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Abstract 38 

The novel SARS-CoV-2 virus emerged in December 2019 and has few effective 39 

treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2 40 

differential gene expression signatures derived from publicly available data. We utilized 41 

three independent published studies to acquire or generate lists of differentially 42 

expressed genes between control and SARS-CoV-2-infected samples. Using a rank-43 

based pattern matching strategy based on the Kolmogorov-Smirnov Statistic, the 44 

signatures were queried against drug profiles from Connectivity Map (CMap).  We 45 

validated sixteen of our top predicted hits in live SARS-CoV-2 antiviral assays in either 46 

Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11 47 

of the 16 compounds tested to date (including clofazimine, haloperidol and others) had 48 

measurable antiviral activity against SARS-CoV-2. These initial results are encouraging 49 

as we continue to work towards a further analysis of these predicted drugs as potential 50 

therapeutics for the treatment of COVID-19. 51 
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Introduction 61 

SARS-CoV-2 has already claimed at least a million lives, has been detected in at 62 

least 40 million people, and has likely infected at least another 200 million. The spectrum 63 

of disease caused by the virus can be broad ranging from silent infection to lethal disease, 64 

with an estimated infection-fatality ratio around 1%1. SARS-CoV-2 infection has been 65 

shown to affect many organs of the body in addition to the lungs2. Three epidemiological 66 

factors increase the risk of disease severity: increasing age, decade-by-decade, after the 67 

age of 50 years; being male; and various underlying medical conditions1. However, even 68 

taking these factors into account, there is immense interindividual clinical variability in 69 

each demographic category considered3. Recently, researchers found that more than 70 

10% of people who develop severe COVID-19 have misguided 71 

antibodies―autoantibodies―that attack the innate immune system. Another 3.5% or 72 

more of people who develop severe COVID-19 carry specific genetic mutations that 73 

impact innate immunity. Consequently, both groups lack effective innate immune 74 

responses that depend on type I interferon, demonstrating a crucial role for type I  75 

interferon in protecting cells and the body from COVID-19. Whether the type I interferon 76 

has been neutralized by autoantibodies or―because of a faulty gene―is produced in 77 

insufficient amounts or induced an inadequate antiviral response, the absence of type I  78 

IFN-mediated immune response appears to be a commonality among a subgroup of 79 

people who suffer from life-threatening COVID-19 pneumonia3. 80 

While numerous efforts are underway to identify potential therapies targeting 81 

various aspects of the disease, there is a paucity of clinically proven treatments for 82 

COVID-19. There have been efforts to therapeutically target the hyperinflammation 83 
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associated with severe COVID-194, as well as to utilize previously identified antiviral 84 

medications5,6. One of these antivirals, remdesivir, an intravenously administered RNA-85 

dependent RNA polymerase inhibitor, showed positive preliminary results in patients with 86 

severe COVID-197. In October 2020, the FDA approved remdesivir for the treatment of 87 

COVID-198. Dexamethasone has also been shown to reduce the mortality rate in cases 88 

of severe COVID-199. 89 

Nevertheless, the lack of treatments and the severity of the current health 90 

pandemic warrant the exploration of rapid identification methods of preventive and 91 

therapeutic strategies from every angle. The traditional paradigm of drug discovery is 92 

generally regarded as protracted and costly, taking approximately 15 years and over $1 93 

billion to develop and bring a novel drug to market10. The repositioning of drugs already 94 

approved for human use mitigates the costs and risks associated with early stages of 95 

drug development, and offers shorter routes to approval for therapeutic indications. 96 

Successful examples of drug repositioning include the indication of thalidomide for severe 97 

erythema nodosum leprosum and retinoic acid for acute promyelocytic leukemia11. The 98 

development and availability of large-scale genomic, transcriptomic, and other molecular 99 

profiling technologies and publicly available databases, in combination with the 100 

deployment of the network concept of drug targets and the power of phenotypic 101 

screening, provide an unprecedented opportunity to advance rational drug design.  102 

Drug repositioning is being extensively explored for COVID-19. High-throughput 103 

screening pipelines have been implemented in order to quickly test drug candidates as 104 

they are identified12–15. In the past, our group has successfully applied a transcriptomics-105 

based computational drug repositioning pipeline to identify novel therapeutic uses for 106 
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existing drugs16. This pipeline leverages transcriptomic data to perform a pattern-107 

matching search between diseases and drugs. The underlying hypothesis is that for a 108 

given disease signature consisting of a set of up and down-regulated genes, if there is a 109 

drug profile where those same sets of genes are instead down-regulated and up-110 

regulated, respectively, then that drug could be therapeutic for the disease. This method 111 

based on the Kolmogorov-Smirnov (KS) test statistic has shown promising results for a 112 

variety of different indications, including inflammatory bowel disease17, 113 

dermatomyositis18, cancer19–21, and preterm birth22.  114 

In existing work from Xing et al.23, this pipeline has been used to identify potential 115 

drug hits from multiple input disease signatures derived from SARS-CoV or MERS-CoV 116 

data. The results were aggregated to obtain a consensus ranking, with 10 drugs selected 117 

for in vitro testing against SARS-CoV-2 in Vero E6 cell lines, with four drugs (bortezomib, 118 

dactolisib, alvocidib and methotrexate) showing viral inhibition23. However, this pipeline 119 

has not yet been applied specifically to SARS-CoV-2 infection. 120 

A variety of different transcriptomic datasets related to SARS-CoV-2 were 121 

published in the spring of 2020. In May 2020, Blanco-Melo et al. studied the transcriptomic 122 

signature of SARS-CoV-2 in a variety of different systems, including human cell lines and 123 

a ferret model24. By infecting human adenocarcinomic alveolar basal epithelial cells with 124 

SARS-CoV-2 and comparing to controls, the authors generated a list of 120 differentially 125 

expressed genes. They observed two enriched pathways: one composed primarily of 126 

type-I interferon-stimulated genes (ISGs) involved in the cellular response to viral 127 

infection; and a second composed of chemokines, cytokines, and complement proteins 128 

involved in the humoral response. After infecting the cell lines, Blanco-Melo et al. did not 129 
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detect either ACE2 or TMPRSS2, which are the SARS-CoV-2 receptor and SARS-CoV-130 

2 protease, respectively25. However, supported viral replication was observed, thereby 131 

allowing the capture of some of the biological responses to SARS-CoV-2. 132 

In May 2020, another study by Lamers et al. examined SARS-CoV-2 infection in 133 

human small intestinal organoids grown from primary gut epithelial stem cells26. The 134 

organoids were exposed to SARS-CoV-2 and grown in various conditions, including Wnt-135 

high expansion media. Enterocytes were readily infected by the virus, and RNA 136 

sequencing revealed upregulation of cytokines and genes related to type I and III 137 

interferon responses. 138 

A limited amount of transcriptomic data from human samples has also been 139 

published. One study detailed the transcriptional signature of bronchoalveolar lavage fluid 140 

(of which responding immune cells are often a primary component) of COVID-19 patients 141 

compared to controls27. Despite a limited number of samples, the results revealed 142 

inflammatory cytokine profiles in the COVID-19 cases, along with enrichments in the 143 

activation of apoptosis and the P53 signaling pathways. 144 

On the drug side, data are available in the form of differential gene expression 145 

profiles from testing on human cells. Publicly-available versions include the Connectivity 146 

Map (CMap)28, which contains genome-wide testing on approximately 1,300 drugs, 147 

wherein the differential profile for a drug was generated by comparing cultured cells 148 

treated with the drug to untreated control cultures. 149 

Here, we applied our existing computational drug repositioning pipeline to identify 150 

drug profiles with significantly reversed differential gene expression compared to several 151 

diverse input signatures for SARS-CoV-2 effects on human cells. By taking into account 152 
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a broader view of differentially expressed gene sets from both cell line and organoid 153 

disease models and human samples, the predictions are complementary to other drug 154 

discovery approaches. We identified 102 unique drug hits, from which 25 were identified 155 

in at least two of the signatures, several of which have been already investigated in clinical 156 

trials. We furthermore explore our findings in the context of other computational drug 157 

repurposing efforts for COVID-19. Finally, we tested 16 of our top predicted hits in live 158 

SARS-CoV-2 antiviral assays. Four of the top predicted inhibitors were tested for virus 159 

inhibition in a human lung cell line, Calu-3, infected with SARS-CoV-2 with quantitation of 160 

the secreted virus assessed by RT-qPCR assay. Thirteen predicted inhibitors (including 161 

one tested in Calu-3) were incubated with SARS-CoV-2 infected human embryonic kidney 162 

293T cells overexpressing ACE2 (293T-ACE2) with viral replication determined using an 163 

immunofluorescence-based assay.  164 

 165 
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Results 176 

In this study, we applied our drug repositioning pipeline to SARS-CoV-2 differential 177 

gene expression signatures derived from publicly available RNA-seq data (Figure 1). The 178 

transcriptomic data were generated from distinct types of tissues, so rather than 179 

aggregating them together, we predicted therapeutics for each signature and then 180 

combined the results. We utilized three independent gene expression signatures (labelled 181 

“ALV”, “EXP”, and “BALF”), each of which consisted of lists of differentially expressed 182 

genes between SARS-CoV-2 samples and their respective controls. The ALV signature 183 

was generated from human adenocarcinomic alveolar basal epithelial cells by comparing 184 

SARS-CoV-2 infection to mock-infection conditions24. The EXP signature originated from 185 

a study where organoids, grown from human intestinal cells expanded in Wnt-high 186 

expansion media, were infected with SARS-CoV-2 and then compared to controls26. The 187 

BALF signature was from a contrast of primary human BALF samples from two COVID-188 

19 patients versus three controls27. Each of these signatures was contrasted with drug 189 

profiles of differential gene expression from CMap.  190 

For each of the input signatures, we applied a significance threshold false 191 

discovery rate (FDR) < 0.05. We further applied minimum fold change thresholds in order 192 

to identify the driving genes. The ALV signature had only 120 genes, with 109 genes 193 

shared with the drug profiles; in order to maintain at least 100 genes for the pattern-194 

matching algorithm to work with, we applied no fold-change threshold. For the EXP 195 

signature, we applied a |log2FC| > 2 cutoff, resulting in 125 genes for the expansion 196 

signature (108 shared with the drug profiles). For the BALF signature, we processed the 197 

raw read count data to calculate differential gene expression values. We applied a 198 
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|log2FC| > 4 cutoff, with the BALF data yielding 1,349 protein-coding genes for the lavage 199 

fluid signature (941 shared with the drug profiles). As the sample types across the three 200 

datasets were very different, we used different fold change thresholds to identify the 201 

appropriate gene signatures to be used for drug repurposing. The gene lists for each of 202 

these signatures can be found in the supplement (Tables S1, S2, S3). 203 

We used GSEA (Gene Set Enrichment Analysis)29,30 to annotate enriched (FDR 204 

0.05) Hallmark pathways from each of the input signatures (Figure 2A). A number of 205 

pathways common to at least two signatures were found. Interferon alpha response and 206 

interferon beta response were upregulated in the ALV and EXP signatures. Adipogenesis 207 

and cholesterol homeostasis pathways were downregulated in the EXP and BALF 208 

signatures. KRAS signaling, and mTORC1 (mammalian target of rapamycin complex 1) 209 

signaling were enriched in all three signatures, but not in the same direction, showing the 210 

diversity of effects SARS-CoV-2 may have on human cells, and highlighting a need for 211 

utilization of diverse profiles as we do in the present study. When we look at the 212 

contributing genes within the three signatures (Figure 2B), we found one overlapping 213 

upregulated gene - Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1). We used the 214 

publicly available single-cell RNAseq dataset GSE12803331 composed of 13 patients (4 215 

healthy, 3 presenting with mild COVID-19 symptoms, and 6 presenting with severe 216 

COVID-19 symptoms) to further characterize the expression of DKK1 (Figure S1). Data 217 

were re-analyzed following the standard Seurat pipeline. From the analyses of the single-218 

cell data, DKK1 is highly expressed in COVID-19 patients compared to controls, 219 

specifically in severe patients and it is expressed by epithelial cells. 220 



 

 
 

10 

After analyzing the input SARS-CoV-2 signatures, we utilized our repositioning 221 

pipeline to identify drugs with reversed profiles from CMap (Figure 1). Significantly 222 

reversed drug profiles were identified for each of the signatures using a permutation 223 

approach: 30 hits from the ALV signature (Table S4), 15 hits from the EXP signature 224 

(Table S5), and 86 hits from the BALF signature (Table S6). When visualizing the gene 225 

regulation of the input signatures and their respective top 15 drug hits, the overall reversal 226 

pattern can be observed (Figure 2C-E). Interestingly, we found several drugs shared 227 

across datasets that significantly reversed the disease signature. For example, 228 

haloperidol, highlighted in purple in Figures 2C-E, was shown to reverse the disease gene 229 

signature from three datasets, whereas levopropoxyphene, shown in green in Figures 230 

2D-E, was observed to reverse the disease gene signature from two of the datasets. In 231 

total, our analysis identified 102 unique drug hits (Table S7). Twenty-five drug hits 232 

reversed at least two signatures (p = 0.0334, random sampling), and four drug hits 233 

reversed three signatures (p = 0.0599, random sampling) (Table 1, Figure 3A). 234 

We further characterized the common hits by examining their interactions with 235 

proteins in humans. We used known drug targets from DrugBank32 and predicted 236 

additional targets using the similarity ensemble approach (SEA)33. We visualized the 237 

known interactions from DrugBank in a network. Figure 3B shows the connectivity across 238 

compounds highlighting both single drug genes (such as SIGMAR1 for haloperidol) and 239 

genes shared across drugs, such as ADRA2A and DRD1 for haloperidol and co-240 

dergocrine mesilate. The proteins with the most known interactions with our list of 25 241 

drugs included adrenergic receptors (particularly α2 adrenoreceptors), dopamine 242 

receptors, and serotonin receptors. 243 
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To confirm the validity of our approach, the inhibitory effects of 16 of our drug hits 244 

which significantly reversed multiple SARS-CoV-2 profiles were assessed in live pCC50 245 

antiviral assays. Next, we wanted to test the potential of the predicted compounds to 246 

inhibit viral activity robustly using different human cell lines - Calu-3 and 293T-ACE2. The 247 

respective selection of 16 and 13 compounds for testing was based on side effect profiles 248 

and compound availability.  249 

The inhibitory effects of haloperidol, clofazimine, valproic acid, and fluticasone 250 

were evaluated in SARS-CoV-2 infected Calu-3 cells (human lung epithelial cell line), with 251 

remdesivir also tested as a positive control. From these five, remdesivir and haloperidol 252 

inhibited viral replication (Figure 4A), and the inhibitory effect was also observed by 253 

microscopy (Figure 4B). Toxicity assessments for haloperidol, clofazimine, valproic acid, 254 

and fluticasone were evaluated using viability assays (Alamarblue) in Calu-3 cells treated 255 

with each compound for 72h (n=1, with 2 technical replicates). No significant differences 256 

between controls and the biological replicates were detected using a non-parametric test 257 

(Kruskal-Wallis) (Figure S6). Fluticasone and bacampicillin showed some toxicity in a 258 

dose-dependent manner at the highest doses tested. Haloperidol, clofazimine and 259 

valproic acid did not show significantly reduced cell viability (Figure S6).  260 

Additionally, 13 drugs (bacampicillin, ciclopirox, ciclosporin, clofazimine, 261 

dicycloverine, fludrocortisone, isoxicam, lansoprazole, metixene, myricetin, pentoxifylline, 262 

sirolimus, tretinoin) were independently assessed in a live SARS-CoV-2 antiviral assay. 263 

Remdesivir was again used as a positive control. This testing involved six serial dilutions 264 

of each drug to inhibit the replication of SARS-CoV-2 in 293T-ACE2 cells using an 265 

immunofluorescence-based antiviral assay34. All antiviral assays were paired with 266 
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cytotoxicity assays using identical drug concentrations in uninfected human 293T-ACE2 267 

cells. Positive control remdesivir and 10 of our predicted drugs (bacampicillin, ciclopirox, 268 

ciclosporin, clofazimine, dicycloverine, isoxicam, metixene, pentoxifylline, sirolimus, and 269 

tretinoin) showed antiviral efficacy against SARS-CoV-2, reducing viral infection by at 270 

least 50%, that was distinguishable from their cytotoxicity profile when tested in this cell 271 

line (Figure 5). Several inhibitors showed micromolar to sub-micromolar antiviral efficacy, 272 

including clofazimine, ciclosporin, ciclopirox, and metixene. These results not only confirm 273 

our predictive methods, but have also identified several clinically-approved drugs with 274 

potential for repurposing for the treatment of COVID-19. 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 
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Discussion 288 
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Here, we used a transcriptomics-based drug repositioning pipeline to predict 289 

therapeutic drug hits for three different input SARS-CoV-2 signatures, each of which 290 

came from distinct human cell or tissue origins. We found significant overlap of the 291 

therapeutic predictions for these signatures. From 102 total drug hits, 25 drugs reversed 292 

at least two signatures (p = 0.0334) and 4 drugs reversed three signatures (p = 0.0599). 293 

The diversity of such signatures yet overlap of highlighted drugs underscores the utility of 294 

the current pipeline for identification of drugs which might be therapeutic for the diverse 295 

effects of SARS-CoV-2 infection. 296 

Twenty-five of our drug hits reversed at least two of the three input signatures 297 

(Figure 3). Notably, 14 of the 15 hits from the EXP signature were also hits for the BALF 298 

signature, despite being generated from different types of tissue. The EXP signature was 299 

generated from intestinal tissue, whereas the BALF signature was generated from 300 

constituents of the respiratory tract. Among the common hits reversing at least two of the 301 

signatures were two immunosuppressants (ciclosporin and sirolimus), an anti-302 

inflammatory medication (isoxicam),  and two steroids (fludrocortisone and fluticasone). 303 

Sirolimus (or rapamycin), an immunosuppressant and an mTOR inhibitor, is currently 304 

undergoing investigation in several clinical trials in COVID-19 patients (NCT04371640, 305 

NCT04341675, NCT04461340). Other hits currently in clinical trials for COVID-19 306 

treatment include ciclosporin (NCT04412785, NCT04392531), niclosamide in 307 

combination with diltiazem (NCT04558021), and clofazimine in combination with 308 

interferon beta-1b (NCT04465695).  309 

Among our four drug hits that reversed all three signatures, three drugs 310 

demonstrated in vitro antiviral efficacy - bacampicillin, clofazimine, and haloperidol with 311 
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no toxicity effects (Figure S6). Our group found haloperidol decreased viral growth in 312 

SARS-CoV-2 infected Calu-3 cells (Figure 4B) in a dose-dependent manner (Figure 4A). 313 

Haloperidol is a psychiatric medication that is indicated for the treatment of psychotic 314 

disorders including schizophrenia and acute psychosis. By blocking dopamine (mainly 315 

D2) receptors in the brain, haloperidol eliminates dopamine neurotransmission which 316 

leads to improvement of psychotic symptoms35. Haloperidol can also bind to the sigma-1 317 

and sigma-2 receptors, which are implicated in lipid remodeling and cell stress 318 

response12. As reported by Gordon et al.12, the SARS-CoV-2 proteins Nsp6 and ORF9c 319 

interact with the sigma-1 receptor and the sigma-2 receptor, respectively. Moreover, they 320 

found that haloperidol decreased viral replication in SARS-CoV-2-infected Vero E6 cells 321 

with, based on their reported pIC50 and pCC50 values, a calculated Selectivity Index (SI) 322 

of 53.712. An SI greater than 10 is the generally accepted minimum cut-off for an antiviral 323 

worth pursuing36,37. In another more recent study, Gordon et al. found in their analysis of 324 

a national electronic medical record database that fewer hospitalized COVID-19 patients 325 

who were newly prescribed haloperidol and other sigma-binding typical antipsychotic 326 

medications progressed to requiring mechanical ventilation compared to those who were 327 

newly prescribed atypical antipsychotic medications that do not bind to sigma receptors14.  328 

Our testing of clofazimine demonstrated submicromolar  antiviral effects of this 329 

drug in SARS-Co-V-2 infected 293T-ACE2 and Vero E6 cells (Figures 4 and S3). 330 

Clofazimine is an orally administered antimycobacterial drug used in the treatment of 331 

leprosy. By preferentially binding to mycobacterial DNA, clofazimine disrupts the cell cycle 332 

and eventually kills the bacterium38. In addition to being an antimycobacterial agent, 333 

clofazimine also possesses anti-inflammatory properties primarily by inhibiting T 334 
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lymphocyte activation and proliferation39. Yuan et al. found that clofazimine inhibits 335 

SARS-CoV-2 replication by interfering with spike-mediated viral entry and viral RNA 336 

replication40. Their work also demonstrated that clofazimine has antiviral efficacy against 337 

SARS-CoV-2 in human embryonic stem cell-derived cardiomyocytes and in an ex vivo 338 

human lung culture system, as well as antiviral synergy with remdesivir demonstrating 339 

the potential of clofazimine as part of a combination treatment regimen for COVID-1940.  340 

Our group found bacampicillin to have micromolar antiviral efficacy in SARS-Co-341 

V-2 infected 293T-ACE2 cells. Bacampicillin is an orally administered prodrug of 342 

ampicillin typically prescribed for treating bacterial infections41. As identified by SPOKE42, 343 

bacampicillin was found to downregulate the GDF15 gene and upregulate the NFKB2 344 

(Nuclear Factor Kappa B Subunit 2) gene in studies by Cmap28 and LINCS43. The GDF15 345 

protein acts as a cytokine and is involved in stress response after cellular injury, and the 346 

NFKB2 is a central activator of genes involved with inflammation and immune function44. 347 

Circulating levels of GDF15 have been found to be significantly higher in COVID-19 348 

patients who die45.  Zhou et al.’s work revealed NF-kappa B signaling as one of the main 349 

pathways of coronavirus infections in humans. While the rapid conversion of bacampicillin 350 

to ampicillin in vivo makes this prodrug a less optimal therapeutic candidate for COVID-351 

19, our findings nevertheless provide insights into the immunologic and inflammatory 352 

landscape from SARS-CoV-2 infection. 353 

 Overall, in testing of our drug hits across two human cell line assays, 11 of 16 354 

exhibited  inhibition of SARS-CoV-2 infection. In particular, three of our four consensus 355 

drug hits demonstrated antiviral efficacy, with haloperidol showing reproducible inhibition 356 

in Calu-3 cells, and bacampicillin and clofazimine inhibiting viral activity in 293T-ACE2 357 
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cells without cytotoxicity. Many of our tested drugs can be administered orally, and 358 

several are on the WHO Model List of Essential medications, including ciclosporin, 359 

clofazimine, and haloperidol46. These results suggest that our drug repositioning pipeline 360 

can rapidly identify readily available potential therapeutics in antiviral contexts. 361 

There are several limitations of our approach that should be recognized. In 362 

general, drug repositioning pipelines are reliant upon data being encoded in a computable 363 

format. Considering variability of  conditions under which experimental and clinical data 364 

are obtained, this also implies a particular set of limitations and biases to the ensuing 365 

results. Therefore, significant and concerted community efforts are necessary for efficient 366 

usage of the existing biomedical and clinical information and extraction of knowledge from 367 

this information, which may allow better repositioning of the current drugs47. 368 

In our work, we applied the KS-based similarity metric on the CMap database.  369 

Rank-based methods, such as the KS statistic, may suffer from high false positive rates, 370 

as genes not differentially expressed can be ranked high and contribute to the similarity 371 

measurement for drug and disease signatures48,49.  Moreover, rank-based approaches 372 

can also miss many potential drugs as ranking captured just a small part of information in 373 

a gene expression profile.  Alternative methods have bene proposed, such as EMUDRA49 374 

and XSum50; however, they have not been widely adopted by the community. Future work 375 

might include evaluating multiple similarity metrics on larger datasets49. The studies that 376 

we leveraged here are also limited because of their small sample size, which might 377 

explain the small gene overlap across the signatures. While the different sample types 378 

are able to capture the heterogeneity of the response to viral infection, because data 379 

generated from cell lines and organoids (the ALV and EXP signatures, respectively) might 380 
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not accurately represent the biological changes and responses in human infection,  in 381 

vivo experiments are needed to better understand the biology of the disease and the 382 

effect of these drugs on it.  Moreover, although the BALF signature was generated from 383 

fluid recovered from lavage of infected human tissues, this primary response data was 384 

aggregated from a very limited sample size (2 cases and 3 controls). As the sample types 385 

across the three datasets were very different, we used different fold change thresholds to 386 

identify the signature genes to be used for drug repurposing. Gathering samples from a 387 

larger number of patients should generate a more robust gene expression signature and 388 

better inform therapeutic predictions. Furthermore, the drug profiles from CMap were 389 

generated from cell line data; drug data generated from more relevant tissue cultures (e.g. 390 

lung tissue) may generate more appropriate comparisons. Finally, our validation 391 

approaches focus on in vitro studies, which are limited, and warrant further in-vivo testing 392 

of the proposed compounds.   393 

The drug development response for SARS-CoV-2 / COVID-19 is rapidly 394 

developing. One drug, remdesivir, recently received FDA approval for the treatment of 395 

COVID-19, and numerous other drugs are being actively explored for possible therapeutic 396 

value in COVID-19 cases. Utilizing a diverse set of transcriptomic SARS-CoV-2 397 

signatures, our drug repositioning pipeline identified 25 therapeutic candidates. Validation 398 

experiments revealed antiviral activity for 11 of 16 drug hits. Further clinical investigation 399 

into these drug hits, in vivo assays as well as potential combination therapies is warranted 400 

to further investigate both the anti-viral as well as side effect profile of the drugs. 401 

Materials and Methods 402 

Study design 403 
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            We have previously developed and used a transcriptomics based bioinformatics 404 

approach for drug repositioning in various contexts including inflammatory bowel disease, 405 

dermatomyositis, and spontaneous preterm birth. For a list of differentially expressed 406 

genes, the computational pipeline compares the ranked differential expression of a 407 

disease signature with that of a profile16,19,28. A reversal score based on the Kolmogorov-408 

Smirnov statistic is generated for each disease-drug pair, with the idea that if the drug 409 

profile significantly reverses the disease signature, then the drug could be potentially 410 

therapeutic for the disease. 411 

 412 

SARS-CoV-2 gene expression signatures 413 

Blanco-Melo et al. generated a differential gene expression signature using RNA-414 

seq on human adenocarcinomic alveolar basal epithelial cells infected with SARS-CoV-2 415 

propagated from Vero E6 cells (GSE147507, 67 samples)24. Due to the fast-moving 416 

nature of the research topic, we opted to use this cell line data in lieu of waiting for 417 

substantial patient-level data. This work identified 120 differentially expressed genes 418 

(DEGs) – 100 upregulated and 20 downregulated. We used these 120 genes as the ALV 419 

signature for our computational pipeline (Table S1). 420 

Lamers et al. performed RNA-seq on their organoid samples, from which 421 

differentially expressed genes were calculated26. These samples were grown in a medium 422 

with a Wnt surrogate supplement and infected with SARS-CoV-2 propagated from Vero 423 

E6 cells (GSE149312, 22 samples). They detected 434 significant DEGs (FDR < 0.05). 424 

We additionally applied a fold-change cutoff (|log2 FC| > 2), resulting in 125 genes used 425 

as the EXP signature (Table S2). 426 
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Xiong et al. performed RNA-seq analysis of BALF samples from two COVID-19 427 

patients (two samples per patient) and three healthy controls27. We processed their raw 428 

read counts in order to construct a differential signature (see below for details). FASTQ 429 

files were downloaded from the Genome Sequence Archive51,52 under accession number 430 

CRA002390. Paired-end reads were mapped to the hg19 human reference genome using 431 

Salmon (v.1.2.0) and assigned Ensembl genes. After read quality control, we obtained 432 

quantifications for 55,640 genes in all samples. In order to identify genes differentially 433 

expressed between cases and controls for the BALF samples, we quantified gene 434 

expression as raw counts. Raw counts were used as inputs to DESeq2  (v.1.24.0 R 435 

package) to call differentially expressed genes (DEGs). After adjusting for the sequencing 436 

platform, the default settings of DESeq2 were used. Principal components were 437 

generated using the DESeq2 function (Figure S2), and heat maps were generated using 438 

the Bioconductor package pheatmap (v.1.0.12) using the rlog-transformed counts (Figure 439 

S3). Values shown are rlog-transformed and row-normalized. Volcano plots were 440 

generated using the Bioconductor package EnhancedVolcano (v.1.2.0) (Figure S4). 441 

Retaining only protein-coding genes and applying both a significance threshold and a 442 

fold-change cutoff (FDR < 0.05, |log2 FC| > 4), we obtained 1,349 genes to be used as 443 

the BALF signature (Table S3). 444 

 445 

Pathway enrichment analysis 446 

Functional enrichment gene-set analysis for GSEA (Gene Set Enrichment 447 

Analysis) was performed using fgsea (v.1.12.0 R package) and the input gene lists were 448 

ranked by log2 fold change. The 50 Hallmark Gene Sets used in the GSEA analysis were 449 
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downloaded from MSigDB Signatures database29,53. For GO (Gene Ontology) terms, 450 

identification of enriched biological themes was performed using the DAVID database54.  451 

  452 

Drug gene expression profiles 453 

Drug gene expression profiles were sourced from Connectivity Map (CMap), a 454 

publicly-available database of drugs tested on cancer cell lines28. CMap contains a set of 455 

differential gene expression profiles generated from treating cultured human cells with a 456 

variety of different drugs and experimental compounds. These profiles were generated 457 

using DNA microarrays to assay mRNA expression. These drug profiles are ranked 458 

genome-wide profiles (~22,000 genes) of the effects of the drugs on various cell lines. 459 

6,100 gene expression profiles are presented in CMap. A total of 1,309 compounds were 460 

tested in up to 5 different cell lines. The overlap between the gene lists of CMap and the 461 

SARS-CoV-2 signature is 109 genes. 462 

 463 

Computational gene expression reversal scoring 464 

To compute reversal scores, we used a non-parametric rank-based method similar 465 

to the Kolmogorov-Smirnov test statistic. This analysis was originally suggested by the 466 

creators of the CMap database and has since been implemented in a variety of different 467 

settings16–19,22,28. As also described by others, the drug signature is compared with the 468 

gene expression profiles. By splitting the gene signature into two lists containing only 469 

upregulated genes and downregulated genes, a so-called connectivity score is estimated 470 

via several auxiliary variables using a nonparametric rank-ordered Kolmogorov–Smirnov 471 

(KS) test)48. Similar to past works, we applied a pre-filtering step to the CMap profiles to 472 
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maintain only drug profiles which were significantly correlated with another profile of the 473 

same drug. Drugs were assigned reversal scores based on their ranked differential gene 474 

expression profile relative to the SARS-CoV-2 ranked differential gene expression 475 

signature. A negative reversal score indicated that the drug had a profile which reversed 476 

the SARS-CoV-2 signature; that is, up-regulated genes in the SARS-CoV-2 signature 477 

were down-regulated in the drug profile and vice versa. 478 

 479 

Statistical analysis 480 

P-values were adjusted using the false discovery rate (FDR; Benjamini-Hochberg) 481 

procedure. P-values for individual drug hits were obtained by comparing reversal scores 482 

to a distribution of random scores. Negative reversal scores were considered significant 483 

if they met the criterion FDR < 0.05. For drugs tested multiple times (e.g. different cell 484 

lines), we used the most reversed profile (lowest negative score). For significance values 485 

of the number of drugs reversing multiple signatures, we constructed distributions of the 486 

common reversal (reversing two of three signatures) and the consensus reversal 487 

(reversing three of three signatures) by randomly sampling the same number of drug 488 

profiles for each signature from CMap. 489 

 490 

Single-cell data analysis 491 

Quantification files were downloaded from GEO GSE145926. An individual Seurat object 492 

for each sample was generated using Seurat v.3. While the data has been filtered by 493 

10x's algorithm, we still needed to ensure the remaining cells are clean and devoid of 494 

artifacts. We calculated three confounders for the dataset: mitochondrial percentage, 495 
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ribosomal percentage, and cell cycle state information. For each sample, cells were 496 

normalized for genes expressed per cell and per total expression, then multiplied by a 497 

scale factor of 10,000 and log-transformed. Low quality cells were excluded from our 498 

analyses— this was achieved by filtering out cells with greater than 5,000 and fewer than 499 

300 genes and cells with high percentage of mitochondrial and ribosomal genes (greater 500 

than 10% for mitochondrial genes, and 50% for ribosomal genes). SCTransform is a 501 

relatively new technique that uses "Pearson Residuals" (PR) to normalize the data. PRs 502 

are independent of sequencing depth55. We "regress out" the effects of mitochondrial and 503 

ribosomal genes, and the cell cycling state of each cell, so they do not dominate the 504 

downstream signal used for clustering and differential expression. We then performed a 505 

lineage auto-update disabled r dimensional reduction (RunPCA function). Then, each 506 

sample was merged together into one Seurat object. Data were then re-normalized and 507 

dimensionality reduction and significant principal components were used for downstream 508 

graph-based, semi-unsupervised clustering into distinct populations (FindClusters 509 

function) and uniform manifold approximation and projection (UMAP) dimensionality 510 

reduction was used. For clustering, the resolution parameter was approximated based on 511 

the number of cells according to Seurat guidelines; a vector of resolution parameters was 512 

passed to the FindClusters function and the optimal resolution of 0.8 that established 513 

discernible clusters with distinct marker gene expression was selected. We obtained a 514 

total of 21 clusters representing the major immune and epithelial cell populations. To 515 

identify marker genes driving each cluster, the clusters were compared pairwise for 516 

differential gene expression (FindAllMarkers function) using the Likelihood ratio test 517 

assuming an underlying negative binomial distribution (negbinom). For visualization of 518 
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gene expression data between different samples a number of Seurat functions were used: 519 

FeaturePlot, VlnPlot and DotPlot. 520 

 521 

Cell Lines 522 

For studies at the Gladstone Institutes, Calu-3 cells, a human lung epithelial cell line 523 

(American Type Culture Collection, ATCC HTB-55), were cultured in advanced MEM 524 

supplemented with 2.5% fetal bovine serum (FBS) (Gibco, Life Technologies), 1% L-525 

GlutaMax (ThermoFisher), and 1% penicillin/streptomycin (Corning) at 37°C and 5% CO2. 526 

SARS-CoV-2 Isolate USA-WA1/2020 was purchased from BEI Resources and 527 

propagated and titered in Vero E6 cells. For studies carried out at Mount Sinai, SARS-528 

CoV-2 was propagated in Vero E6 cells (ATCC CRL-1586) and 293T-ACE2 cells (ATCC 529 

CRL-3216). 530 

 531 

Compounds 532 

Selection of compounds for testing was based on side effect profiles and compound 533 

availability. Bacampicillin (B0070000), ciclopirox (SML2011-50MG), ciclosporin 534 

(C2163000), clofazimine (1138904-200MG), dicycloverine (D1060000), fludrocortisone 535 

(1273003-200MG), fluticasone (1285873-100MG), haloperidol (H1512-5G), isoxicam 536 

(I1762-1G), lansoprazole (1356916-150MG), metixene (M1808000), myricetin (M6760-537 

10MG), pentoxifylline (1508901-200MG), sirolimus (S-015-1ML), tretinoin (1674004-538 

5X30MG), and valproic acid (1708707-500MG) were purchased from Sigma-Aldrich. 539 

Remdesivir (GS-5734) was purchased from Selleckchem.  540 

 541 
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Compounds were resuspended in DMSO according to manufacturer’s instructions and 542 

serially diluted to the relevant concentrations for treatment of infected cells.  543 

  544 

Infection Experiments 545 

Work involving live SARS-CoV-2 was performed in the BSL3 facility at the 546 

Gladstone Institutes with appropriate approvals. Calu-3 cells were seeded in 96-well 547 

plates for 24h, infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.05, and 548 

treated with compounds. 72 hours post infection, supernatant was collected for RNA 549 

extraction and the RNA was analyzed using RT-qPCR to quantify viral genomes present 550 

in the supernatant. SARS-CoV-2 specific primers targeting the E gene region: 5’-551 

ACAGGTACGTTAATAGTTAATAGCGT-3’ (Forward) and 5’-552 

ATATTGCAGCAGTACGCACACA-3’ (Reverse) were used to quantify cDNA on the 7500 553 

Fast Real-Time PCR system (Applied Biosystems). Cells were fixed with 554 

paraformaldehyde and used for immunofluorescence analysis with dsRNA antibody 555 

(SCICONS) and DAPI stain. Images were acquired and analyzed using ImageXpress 556 

Micro Confocal High-Content Imaging System.   557 

In Vitro Microneutralization Assay for SARS-CoV-2 Serology and Drug Screening 558 

For studies at Mount Sinai, SARS-CoV-2 was propagated in Vero E6 cells (ATCC 559 

CRL-1586) and 293T-ACE2 cells (ATCC CRL-3216), as previously described12,34. Two 560 

thousand cells were seeded into 96-well plates in DMEM (10% FBS) and incubated for 561 

24 h at 37 °C,5% CO2. Then, 2 h before infection, the medium was replaced with 100 μl 562 

of DMEM (2% FBS) containing the compound of interest at concentrations 50% greater 563 

than those indicated, including a DMSO control. The Vero E6 cell line used in this study 564 



 

 
 

25 

is a kidney cell line; therefore, we cannot exclude that lung cells yield different results for 565 

some inhibitors. Plates were then transferred into the Biosafety Level 3 (BSL3) facility 566 

and 100 PFU (MOI = 0.025) was added in 50 μl of DMEM (2% FBS), bringing the final 567 

compound concentration to those indicated. Plates were then incubated for 48 h at 37 °C. 568 

After infection, supernatants were removed and cells were fixed with 4% formaldehyde 569 

for 24 h before being removed from the BSL3 facility. The cells were then immunostained 570 

for the viral NP protein (an in-house mAb 1C7, provided by Dr. Thomas Moran) with a 571 

DAPI counterstain. Infected cells (488 nM) and total cells (DAPI) were quantified using 572 

the Celigo (Nexcelcom) imaging cytometer. Infectivity is measured by the accumulation 573 

of viral NP protein in the nucleus of the Vero E6 cells and 293T-ACE2 cells (fluorescence 574 

accumulation). Percentage infection was quantified as ((infected cells/total cells) − 575 

background) × 100 and the DMSO control was then set to 100% infection for analysis. 576 

The IC50 and IC90 for each experiment were determined using the Prism (GraphPad) 577 

software. Cytotoxicity was also performed using the MTT assay (Roche), according to the 578 

manufacturer’s instructions. Cytotoxicity was performed in uninfected VeroE6 cells with 579 

same compound dilutions and concurrent with viral replication assay. All assays were 580 

performed in biologically independent triplicates. 581 

 582 

Code Availability Statement 583 

The data used for the repositioning pipeline are all publicly available. The code for the 584 

drug repositioning pipeline was adapted from reference 19 and is available at 585 

https://github.com/brianlle/sirota_lab_covid_drug_repositioning. 586 

 587 
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 773 

Figure 1.  COVID-19 transcriptomics-based bioinformatics approach for drug repositioning. 774 
We generated lists of statistically significant differentially expressed genes from the analysis of 775 
three published studies of SARS-CoV-2 and COVID-19. The drug repositioning computational 776 
pipeline compares the ranked differential expression of the COVID-19 disease signature with that 777 
of drug profiles from CMap. A reversal score based on the Kolmogorov-Smirnov statistic is 778 
generated for each disease-drug pair. If a drug profile significantly (FDR < 0.05) reverses the 779 
disease signature, then the drug could be therapeutic for the disease. Across all datasets, a total 780 
of 102 drugs have been identified as potentially therapeutic for COVID-19. Twenty-five drugs were 781 
identified in analyses of at least two of the three datasets. We further conducted pathways 782 
analyses and targeted analyses on the results, focusing on the 25 shared hits. Finally, we 783 
validated sixteen of our top predicted hits in live SARS-CoV-2 antiviral assays. 784 
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 785 

Figure 2. SARS-CoV-2 differential gene expression signatures reversed by drug profiles 786 
from CMap. (A) Enrichment analysis using GSEA reveals common pathways among input 787 
signatures. (B) DEG overlap from input signatures. Only 1 gene, DKK1, was shared by all 3 788 
signatures. (C) Top 15 drug profiles reversing the ALV signature (109 genes). For each column, 789 
the gene expression values were ranked, with rank 1 being the most up-regulated gene (in red) 790 
and the maximum rank (109 for ALV) being the most down-regulated gene (in blue). Drug 791 
names highlighted in green were hits for a second signature, and drug hits highlighted in purple 792 
reversed all three signatures. (D) Top 15 drug profiles reversing the EXP signature (108 genes). 793 
(E) Top 15 drug profiles reversing the BALF signature (941 genes). 794 
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 796 

 797 

Figure 3. Common therapeutic hits from drug repurposing pipeline applied to SARS-CoV-798 
2 signatures. (A) Drug profiles from CMap significantly reversed signatures from the ALV, 799 
BALF, and EXP signatures. 25 of the drugs were significant in at least 2 of the signatures. (B) 800 
Drug-protein target network. For the 25 drugs that reversed at least 2 of the signatures, target 801 
information was gathered from DrugBank to identify clusters of drugs from shared targets.  802 
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 806 

Figure 4. Haloperidol inhibits viral replication of SARS-CoV-2 in the Calu-3 lung cell line. 807 
(A) Calu-3 cells were infected with SARS-CoV-2 at an MOI of 0.05 for 72h. Viral replication 808 
levels were determined by RT-qPCR from supernatant RNA using specific primers for the E 809 
gene. Viral RNA levels relative to DMSO are graphed. Error bars represent 3 or 4 independent 810 
experiments. One-way ANOVA analysis was used to determine significance. (B) Microscopy: 811 
Calu-3 cells were infected with SARS-CoV-2 at an MOI of 0.05 for 72h. Cells were fixed with 812 
paraformaldehyde and used for immunofluorescence analysis with dsRNA antibody (SCICONS) 813 
and DAPI stain. Images were acquired and analyzed using ImageXpress Micro Confocal High-814 
Content Imaging System. 815 
 816 
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 817 

Figure 5. Viral inhibition and cell viability tests of 13 compounds in 293T-ACE2 cell 818 
assays. Several drugs inhibit viral infectivity. Red, viral infectivity (anti-NP); black, cell viability. 819 
The lack of a dose response in cell viability probably reflects cytostatic and not cytotoxic effects. 820 
Data are mean ± s.d.; n = 3 biologically independent samples for cell viability data. 821 
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Drug hit Description (current 
uses) 

ALV 
Reversal 
Score 

EXP 
Reversal 
Score 

BALF 
Reversal 
Score 

Bacampicillin Antibiotic 0.789 0.790 0.596 

Benzocaine Anesthetic n.s. 0.766 0.546 

Ciclopirox Antifungal n.s. 1 0.361 

Ciclosporin Immunosuppressant 
(RA, psoriasis, Crohn’s) 

0.756 n.s. 0.409 

Clofazimine Antimycobacterial 
(leprosy) 

0.946 0.893 0.558 

Co-dergocrine 
mesilate 

Ergoid mesylate 
(dementia, Alzheimer’s, 
stroke) 

0.775 n.s. 0.553 

Dicycloverine Antispasmodic (IBS) 0.847 n.s. 0..461 

Fludrocortisone Corticosteroid n.s. 0.782 0.519 

Fluticasone Steroid (asthma, COPD) 0.790 n.s. 0.463 

Haloperidol Antipsychotic 
(schizophrenia) 

0.937 0.773 0.507 

Isoxicam NSAID n.s. 0.873 0.410 

Lansoprazole Proton-pump inhibitor 
(acid reflux) 

0.856 n.s. 0.370 

Levopropoxyphe
ne 

Antitussive n.s. 0.835 0.770 

Lomustine Antineoplastic 
(Hodgkin’s disease, 
brain tumors) 

0.748 n.s. 0.338 

Metixene Anticholinergic 
(Parkinson’s) 

0.759 n.s. 0.344 

Myricetin Flavonoid n.s. 0.823 0.603 

Niclosamide Anthelmintic 
(tapeworms) 

0.812 n.s. 0.360 

Nocodazole Antineoplastic 0.766 n.s. 0.439 

Pentoxifylline Vasodilatory and anti-
inflammatory  
(claudication) 

n.s. 0.791 0.552 

Sirolimus Immunosuppressive n..s. 0.768 0.729 
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Thiamazole Antithyroid agent 
(Graves disease) 

n.s. 0.796 0.724 

Tocainide Antiarrhythmic 0.798 n.s. 0.714 

Tretinoin Vitamin A derivative 
(acne, acute 
promyelocytic leukemia) 

n.s. 0.854 0.579 

Valproic acid Anticonvulsant (seizures, 
bipolar disorder) 

0.917 0.786 0.546 

Zuclopenthixol Antipsychotic 
(schizophrenia) 

0.754 n.s. 0.535 

Table 1. Therapeutic hits reversing at least 2 of input SARS-CoV-2 signatures. A wide 822 
variety of drugs were identified by the analysis of multiple signatures. Drug reversal 823 
scores are normalized for each signature; drug entries marked “n.s.” were not significant 824 
for reversing that signature. 825 
 826 


