was found 
that the G genotype is present in only 4% of the cultivated 
accessions, 21% of the landraces while it is found in 100% of 
the wild accessions (Wang et  al., 2018).

It has been suggested that floral color has co-evolved with 
pollinators such as birds and bees. Bees tend to be  attracted 
to yellow flowers while birds tend to prefer red flowers due 
to their different visual sensitivities (Toon et  al., 2014). 
Bee-pollinated plants usually have yellow, white, or blue flowers 
while bird-pollinated plants usually have red flowers (Toon 
et  al., 2014). The transition from bee-pollination to bird-
pollination of Australian egg-and-bacon pea is related to the 
number of bird species in the geographical region where the 
plants grow (Toon et  al., 2014). The yellow color of the Lotus 
flower, together with the orientation, size, petal morphology, 
sucrose-dominant nectar composition, and scent of the flower, 
was reported as a factor contributing to the transition to 
pollination by birds (Cronk and Ojeda, 2008).

Carotenoid Level Is Related to Seed Dispersal 
by Animals
Besides polyphenols, carotenoids also play a role in determining 
tissue colors. During domestication, the profitability of seeds 
is a major concern for farmers. Therefore, genotypes with 
reduced seed dispersal, including through pod shattering and 
seed dispersal by animals, were actively selected for by breeders 
and farmers. In a study on the seeds of 10 legume genera: 
Arachis (peanut), Cicer (chickpea), Glycine (soybean), Lathyrus 
(vetch), Lens (lentil), Lupinus (lupin), Phaseolus (bean), Pisum 
(pea), Vicia (fava bean), and Vigna (cowpea), drastic changes 
in the levels and compositions of carotenoids in seeds were 
found in domesticated cultivars compared to their wild 
counterparts (Fernández-marín et  al., 2014). An average of 
48% reduction in carotenoids was found in the seeds of these 
10 legumes. Besides, the compositions of carotenoids were 
more complex in the wild species of Cicer, Glycine, Lathyrus, 
Lens, Lupinus, and Vigna. In the study, neoxanthin, violaxanthin, 
lutein epoxide, and antheraxanthin were only found in the 
wild species but not the domesticated varieties. It was suggested 
that seeds with lower carotenoid levels are less attractive to 
seed dispersers (Fernández-marín et  al., 2014). In contrast, 
attracting seed dispersers has been suggested to be an adaptation 
of wild legumes (Brǿnnvik and von Wettberg, 2019). It was 
suggested that seed dispersal by birds is an important factor 
contributing to the widespread of P. vulgaris from Mexico to 
South America (Brǿnnvik and von Wettberg, 2019).

Isoflavones Are Unique to Legumes
Isoflavones are a sub-class of flavonoid uniquely found in 
legumes. Soybean is a rich and common source of isoflavones 
for human consumption (Ku et  al., 2020). In a study of seed 
isoflavone contents using 209 wild, 580 landrace, and 106 

cultivated soybean accessions, it was found that landraces had 
the highest average level of total seed isoflavone, followed by 
wild accessions and then cultivated accessions (Wang et  al., 
2010). The higher average total seed isoflavone content in 
landraces compared to cultivated accessions was also reported 
in another study using 927 landraces and 241 cultivars (Azam 
et al., 2020). For individual isoflavone contents, it was suggested 
that high genistin and glycitin contents, with low daidzin levels, 
were artificially selected for. The significantly lower daidzin 
contents lead to the lower average total seed isoflavone levels 
in cultivated accessions compared to wild accessions (Wang 
et  al., 2010). There are debates over the reasons behind the 
artificial selection of such seed isoflavone traits in domesticated 
legumes. Regarding seed nutrient content, a negative correlation 
between the total isoflavone level and the protein level has 
been reported in seeds (Primomo et  al., 2005; Morrison et  al., 
2008; Liang et al., 2010; Smallwood et al., 2014), and a positive 
correlation between total seed isoflavone level and seed oil 
level has also been reported (Morrison et  al., 2008; Liang 
et  al., 2010). However, there has also been a report on the 
negative correlation between total seed isoflavone level and 
seed oil level (Smallwood et al., 2014). The total seed isoflavone 
has also been correlated to yield (Primomo et  al., 2005; 
Smallwood et  al., 2014; Zhang et  al., 2014), as well as the 
resistance against pathogens (Carter et  al., 2018). When two 
soybean cultivars, RCAT1004 and DH4202, which are resistant 
and sensitive to cyst nematodes respectively, were grown in 
a cyst nematode-infested environment, the resistant cultivar 
had a higher seed isoflavone level (Carter et  al., 2018). A 
putative QTL related to cyst nematode susceptibility was found 
close to that related to total seed isoflavone content (Carter 
et  al., 2018). During domestication, besides the deliberate 
selection for reduced seed isoflavone level to reduce the bitterness 
of the seed, the isoflavone level may also be  unintentionally 
selected together with other desirable traits, such as nutrient 
composition, yield, and resistance to biotic stress.

Alkaloid and Saponin Contents Are 
Related to Taste-Focused Breeding
The bitter taste of legume seeds tends to be  eliminated during 
domestication. For example, domesticated lupin cultivars are less 
bitter than the wild relatives, which have significantly higher levels 
of alkaloids in their seeds. Modern lupin cultivars are referred 
to as “sweet” lupins. In a survey of 20 sweet lupins and 29 bitter 
lupins, the bitter taste of lupins was found to be positively correlated 
to the seed alkaloid content, with lupanine being the main alkaloid 
(Muzquiz et  al., 1994). Although seed saponin level has been 
correlated to the bitterness of seeds in general (Mohan et  al., 
2016), it may not be  related to the bitterness of lupin seeds. In 
a survey of the seed saponin contents in sweet vs. bitter lupins, 
the level of saponin was undetectable in the seeds of both sweet 
and bitter varieties of L. albus (Shim et  al., 2003).

Saponin is also a contributing factor to the bitterness of 
seeds (Okubo et  al., 1992). It was found that many of the 
wild ancestors of Vigna spp. are more resistant than  
their cultivated counterparts to Callosobruchus chinensis or 
Callosobruchus maculatus (Tomooka et  al., 2000). It is possible 
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that the drop in saponin contents when legumes became 
domesticated is related to the loss of insect resistance capability 
in cultivated species. Several wild chickpea accessions have 
higher seed saponin levels than cultivated chickpea accessions 
(Kaur et al., 2019). Several wild pigeonpea (Cajanus scarabaeoides) 
accessions have higher seed saponin contents than the cultivated 
pigeonpea accessions (Cajanus cajan; Sekhon et  al., 2017). 
However, cultivated pigeonpea accessions do not necessarily 
have lower seed saponin contents than the wild accessions 
(Sekhon et  al., 2017). Seed saponin content is not the sole 
factor leading to the insect resistance of legumes.

Besides total seed saponin content, individual saponin 
components in legumes are also studied. Saponins can be classified 
into four groups: group A saponins, group B saponins, group E 
saponins, and 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one 
(DDMP) saponins (Sawai and Saito, 2011; Krishnamurthy  
et al., 2013). The aglycone form of group A saponins is named 
soyasapogenol A, while that of DDMP saponins is named 
soyasapogenol B. The basic structure of soyasapogenol A and 
B is β-amyrin. Soyasapogenol A is a β-amyrin with a hydroxyl 
group at C-21, C-22, and C-24, while soyasapogenol B has a 
hydroxyl group at C-22 and C-24 only (Sawai and Saito, 2011). 
DDMP saponins are relatively unstable and are often degraded 
into group B and group E saponins during food processing 
(Sundaramoorthy et  al., 2019). Among the various groups  
of saponins, group A saponins, which have an acetylated 
oligosaccharide chain attached to C-22 of soyasapogenol A, are 
thought to be  mostly responsible for the undesirable taste of 
soybean seeds (Shiraiwa et  al., 1991).

In a survey of saponin compositions among 800 cultivated 
soybean accessions and 329 wild soybean accessions, it was 
found that the saponin type Aa was predominant in cultivated 
soybean accessions, while the saponin type AaBc was predominant 
in wild soybean accessions (Tsukamoto et al., 1993). In another 
survey of the total seed saponin levels in 17 wild and one 
cultivated legumes, it was found that the total saponin level 
was highest in Glycine soja (G. soja; wild soybean; Shim et  al., 
2003). In a study of seed saponin composition of 3,025 G. soja 
accessions, diverse compositions of seed saponins were found 
among the accessions (Krishnamurthy et  al., 2013). Moreover, 
naturally occurring wild soybean mutants that lack group A 
saponins were found (Krishnamurthy et  al., 2013; Takahashi 
et al., 2016; Rehman et al., 2018). Wild legumes do not necessarily 
have higher seed saponin contents. Instead, the diverse genetic 
backgrounds among wild legumes allow the discovery of novel 
allelic forms for desirable seed saponin compositions.

Polyphenols and Strigolactones Are 
Related to Biotic Interactions
Flavonoids are signaling molecules for legume-microbe interaction 
(Abdel-lateif et  al., 2012). In a test of nodulating capability of 
Rhizobium japonicum (R. japonicum), it was found that all the 
strains of R. japonicum in the test could nodulate cowpea, 
sirato, and wild soybean (Heront and Pueppket, 1984). However, 
nine out of the 11 strains could not form infection threads 
with two of the three commercial soybean cultivars in the test 
(Heront and Pueppket, 1984). In another study, after inoculating 

36 G. soja (wild soybean) accessions with R. japonicum, 20 
formed normal nodules while 16 could not form nodules or 
formed abnormal nodule-like structures (Pueppke et  al., 1998). 
It was hypothesized that the different nodulating phenotypes 
were due to the different flavonoid profiles in the root exudates 
(Pueppke et  al., 1998). However, the flavonoid profiles of root 
exudates are similar between the nodulating group and the 
non-nodulating group (Pueppke et  al., 1998). The flavonoid 
profiles of root exudates were also compared between wild 
soybean accessions and the cultivated soybean Peking (Pueppke 
et  al., 1998). Although many of the wild soybeans showed a 
more complexed root exudate profile, a strong correlation 
between the different root exudates and the nodulating phenotypes 
was not found (Pueppke et al., 1998). The effects of domestication 
on the flavonoid profiles in legume root exudates remain unclear. 
On the other hand, the root polyphenol compositions of wild 
lentil (Lens ervoides) and cultivated lentil (Lens culinaris) were 
compared after the infection of Aphanomyces euteiches, which 
is a legume pathogen (Bazghaleh et  al., 2018). The wild lentil 
was more tolerant to A. euteiches than the cultivated lentil 
pathogen (Bazghaleh et  al., 2018). The wild lentil generally 
had higher levels of polyphenols compared to the cultivated 
lentil (Bazghaleh et  al., 2018). Although the amount of legume 
species and accessions is not enough to conclude the effect of 
domestication on the root polyphenol compositions after pathogen 
infection, genotypic difference exists between wild and cultivated 
legumes and is associated with polyphenol accumulation in 
roots under biotic stress.

Strigolactones are stimulants of seed germination (Brun 
et  al., 2018). The yield of faba bean (V. faba) is also limited 
by parasitic weeds. Faba bean (V. faba) germplasms resistant 
to parasitic weeds, broomrape (Orobanche and Phelipanche 
spp.) were found (Fernández-Aparicio et al., 2014). The resistant 
germplasms have low or undetectable levels of strigolactones 
in the root exudates at all plant ages (Fernández-Aparicio 
et al., 2014). It was suggested that the screening of germplasms 
with low strigalactone levels in root exudates is a strategy to 
breed for weed resistant germplasms. Like faba bean (V. faba), 
most of the commercial pea (Pisum sativum L.) cultivars are 
susceptible to the attack by crenate broompape (O. crenata 
Forsk.), which is a parasitic weed of legumes (Pavan et  al., 
2016). In a screen of O. crenata resistant pea germplasms, a 
landrace pea germplasm was selected. Repeated self-pollination 
of the landrace germplasm resulted in the O. crenata resistant 
line ROR12 (Pavan et al., 2016), which exhibited several unique 
characters: (1) compared to a O. crenata susceptible cultivar, 
the root exudates of ROR12, which had a lower strigolactone 
level, had a lower capability to stimulate the germination of 
O. crenata seeds; (2) in the field, the number of O. crenata 
shoots per host plant of ROR12 was lower; and (3) the 
emergence of O. crenata on ROR12 was delayed. It was proposed 
that the resistance to O. crenata was related to the reduced 
strigolactone level in the root exudates (Pavan et  al., 2016).

Strigolactones are also involved in legume-microbe 
interaction. The treatment of synthetic strigolactone (GR24) 
to pea (Pisum sativum L.) roots enhanced the nodule number 
on the roots due to Rhizobium leguminosarum bv. viciae 
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(RLV248) inoculation (Foo and Davies, 2011). Mutant rms1 
of pea (Pisum sativum L.) had undetectable levels of orobanchol 
and orobanchyl acetate and a low level of fabacyl acetate in 
the root exudates (Foo and Davies, 2011). Compared to the 
wild type, rms1 mutant had less nodules on the roots after 
being inoculated with R. leguminosarum bv. viciae (RLV248; 
Foo and Davies, 2011). Commercial legume germplasms usually 
have lower levels of strigolactones in the root exudate 
(Fernández-Aparicio et  al., 2014; Pavan et  al., 2016).

The low levels of strigolactones may result in the reduced 
number of nodules on the roots. However, the nodulating 
phenotype may not be  of consideration during domestication 
as the application of nitrogen fertilizer is a common practice 
during domestication.

GENES THAT REGULATE THE DIFFERENT 
SECONDARY METABOLITE-RELATED 
TRAITS

Several methods are currently being employed to identify the 
genes and mutations underlying legume domestication 
phenotypes (Olsen and Wendel, 2013). In general, secondary 
metabolites are present at higher levels in wild progenitors 
than in the domesticated counterparts as a result of artificial 
selection (Nagl et al., 1997; Lindig-Cisneros et al., 2002; Gepts, 
2014). The selection of cultivars based on ease of farming and 
other commercial attributes may have occurred at the expense 
of potentially beneficial secondary metabolites. The reduction 
in genetic diversity is one of the main impacts of domestication. 
However, the genetic richness of wild populations can be  used 
to improve cultivated legumes. Traditional plant breeding is a 
millenary process for the improvement and development of 
new crop varieties. According to breeding objectives, new 
legume varieties are produced by crossing parents with desired 
traits and selecting among segregating progenies those individuals 
with both high yield and the target trait. In this way, pest-
resistant varieties have been developed with genetic resistance 
to pathogens (Lavaud et al., 2015). Traits related to pigmentation 
and defense against pathogens or herbivores are characteristically 
domestication-related traits governed by secondary metabolites. 
Besides biosynthesis-related genes, transport-related genes are 
also important. The roles of transporters, including ATP-binding 
cassette (ABC) transporters and multidrug and toxic compound 
extrusion (MATE) transporters in secondary metabolite secretion 
and accumulation have been summarized in previous reviews 
(Yazaki, 2005; Ku et  al., 2020). In this section, examples of 
genes and loci controlling secondary metabolite biosynthesis 
and transport in legumes will be  discussed.

Biosynthesis-Related Genes
Pigmentation-Related Traits
Polyphenols are the major determinants of tissue colors, 
including the colors of seed coats of legumes, both by their 
presence and their quantities (Espinosa-Alonso et  al., 2006). 
The major polyphenols responsible for seed coat color in 

legumes are flavonoids, such as anthocyanins, flavonol glycosides, 
and proanthocyanidins (condensed tannins). Flavonoid quantities 
vary according to the seed developmental stages, genotypes, 
and species. The biosynthetic pathway leading to the biosynthesis 
of flavonoids has been elucidated and is conserved among 
seed-producing plants. Flavonoids and isoflavonoids are derived 
from the phenylpropanoid pathway (Dastmalchi and Dhaubhadel, 
2014). Many genes in this pathway, including enzymes, 
transporters, and regulatory factors, have been characterized. 
The first committed step is the formation of a bicyclic 
tetrahydroxy chalcone (naringenin chalcone) catalyzed by a 
chalcone synthase (CHS). Legumes produce an additional 
trihydroxy chalcone (THC), isoliquiritigenin chalcone 
(Dastmalchi and Dhaubhadel, 2014). This THC is the end 
product of the coupled activities of CHS and the legume-
specific chalcone reductase (CHR). Compounds such as daidzein, 
medicarpin, and glyceollin are derived from isoliquiritigenin. 
Flavonoid production follows the conversion of naringenin 
chalcone to (2S)-naringenin by chalcone isomerase (CHI). 
Flavone 3-hydroxylase (F3H) catalyzes the hydroxylation of 
(2S)-naringenin, eryodictyol, and pentahydroxyl flavanones to 
yield (2R,3R)-dihydrokaempferol, dihydroquercetin, and 
dihydromyricetin, respectively (Tanaka et al., 2008). Flavonoid 
3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) 
catalyze the hydroxylation of flavanones, flavanols, and 
flavones, and determine the structures of flavonoids and 
anthocyanins (Tanaka, 2006). Other enzymes in the pathway 
include dihydroflavonol 4-reductase (DFR) and anthocyanidin 
synthase (ANS). The biosynthesis pathway of flavonoids is 
illustrated in Figure  1.

Pigmentation mechanisms have been studied in different 
legumes. A transcriptomic analysis was performed to identify 
the genes associated with seed coat color in peanut (A. hypogaea; 
Wan et  al., 2016). Lower proanthocyanidin and anthocyanin 
contents were detected in a peanut mutant with a brown cracking 
seed coat (pscb). Transcriptomic analyses revealed that the structural 
genes of the phenylpropanoid biosynthetic pathway were 
downregulated in the pscb mutant, while the genes related to 
melanin production were upregulated at the late developmental 
stages. This expression pattern was consistent with the higher 
melanin content in the pscb mutant compared to the wild type. 
Differential expression analyses of RNA-seq data between the 
wild type and pscb mutant revealed three candidate genes (c36498_
g1, c40902_g2, and c33560_g1) as being responsible for the seed 
coat color trait. C33560_g1 encodes a R2R3-MYB transcription 
factor. Its homologs in Arabidopsis and apple are associated with 
the regulation of the phenylpropanoid biosynthesis pathway (Rowan 
et al., 2009; Vimolmangkang et al., 2013). C36498_g1 and c40902_g2 
encode a caffeoyl-CoA O-methyltransferase and a kinesin-4-like 
protein, respectively. Putative functions of the encoded proteins 
were associated with cell wall organization.

Soybeans cultivated for the commercial market are either 
completely yellow or have pigmentation restricted to the hilum 
(Palmer et  al., 2004). Wild soybeans accumulate flavonoids and 
anthocyanins within the entire epidermal layer of the seed coat, 
giving them a black or brown color (Todd and Vodkin, 1993; 
Song et  al., 2016). Quantitative trait loci (QTL) governing 
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seed coat color in soybean have been identified using genetic 
and genomic analyses to elucidate the genetic changes that 
resulted in this domestication trait (Todd and Vodkin, 1996; 
Tuteja et  al., 2004, 2009; Song et  al., 2016). The I, R, and T 
loci were found to be  involved in the flavonoid biosynthesis 
pathway (Palmer et  al., 2004; Yang et  al., 2010). The I locus 
on chromosome eight inhibits pigmentation of the seed coat. 
There are four alleles (I, ii, ik, and i) at the I locus where I 
and ii are the two dominant forms (Song et  al., 2016). The 
presence of the I allele results in the absence of pigmentation 
and a yellow seed coat at maturity. This allele contains an 
inverted repeat of the CHS gene cluster. This structure triggers 
posttranscriptional gene silencing (PTGS), which inhibits the 
expression of CHS gene family members and their functions 
in the flavonoid biosynthesis pathway (Tuteja et  al., 2004). 
The ii allele inhibits pigmentation, resulting in a yellow seed 
coat with a pigmented hilum (Palmer et  al., 2004). Meanwhile, 
the recessive ik and i alleles allow pigment production, with 
the ik allele restringing pigments to the saddle and hilum 
regions of the seed coat (Palmer et  al., 2004). The R and T 
loci determine the type and accumulation of pigments in the 
seed coat (Buzzetl et al., 1987; Todd and Vodkin, 1993). Higher 
flavonoid and anthocyanin contents of seeds are currently of 
great interest due to the antioxidant properties and flavors of 
these compounds. Recently, the wild soybean reference genome 
of G. soja W05 was used to identify additional alleles of the 

causal structural gene variation that controls soybean seed coat 
pigmentation (Xie et  al., 2019). The analysis of a seed coat 
color QTL that overlaps with the known I locus showed that 
the W05 reference genome possesses the same inverted repeat 
of the CHS gene cluster as the domesticated soybean reference 
genome, G. max (Williams 82). This indicates that additional 
factors also played a role in causing the seed color changes 
during domestication. A comparative genomic analysis of W05 
against two domesticated soybeans (Wm82 and ZH13) revealed 
the generation of a small interfering RNA (siRNA) from a 
large structural rearrangement next to the CHS gene cluster 
in Wm82 and ZH13. Through experimental validation, a subtilisin 
promoter was shown to drive the expression of a chimeric 
transcript that reads through a subtilisin gene fragment and 
an anti-CHS1 gene region, resulting in PTGS and inhibits the 
expression of CHS genes.

Flavonoids also contribute to floral pigmentation (Tanaka, 
2006; Tanaka et  al., 2008). Domesticated cowpea (Vigna 
unguiculata L. Walp) shows phenotypic variation compared to 
its wild relatives. Among the domestication traits, a wide range 
of floral and seed coat colors can be  found in the cultivated 
cowpea. The wild variety shows purple flowers and dark seed 
pigmentation. Purple flowers are the results of diacylated 
delphinidin-based anthocyanins (Tanaka et  al., 2008). A QTL 
analysis of the determinants of floral color in cowpea was performed 
in a biparental mapping population (wild × cultivated crosses; 

FIGURE 1 | Schematic representation of the flavonoid biosynthetic pathway. Enzymes involved in the pathway are indicated in bold: chalcone synthase (CHS), 
chalcone reductase (CHR), flavone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), and 
anthocyanidin synthase (ANS).
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FIGURE 2 | Schematic representation of the pathway leading to the 
synthesis of quinolizidine alkaloid compounds. Enzymes involved in the 
pathway are indicated in bold: lysine decarboxylase (LDC), copper amine 
oxidase (CuAO), (+)-epilupinine O-coumaroyltransferase (ECT), (+)-epilupinine 
feruloyltransferase (EFT), (−)-lupinine O-coumaroyltransferase (LCT), 
(−)-lupinine feruloyltransferase (LFT), (−)-13α-hydroxymultiflorine transferase 
(HMT), and (+)-13α-hydroxylupanine O-tigloyltransferas (HLT).

Lo et  al., 2018). A single major QTL for floral color, CFcol7, 
was mapped in a 64-cM region on chromosome Vu07 containing 
254 annotated genes, among which a transcription factor, 
Vigun07g110700, was identified as a homolog of Arabidopsis 
AT4G09820.1 and Medicago truncatula (Mt) TT8, involved in 
the regulation of flavonoid biosynthesis (Nesi et  al., 2000; Li 
et  al., 2016). In soybean, one QTL for floral pigmentation was 
identified on linkage group G (Josie et  al., 2007).

Defense-Related Traits
Toxic secondary metabolites in legumes confer resistance against 
pathogens and herbivores. However, the accumulation of these 
compounds in legume crops is not desirable for human 
consumption or as animal feed since they impart a bitter taste 
and could present acute toxicity if ingested in sufficient quantities 
(Daverio et al., 2014). Alkaloids are some of the main secondary 
metabolites produced and stored by legumes with characteristic 
toxicity (Wink, 2013). Examples are quinolizidine alkaloids (QAs) 
produced by the genera Lupinus, Baptisia, Thermopsis, Genista, 
Cytisus, Echinosophora, and Sophora (Ohmiya et  al., 1995). The 
breeding of low-alkaloid (sweet) varieties changed the agronomic 
roles of lupins from green manure and forage crops to grain 
legumes with high protein and fiber contents and health benefits 
(Sweetingham and Kingwell, 2008; Arnoldi et  al., 2015). Four 
species within the genus Lupinus have been domesticated and 
are important legume crops: Lupinus angustifolius (narrow-leafed 
lupin or blue lupin), L. albus (white lupin), Lupinus luteus (yellow 
lupin), and Lupinus mutabilis (Andean lupin) (Gustafsson and 
Gadd, 1965; Reinhard et  al., 2006). QAs produced by lupins 
include lupanine, angustifoline, lupinine, sparteine, multiflorine, 
and aphylline (Frick et  al., 2017). The use of lupins for food 
purposes depends on their QA levels and each species has a 
characteristic alkaloid composition. Domestication has reduced 
the amount of alkaloids in lupins, but it has also increased their 
susceptibility to several aphid species (Philippi et  al., 2015). QAs 
are derived from the decarboxylation of L-lysine (Lys) by a lysine 
decarboxylase (LDC, EC 4.1.1.18) to form cadaverine (Bunsupa 
et  al., 2012a,b), which is then converted to 5-aminopentanal via 
oxidative deamination by a copper amine oxidase (CuAO, EC 
1.4.3.22). 5-aminopentanal is spontaneously cyclized to a Δ1 
piperideine Schiff base formation (Leistner and Spenser, 1973; 
Gupta et  al., 1979; Golebiewski and Spenser, 1988; Bunsupa 
et  al., 2012b), which then undergoes further modifications (e.g., 
oxygenation, dehydrogenation, hydroxylation, or esterification) 
to produce a range of Lys-derived alkaloids, including lupinine, 
sparteine, lupanine, and multiflorane (Ohmiya et al., 1995; Bunsupa 
et  al., 2012b; Frick et  al., 2017). QAs are stored in the form of 
QA esters. In lupins, QA esters are converted from lupinine/
epilupinine and 13α-tigloyloxymultiflorine/13α-tigloyloxylupanine 
by two types of acetyltransferases (ATs): (+)-epilupinine/
(−)-lupinine O-coumaroyl/feruloyltransferase (ECT/EFT-LCT/
LFT) and (−)-13α-hydroxymultiflorine/(+)-13α-hydroxylupanine 
O-tigloyltransferase (HMT/HLT; EC 2.3.1.93), respectively (Saito 
et  al., 1992; Okada et  al., 2005; Bunsupa et  al., 2012a). The 
biosynthesis pathway of QAs is illustrated in Figure 2. An HMT/
HLT-type acetyltransferase was isolated and characterized at the 
molecular level in L. albus (Okada et  al., 2005) while an 

acyltransferase-like gene, Lupinus angustifolius acyltransferase 
(LaAT), has been proposed to be involved in the QA biosynthetic 
pathway (Bunsupa et  al., 2011).

Domestication-related genetic modifications resulting in 
low-alkaloid phenotypes are generally results of naturally 
occurring (spontaneous) mutations (Gustafsson and Gadd, 
1965). The domestication of lupins led to the active selection 
by farmers/breeders for sweet varieties which were low in 
alkaloids. In the late 1920s, the first low-alkaloid lines were 
obtained from wild germplasms of L. luteus and L. angustifolius 
(von Sengbusch, 1942). Subsequently, sweet types were also 
obtained for L. albus and L. mutabilis in the 1930s (Taylor 
et al., 2020). Several recessive low-alkaloid mutations have been 
discovered in L. angustifolius: iucundus (iuc), esculentus (es), 
depressus (depr), and tantalus (Swiecicki and Swiecicki, 1995; 
Kurlovich, 2002; Taylor et al., 2020), among which, the iucundus 
locus is the most prevalent allele in cultivars (Taylor et  al., 
2020). Molecular mapping efforts have allowed researchers to 
map the iucundus locus to a 746-kb region on chromosome 
NLL-07 (Nelson et  al., 2006, 2010; Hane et  al., 2017). The 
reference L. angustifolius genome also facilitated the identification 
of markers linked to iucundus that are suitable for marker-
assisted selection (MAS). Specifically, an allele marker, IucLi, 
has been identified for the iucundus locus, and could be  used 
for MAS in wild  ×  domesticated crosses in lupin breeding 
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programs (Li et  al., 2011). Recently, 12 candidate genes for 
the alkaloid locus iucundus and the major QTLs associated 
with total QA contents were identified using a transcriptomic 
approach (Kroc et  al., 2019b). The most promising candidate, 
RAP2-7, encodes an ethylene-responsive transcription factor 
(ERF) that co-segregated with the iucundus locus and is likely 
to be  involved in the regulation of QA biosynthesis in 
L. angustifolius (Kroc et  al., 2019a). Other candidate genes 
include a 4-hydroxy-tetrahydrodipicolinate synthase (DHDPS) 
involved in Lys biosynthesis as well as genes involved in plant 
secondary metabolism (Kroc et  al., 2019b).

Recessive low-alkaloid mutations in L. albus have also been 
identified: pauper, mitis, reductus, exiguus, and nutricius 
(Hackbarth, 1957; Troll, 1958; Porsche, 1964). As in the case 
of L. angustifolius, one locus, pauper, is the most studied in 
L. albus (Rychel and Książkiewicz, 2019). The Kiev 
mutant  ×  P27174 recombinant inbred lines (RILs) population 
was used for the first genetic map of L. albus where the pauper 
locus was located on linkage group  11 (Phan et  al., 2007). 
Recently, a high-resolution map was developed to provide a 
high-resolution QTL assay of the agronomic traits of L. albus 
(Michał et  al., 2017). The pauper locus was localized in the 
linkage group ALB18 (Michał et  al., 2017). The Lup021586 
gene was identified in the region and showed 100% nucleotide 
identity to LaAT, the acyltransferase gene previously identified 
in L. angustifolius (Bunsupa et  al., 2011). LAGI01_35805, an 
L. albus homolog of LaAT that is highly similar to L. angustifolius 
Lup021586 gene, has been proposed as a molecular marker 
for the pauper locus (Rychel and Książkiewicz, 2019). Meanwhile, 
four low-alkaloid alleles have been identified in L. luteus, 
including dulcis, amoenus, liber, and v (von Sengbusch, 1942; 
Gustafsson and Gadd, 1965). However, there is limited 
information on the genetic basis for the low-alkaloid trait in 
this species. Efforts to improve the genomic resources of L. 
luteus are underway. The first genetic map for L. luteus has 
been recently released (Iqbal et  al., 2019). A high-quality 
reference genome will help to implement MAS and identify 
loci responsible for the low-alkaloid content in L. luteus.

On the other hand, phytoalexins are a class of secondary 
metabolites with antimicrobial activities that are synthesized de 
novo after biotic and abiotic stresses (Walton, 1997). Phytoalexin 
biosynthesis can be  induced by pathogens or a type of stress-
mimicking compounds called elicitors (Angelova et  al., 2006), 
and are produced by a range of crops including those in the 
Fabaceae family (Ahuja et  al., 2012). Phytoalexins produced by 
the family Leguminosae comprise a variety of chemical compounds, 
including flavonoid phytoalexins derived from the shikimic acid 
pathway. In species such as soybean, prenylated pterocarpans, 
i.e., glyceollins, are synthesized in response to fungal pathogens 
such as Phytophthora sojae and Macrophomina phaseolina (Lygin 
et  al., 2013). Soybean produces six forms of the isoflavonoid 
phytoalexin, glyceollin, where glyceollin I, glyceollin II, and 
glyceollin III are the predominant isomers (Banks and Dewick, 
1983), derived from the addition of a dimethylallyl chain to 
(6aS,11aS)-3,9,6a-trihydroxypterocarpan (glycinol) at either C-4 
or C-2 by prenyltransferases (PTs). Two isoflavonoid PTs have 
been identified in soybean: 4-dimethylallyltransferase (G4DT) 

and glycinol 2-dimethylallyltransferase (G2DT; Akashi et  al., 
2009; Yoneyama et  al., 2016). Molecular characterization of PT 
genes revealed that G4DT and G2DT are paralogs resulting 
from a whole-genome duplication (Yoneyama et  al., 2016). A 
genome-wide analysis of PT genes in G. max Wm82 identified 
77 PT-encoding genes with 11 putative isoflavonoid-specific PTs 
(Sukumaran et  al., 2018). One of the candidate genes, GmPT01 
(G2DT-2) was induced by P. sojae infection and AgNO3, which 
mimics pathogen attack and lies in the QTL linked to P. sojae 
resistance. It was suggested that GmPT01 is one of the genes 
involved in the partial resistance and could be used in breeding 
for increased fungal resistance. Other genes related to P. sojae 
resistance include a CHS gene, GmCHR2A, located near a QTL 
linked to P. sojae resistance (Sepiol et  al., 2017). Additionally, 
studies have shown that resistant and susceptible genotypes 
differ in their timing of activating glyceollin biosynthesis 
(Yoshikawa et  al., 1978; Hahn et  al., 1985). A rapid activation 
of the biosynthetic pathway allows a high level of accumulation 
of these low-molecular weight compounds and confers resistance 
to pathogens. Soybean genotypes encoding the P. sojae resistance 
gene, Rps1k, have shown a rapid activation of glyceollin 
biosynthesis and higher resistance to the pathogen (Yoshikawa 
et  al., 1978; Hahn et  al., 1985). Recently, a member of the 
NAC (NAM/ATAF1/2/CUC2)-family of transcription factor (TF) 
genes, GmNAC42-1, was identified using comparative 
transcriptomics (Jahan et  al., 2020). GmNAC42-1 binds the 
promoter of G4DT and plays a role in the accumulation of 
glyceollin I. However, additional TFs are expected to participate 
in the regulation of glyceollin biosynthesis.

The phytoalexins in pea (P. sativum) are pisatin and maackiain 
(Ahuja et  al., 2012). Pisatin, a 6α-hydroxyl-pterocarpan 
phytoalexin, is the major phytoalexin in pea produced in response 
to fungal infections by Nectria haematococca, Botrytis cinerea, 
and Mycosphaerella pinodes (Van den Heuvel and Glazener, 
1975; Shiraishi et  al., 1978; Etebu and Osborn, 2010). Its 
biosynthetic pathway has been partially characterized (Paiva 
et al., 1994; DiCenzo and Vanetten, 2006; Kaimoyo and VanEtten, 
2008; Celoy and VanEtten, 2014). Pisatin and maackiain are 
synthetized via two chiral intermediates, (−)-7,2'-dihydroxy-
4',5'-methylenedioxyisoflavanone [(−)-sophorol] and (−)-7,2'- 
dihydroxy-4',5'-methylenedioxyisoflavanol [(−)-DMDI; Preisig 
et  al., 1989; Akashi et  al., 2006; DiCenzo and Vanetten, 2006]. 
Sophorol reductase (SOR) is responsible for the production of 
sophorol, and it can be  inactivated by RNA-mediated genetic 
interference (RNAi) which inhibits the production of pisatin 
in transgenic pea hairy roots (Kaimoyo and VanEtten, 2008). 
The pathway diverges for pisatin production after (−)-DMDI 
formation. In the last step of the pathway, the methylation of 
(+)-6α-hydroxymaackiain (6α-HMK) at the C-3 position by 
6α-hydroxymaackiain methyltransferase (HMM2) results in the 
formation of (+)-pisatin. (−)-DMDI is converted to (−)-maackiain 
by hydroxisoflavanol dehydratase (HILD). The biosynthesis 
pathway of (+)-pisatin and (−)-maackiain is illustrated in 
Figure 3. M. pinodes causes ascochyta blight, the most important 
foliar disease of field pea, which responds by accumulating 
pisatin (Shiraishi et  al., 1978). Efforts have been made to 
elucidate the QTLs associated with the disease resistance and 
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to facilitate the introgression of resistance into pea cultivars 
(Wroth, 1999; Timmerman-Vaughan et al., 2004; Prioul-Gervais 
et  al., 2007; Fondevilla et  al., 2011). However, only moderate 
resistance has been reported with such efforts in pea cultivars 
(Kraft et  al., 1998). Wild relatives present a high phytoalexin 
diversity (Lindig-Cisneros et  al., 2002). The genetic controls 
for the resistance to M. pinodes were studied in a wild P. sativum 
subsp. syriacum accession P665 (Fondevilla et  al., 2008). Six 
QTLs associated with M. pinodes resistance were detected in 
linkage groups II, III, IV, and V (Timmerman-Vaughan et  al., 
2004; Prioul-Gervais et al., 2007). Quantitative trait loci MpV.1 
and MpII.1 were specific for seedlings under growth chamber 

conditions and MpIII.3 and MpIV.1 for adult plant resistance 
in field conditions (Timmerman-Vaughan et  al., 2004; Prioul-
Gervais et  al., 2007). In contrast, QTLs MpIII.1 and MpIII.2 
were detected both for seedling and field resistance (Timmerman-
Vaughan et  al., 2004; Prioul-Gervais et  al., 2007). MpIII.2 
overlaps with a QTL previously reported to be  related to the 
resistance against ascochyta blight complex Asc3.1 (Timmerman-
Vaughan et  al., 2004; Prioul-Gervais et  al., 2007). A resistance-
gene analog (RGA1.1) was identified in the vicinity of this 
QTL using P. sativum populations (Timmerman-Vaughan et al., 
2004; Prioul-Gervais et  al., 2007). QTLs associated with partial 
resistance to the root rot-causing A. euteiches have also been 
identified in pea, and would be  useful for improving and 
facilitating the existing recurrent selection-based breeding 
program (Kraft, 1988; Lewis and Gritton, 1992). Pilet-Nayel 
et  al. (2002) crossed susceptible lines with partially resistant 
ones in order to map the QTLs associated with resistance 
against A. euteiches. The genetic map revealed seven such 
genomic regions and Aph1 located on the linkage group IVb 
was the most promising. Other minor QTLs were also identified 
in the 13 linkage groups obtained in the genetic mapping 
(Pilet-Nayel et  al., 2002). Meta-analyses of four RILs of pea 
revealed 27 meta-Aphanomyces resistance QTLs, including 11 
with high consistency across populations, locations, years, and 
isolates (Hamon et  al., 2013). Seven highly consistent genomic 
regions were identified with the potential for use in MAS for 
pea improvement. Resistance QTLs located in these seven 
regions were further validated (Lavaud et al., 2015). Backcross-
assisted selection programs were used to generate near-isogenic 
lines (NILs) carrying the resistance alleles of individual or 
combined resistance QTLs. The effects of two major QTLs, 
Ae-Ps4.5, and Ae-Ps7.6, were validated. The NILs carrying the 
resistance alleles of these two QTLs showed the highest resistance 
to A. euteiches strains. Several minor-effect QTLs were also 
validated, including Ae-Ps2.2 and Ae-Ps5.1. Genome-wide analyses 
further validated most of these resistance QTLs and detected 
additional novel resistance loci (Desgroux et al., 2016). Putative 
candidate genes in these loci were related to biotic stress responses.

Transporters
ATP-binding cassette transporters and multidrug and toxic 
compound extrusion transporters play important roles in 
the secretion and accumulation of secondary metabolites 
(Yazaki, 2005; Ku et  al., 2020). These transporters are 
associated with microbe interaction and nutrient accumulation 
of legumes (Sugiyama et  al., 2007; Zhang et  al., 2010; 
Fondevilla et  al., 2011; Li et  al., 2016).

ABC Transporter
In soybean (G. max), an ABC transporter was reported to 
be  involved in the root secretion of genistein, which is an 
important signaling molecule for mediating the symbiosis with 
rhizobia (Sugiyama et al., 2007). In M. truncatula, two half-ABC 
transporters, STR and STR2, are essential for arbuscule development 
in arbuscular mycorrhizal symbiosis (Zhang et  al., 2010). The 
expression of the STR and STR2 genes was induced in cortical 

FIGURE 3 | Schematic representation of the pathway leading to the 
synthesis of (+)-pisatin and (−)-maackiain. Enzymes involved in the pathway 
are indicated in bold: isoflavone reductase (IFR), sophorol reductase (SOR), 
(+)-6α-hydroxymaackiain 3-O-methyltransferase (HMM2), and 
hydroxisoflavanol dehydratase (HILD). The steps to convert 
(−)-7,2'-dihydroxy-4',5'-methylenedioxyisoflavanol (DMDI) to 
(+)-6α-hydroxymaackiain are unknown (dotted arrow).

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ku et al. Legume Domestication and Secondary Metabolites

Frontiers in Genetics | www.frontiersin.org 13 September 2020 | Volume 11 | Article 581357

cells containing arbuscules (Zhang et al., 2010). STR and STR2 
dimerize to form a transporter, which is located in the peri-
arbuscular membrane and is important for the arbuscule 
development and therefore the symbiosis (Zhang et  al., 2010). 
The str mutant and STR2-silenced transgenic roots exhibited 
stunted arbuscules after inoculating with Glomus versiforme 
(Zhang et  al., 2010). In pea, using microarray technology, an 
ABC transporter was found to have a higher expression in P. 
sativum ssp. syriacum accession P665, which is resistant to 
Mycosphaerella pinodes, than the sensitive accession Messire 
(Fondevilla et  al., 2011).

MATE Transporter
Seeds of wild soybeans (G. soja) generally have higher antioxidant 
contents than cultivated soybeans (G. max; Li et  al., 2016). 
Statistical analysis showed the high correlation among the levels 
of seed total antioxidants, phenolics, and flavonoids (Li et  al., 
2016). Using RILs resulted from the cross between the wild 
soybean W05 (G. soja) and the cultivated soybean C08 (G. max), 
QTLs regulating the contents of antioxidants, phenolics, and 
flavonoids in soybean seeds were identified, which share a 
common genomic region (Li et al., 2016). In the target genomic 
region, three genes, GmMATE1, GmMATE2, and GmMATE4, 
were predicted to encode MATE transporters (Li et  al., 2016). 
These MATE genes are possible candidates for investigating the 
basis behind the different seed antioxidant contents between 
wild soybeans (G. soja) and cultivated soybeans (G. max).

MOLECULAR BREEDING AND 
SECONDARY METABOLITE CONTENT

As covered in this review, legumes produce a diverse array 
of secondary metabolites including a large subset of compounds 
with biopharmaceutical/nutraceutical properties. The production 
of these phytochemicals can be  increase through crop 
improvement using classical breeding to genetic approaches 
(Jacob et  al., 2016). Legumes with increased health-beneficial 
secondary metabolites are potential raw materials for producing 
pharmaceutical products.

The genetic variability of legume species is fundamental to 
identify parental lines to be  used in breeding programs and 
exploit legume secondary metabolites. Modern targeted breeding 
programs use tools, such as quantitative trait loci, marked-assisted 
selection, and genomics applications (Collard and Mackill, 2008; 
Jacob et  al., 2016). DNA-based molecular markers are used to 
characterize genomic regions (insertions, deletions, mutations) 
controlling a particular trait or gene to differentiate individuals 
for germplasm identification and characterization (Nadeem et al., 
2018). Molecular markers provide breeders with a valuable resource 
to accelerate selection programs and mark complex traits, which 
are influenced by environmental factors or not observable at 
early stages of plant development. Flavonoids have pharmacological 
effects, such as antioxidants for human nutrition or anti-
inflammatory effects among others. Also, nutritional value of 
legumes can be enhanced by increasing flavonoid content though 
breeding selection (D’Amelia et  al., 2018). In this case, molecular 

markers have been used to study genetic variability in legumes 
to obtain varieties with high total flavonoid content. Genetic 
heritability of flavonoids is high and germplasms with different 
flavonoid content can lead to the identification of potential markers 
to use in breeding (Caseys et  al., 2015). Flavonoid content was 
determined in 57 peanut accessions to evaluate the association 
between molecular markers and flavonoid content (Hou et  al., 
2017). Four expressed sequence tag-simple sequence repeat 
(EST-SSRs) markers were identified related to high flavonoid 
content in Chinese peanut germplasm. Functions of these markers 
were analyzed and related to outer membrane protein porin, 
heat-shock transcription factor, and lectins (Hou et  al., 2017). 
Further studies are required to confirm the functions of these 
ESTs in flavonoid synthesis in peanuts. In soybean, three novel 
alleles were identified associated to flavonoid hydroxylase genes, 
F3'H and F3'5'H, related to pigmentation traits (Guo and Qiu, 
2013). These molecular markers were identified using a set of 
gene-tagged markers based on the sequence variation of GmF3'H 
and GmF3'5'H in different soybean accessions, including cultivars, 
landraces, and wild soybeans (Guo and Qiu, 2013). Domestication 
process does not appear to erode diversity since four GmF3'H 
alleles were identified among cultivated soybeans, while G. soja 
contained only the GmF3'H allele. In the case of GmF3'5'H, 92.2% 
of wild soybean contained the GmF3'5'H-a allele, while three 
GmF3'5'H alleles occurred among cultivated soybeans (Guo and 
Qiu, 2013). In white clover (Trifolium repens), diversity array 
technology (DArT) and microsatellite markers were used to discover 
marker-trait associations for flavonoid accumulation and biomass 
(Ballizany et  al., 2016). Significant associations to concentrations 
of flavonols quercetin, kaempferol, and Quercetin:Kaempferol ratio 
were found to markers on linkage group  1–2. Additionally, the 
study revealed deleterious alleles in an elite cultivar indicating 
that genetic variability from wild germplasm could be  used for 
white clover improvement (Ballizany et  al., 2016).

ENGINEERING SECONDARY 
METABOLITE CONTENTS IN LEGUMES

In addition to breeding programs to improve domesticated 
varieties and broaden the gene pool of cultivars, secondary 
metabolite contents can also be modified through plant metabolic 
engineering (DellaPenna, 2001). The identification of genes 
involved in the biosynthesis pathways of diverse secondary 
metabolites has helped to drive strategies to optimize the 
production of target compounds. Increased production of target 
metabolites can be achieved by altering the primary or secondary 
metabolism of an organism, for example, through the 
overexpression of genes in biosynthetic pathways or by knocking 
out gene expressions and hence the enzymatic activities of 
competing pathways. In soybean, the manipulation of the (iso)
flavonoid pathway and its effect on the resistance to P. sojae 
has been studied (Cheng et  al., 2015; Chen et  al., 2018; Zhou 
et  al., 2018). GmIFR, encoding an isoflavone reductase (IFR), 
was identified and overexpressed in soybean (Cheng et  al., 
2015). IFR catalyzes an intermediate step in the biosynthesis 
of glyceollins (Graham et al., 1990) and its constitutive expression 
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in transgenic soybean plants enhances the resistance to P. sojae, 
along with higher glyceollin contents. Similar effects on pathogen 
resistance were obtained by the overexpression of coenzyme 
A ligase (GmPI4L) in transgenic soybean plants (Chen et  al., 
2018). Further attempts to elucidate enzymes/genes responsible 
for the resistance to pathogens include the overexpression of 
a chalcone isomerase, GmCHI1A, in soybean hairy roots, which 
enhanced daidzein accumulation and resistance to P. sojae 
strain P6497R compared to the control (Zhou et  al., 2018). 
In alfalfa, nutritional value was increased by engineering genistein 
glucoside production (Deavours and Dixon, 2005). A transgenic 
alfalfa was developed by constitutively expressing an isoflavone 
synthase, MtIFS1, from M. truncatula. However, in the MtIFS1-
expressing transgenic alfalfa, isoflavonoid production and 
accumulation was tissue-specific and affected by environmental 
factors such as UV-B and the disease-causing pathogen, Phoma 
medicaginis (Deavours and Dixon, 2005). RNAi-mediated gene 
silencing of isoflavone reductase, SOR, and hydroxymaackiain-
3-O-methyltransferase in pea (P. sativum) allowed the 
identification of DMDI, an intermediary in the production of 
pisatin and maackiain (Kaimoyo and VanEtten, 2008). Other 
viable strategies of engineering secondary metabolite pathways 
include biosynthesis in microorganisms and modulation of 
gene expressions through manipulating the expressions of 
transcription factors (Du et  al., 2010). Recently, genome-scale 
models have been used to represent the metabolic capabilities 
of legumes, including alfalfa and soybean (Pfau et  al., 2018; 
Moreira et  al., 2019). This approach allows the integration of 
different kinds of omics data to get new insights into plant-
microbe interactions (diCenzo et  al., 2016; Pfau et  al., 2018; 
Contador et  al., 2020). Models of plant metabolic pathways 
could also be  used in the design of optimal-use biosynthesis 
pathways of secondary metabolites.

CONCLUSION

Domestication generally results in the reduction in secondary 
metabolites, which are often related to the bitter taste of seeds 

and the resistance of plants to biotic stresses. The phenomenon 
is consistent with the reported decrease in crop biodiversity 
due to domestication (Food and Agricultural Organization of 
the United Nations, 2010). Having numerous health-beneficial 
secondary metabolites, legumes have the great potential to 
be  employed as the sources of bioactive compounds for 
pharmaceutical use. On the other hand, besides abiotic stresses, 
the changing climate may also bring forth unpredictable biotic 
stresses such as insect infestations. From these perspectives, 
it is important to retain the biodiversity of legumes in order 
to maintain a healthy gene pool to produce new cultivars that 
can respond to future changes in their environments. 
Understanding the genes that govern the beneficial secondary 
metabolite compositions in legumes will facilitate the use of 
wild legumes in breeding programs or metabolic engineering 
to promote crop diversity, as well as to produce legumes with 
favorable secondary metabolite profiles.
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