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Adaptive rewiring evolves brain-like 
structure in weighted networks
Ilias Rentzeperis   1* & Cees van Leeuwen 1,2

Activity-dependent plasticity refers to a range of mechanisms for adaptively reshaping neuronal 
connections. We model their common principle in terms of adaptive rewiring of network connectivity, 
while representing neural activity by diffusion on the network: Where diffusion is intensive, shortcut 
connections are established, while underused connections are pruned. In binary networks, this 
process is known to steer initially random networks robustly to high levels of structural complexity, 
reflecting the global characteristics of brain anatomy: modular or centralized small world topologies. 
We investigate whether this result extends to more realistic, weighted networks. Both normally- and 
lognormally-distributed weighted networks evolve either modular or centralized topologies. Which of 
these prevails depends on a single control parameter, representing global homeostatic or normalizing 
regulation mechanisms. Intermediate control parameter values exhibit the greatest levels of network 
complexity, incorporating both modular and centralized tendencies. The simulation results allow us to 
propose diffusion based adaptive rewiring as a parsimonious model for activity-dependent reshaping of 
brain connectivity structure.

From neuronal synapses to white matter tracts1, brain anatomical networks are characterized by the structural 
properties of small-worldness2,3, modularity4,5 and rich club organization6,7. The pervasiveness of these properties 
raises the question whether they result from a common principle5,8. We proposed that these properties are the 
product of adaptive rewiring9–13, for a review14. Adaptive rewiring captures a crucial property of how the brain’s ana-
tomical network is shaped over time. Whereas the mechanisms that shape the brain network show great variety, 
as they encompass brain growth15, development, as well as learning16,for a review, they are alike in their common 
dependency on the network’s functional connectivity, i.e. the statistical dependencies between the nodes’ activi-
ties12,17. Adaptive rewiring formalizes this dependency in terms of graph theory, as it encompasses adding short-
cut links to network regions with intense functional connectivity while pruning underused ones. These dynamical 
rewirings could be regarded as adaptive network optimization to function18.

Whereas adaptive rewiring represents the dependency of structural connectivity on network activity, the 
reverse, viz. the dependency of activity on structural connectivity, has been the focus of intense investigation. 
Recently, it was proposed that a simple, linear equation can predict brain activity from anatomical connectivity19. 
The proposal describes traffic on a fixed anatomical network in terms of random walks. This allows the amount 
of traffic to be stochastically approximated in terms of diffusion on the graph. Jarman and colleagues11 adopted a 
similar principle in an adaptive rewiring model. They represented the amount of flow transferred between nodes 
by a heat kernel. During each rewiring step, an edge with low flow is pruned while an unconnected pair of nodes 
with high flow between them is connected.

The rewiring algorithm is tuned by two parameters: random rewiring (prandom) and rewiring rate (τ). The 
parameter prandom is the proportion of rewirings performed at random, rather than according to the adaptive 
rewiring criterion. This represents the proportion of rewirings made in adaptation to neural noise. The parameter 
τ is the elapsed time in the diffusion process before a rewiring is made. We speak of fast rewiring when τ is small, 
and slow rewiring when τ is large. The parameter may represent global homeostatic or normalizing regulation 
mechanismsfor a review 20.

An important shortcoming of the adaptive rewiring model as proposed by Jarman and colleagues11 is that 
it uses binary networks to represents brain anatomy. Notwithstanding the popularity of binary graphs in brain 
network analysis, networks with differentially weighted connections offer a more appropriate representation of 
the sophisticated data on brain connectivity from contemporary tract-tracing and other imaging studies2. Recent 
measures are applied on more realistic, differentially weighted anatomical connections; thus a corresponding 
graph representation of the brain is necessary. Robust convergence to small world topologies is not automatically 
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guaranteed for adaptive rewiring of differentially weighted networks; rewiring of low-weight connections may not 
impact the network flow, whereas highly weighted ones may resist pruning21.

Here, we first probe whether graph diffusion can drive the evolution of brain-like connectivity structures in 
weighted networks. Presynaptic weights on single neurons have traditionally been modeled as normally distrib-
uted, but recent studies favor lognormal distributions, exhibiting a long tail of strong connections22,23. We there-
fore compare rewiring in normal and lognormal weight distributions.

Our results show that adaptive rewiring according to network diffusion establishes ‘brain-like’ network struc-
ture for both normal and lognormal weight distributions. More specifically, adaptive rewiring steers random 
networks to intricately structured, small-world patterns for a wide range of rewiring rates, even with large propor-
tions of random rewirings. The rewiring rate dictates the spread of diffusion from each node, with fast rewiring 
affecting mostly neighbors and slow rewiring having a more widespread effect. The speed of rewiring naturally 
determines the connectivity pattern of the network after rewiring. Fast rewiring biases rewiring towards local 
structures and produces modular connectivity patterns, whereas slow rewiring biases the network evolution 
towards global structures, resulting in centralized connectivity patterns. In the intermediate range of rewiring 
rates, there is a transition zone, in which networks show the greatest variability. Nodes with higher degrees show 
a preferential attachment to each other, exhibiting the so-called rich club effect. However, larger weights are 
not preferentially attached to this subnetwork. This pattern of attachment is another connectivity feature that is 
shown to exist in the brain24,25. Overall, due to its robust convergence to brain-like topologies and its small num-
ber of tunable parameters, graph diffusion is a parsimonious model linking anatomy with functional connectivity.

Materials and Methods
Graph preliminaries.  A graph is defined as an ordered triple G = (V, E, W), where V denotes the set of nodes 
(or vertices), E  the edges (or connections) between them, and W  the set of edge weights, 

= ∈ | ∈≥W w i j E{ ( , ) }ij
0 , i.e. only nonnegative weights are used. The cardinalities, |V| = n and |E| = m, express 

the total number of nodes and connections respectively. The connectivity pattern of G can be conveniently repre-
sented by an nXn adjacency matrix, A, with its entries denoting the weights between nodes, i.e. Aij = wij. wij = 0 
signals that edges i and j are not adjacent. If wij > 0 then nodes i and j are adjacent; the greater the value of the 
weight the stronger the connection between nodes. In the case of a binary network, the weights and the entries of 
the adjacency matrix can take only two values, 0 or 1; Aij = 1 indicates that nodes i and j are adjacent ((i, j) ∈ E), 
and Aij = 0 that they are not ((i, j) ∉ E). In this paper both binary and weighted graphs are undirected and simple 
(there are no self loops), meaning A is symmetric (Aij = Aji) and zero in its diagonal entries (Akk = 0) respectively. 
The strength of a node j is the sum of the weights from the edges incident to it, and is obtained by summing the 
rows or the columns of the adjacency matrix: = ∑ =s Aj i

n
ij1 . In the case of binary networks, the summation indi-

cates the degree dj of node j.

The graph laplacian matrix.  The graph Laplacian is defined as L = D − A, where D is a diagonal matrix 
having the strengths (or degrees for binary adjacency matrices) of the nodes in its diagonal entries (Dii = si). It 
arises naturally in optimization problems such as graph partitioning26 or nonlinear dimensionality reduction27. It 
also emerges as the discrete analogue of the Laplace-Beltrami operator (∇2f) in the heat flow equation for graphs. 
The normalized graph Laplacian is defined as = − −D LD1/2 1/2 , with =−D 0ii

1/2  for si = 0. Its entries take the 
values:
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We use the normalized graph Laplacian, a more appropriate operator for graphs that are not regular, that is 
graphs with nodes that do not necessarily have the same strength (or degree). This is because the eigenvector of 
the normalized graph Laplacian corresponding to the zero eigenvalue captures the graph irregularity: 
λ = = …v s s0, [ , , ]n

T
0 0 1

28. Thus, throughout the paper, any mention of the Laplacian refers to the normal-
ized version.

The Laplacian is a symmetric positive semidefinite matrix with real values: =ij ji   and  ≥ ∀ ∈z z z0,T n; 
consequently, its eigenvalues are nonnegative and real and its eigenvectors form an orthonormal set. The spectral 
decomposition of the Laplacian matrix is = ΛV VT , where λ λ λΛ = …diag ( , )n0 1  is a diagonal matrix, having 
in its diagonal entries the eigenvalues of  ( λ λ λ= ≤ ≤ … ≤ ≤0 2n0 1 ) and = …V v v v[ ]n0 1  is an nXn matrix 
having as its columns the corresponding orthonormal eigenvectors ( λ=v vi i i).

The eigenvalues and eigenvectors of the Laplacian yield valuable information about the graph they are derived 
from29. The multiplicity of zero indicates the number of connected components in the graph; a single zero eigen-
value corresponds to a connected graph, two zero eigenvalues to a disconnected graph with two components, and 
so on. The second smallest eigenvalue, called the Fiedler value, and the largest one are related to several graph 
properties such as the graph’s connectivity, diameter and convergence to a stationary probability distribution 
for random walks30–33. The values of the Fiedler vector, the eigenvector corresponding to the smallest nonzero 
eigenvalue, can be used to sort nodes so that the ones close to each other belong to the same community, and 
accordingly partition a graph26,34. Nodes are sorted in the same order as the elements of the Fiedler vector in 
figures showing adjacency matrices.

Heat kernel.  The heat equation is a partial differential equation that describes how heat (or another quantity) 
is spatially dissipated over time in a medium. It is defined as:
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where h is a function of n spatial variables x1,…,xn and time variable t. α is a positive constant, representing the 
diffusivity of the medium; the greater the value of α the faster the diffusion. We set it to 1. ∇2 is the Laplacian 
operator, also called the divergence of the gradient.

The heat equation based on the graph Laplacian matrix is similarly describing the variation in the flow of heat 
(or energy or information) within a graph over time:


∂

∂
= −

h t
t

h t( ) ( ) (3)

The heat kernel, h(t), and the graph Laplacian, , are both nXn matrices describing the flow of heat across 
edges and its rate of change respectively. h(τ)ij is the amount of heat transferred from node i to node j after time 
t = τ. The heat equation has an explicit solution:

= −h t e( ) (4)t

As was shown in the previous section,  can be decomposed into its eigen-spectrum. The heat kernel can then 
be written as:
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The dynamics for which diffusion spreads in the graph are based on the eigenvalue/eigenvector pairs of the 
Laplacian matrix. In the summation the contribution of each pair is not the same, but depends on the magnitude 
of the eigenvalue. For a connected graph, when t is close to zero then ≈ −h t I t( ) . In this case, diffusion is 
dominated by local connections. In contrast, for large t values, the heat kernel can be approximated by the contri-
bution of the eigenvalue/eigenvector pairs with the smallest eigenvalues. For large t, the global structure is 
favored35. S1 Appendix gives some more intuition on the heat kernel. During an adaptive rewiring process -we 
discuss subsequently- t has a fixed value (t = τ); we refer to it as the rewiring rate (τ). τ is used at each nonrandom 
iteration and signifies the time elapsed during the diffusion process before a decision is made on which edge to 
add and which to remove.

Adaptive rewiring algorithm.  With the adaptive rewiring algorithm employed in this paper, we seek to 
probe the effects that a simple self-organizing rule will have on the properties of an initially randomly connected 
network. The algorithm below is the same as the one in Jarman and colleagues11, extended to both binary and 
weighted networks. An equivalent definition that is in direct correspondence with the code implementation is 
also described in S2 Appendix.

We formulate the algorithm as a rewiring process embedded within a dynamical system evolving over time. 
We start with a random Erdös–Rényi network with |V| = n nodes. At each rewiring iteration we select, with uni-
form random probability, a node, k from the set of nodes in the graph that are of nonzero degree but also not 
connected to all other nodes ∈ < < −k V d n( 0 1)k . Then we select node j1 from the set of nodes that are not 
connected to k, ∈ ∈ ∉j j V j k E( { ( , ) })1 , and node j2 from the set of nodes that are connected to k, 

∈ ∈ | ∈j j V j k E( { ( , ) })2 . We delete the edge, (k, j2) and add the edge (k, j1). In the case of weighted networks we 
use the weight of the previously connected edge (k, j2) for the edge (k, j1). The selection of nodes j1 and j2 is differ-
ent for the random and heat diffusion based rewirings. In the case of random rewirings the selection of both j1 and 
j2 is random and uniform among the elements of each set described above. In the case of heat diffusion rewiring 
we calculate the heat kernel, h(τ), of the adjacency matrix. j1 is selected such that from all the nodes not connected 
to k, it is the one with the highest heat transfer with k. j2 is selected such that from all the nodes connected to k, it 
is the one with the lowest heat transfer with k.

The whole iteration of rewirings is defined as follows: Heat diffusion based rewiring takes place at times t1 = τ, 
t2 = 2τ,…, tΝ = Mτ, with M being the total number of this kind of rewirings. In addition, random rewirings are 
interspersed in between the heat diffusion rewirings. Whereas heat diffusion-based rewirings need evidence for a 
rewiring decision to accumulate over duration τ, this is not the case for random rewirings. Thus we assume ran-
dom rewirings are approximately instantaneous compared to the heat based rewirings and do not assign them any 
time duration. At time t = 0 the heat kernel is initialized to the identity matrix: h(0) = I. With probability prandom 
the rewiring is random; with probability 1- prandom the rewiring is based on heat diffusion in the network; for both 
cases the criteria are explained above. At the onset of the nth instantiation of the heat diffusion rewiring, the heat 
kernel is reset to h(0) = I and then heat diffusion evolves in the network for a duration of tn − tn-1 = τ; a rewiring is 
made based on the state of h(τ). We repeat until we reach the total number of preset rewirings.

The rewiring rate, τ, is controlling how long the diffusion process lasts until a decision is made and is con-
stant throughout the rewiring process. Small τ values affect mostly node pairs with direct connections since the 
diffusion process does not have enough time to integrate along the network before a rewiring is made. However 
for longer τ values, node pairs that are not directly connected also gain significance since diffusion spreads more 
globally.

Simulations and analyses were performed on 100-node networks (average degree was 18.24). Normally dis-
tributed weights were sampled from the probability density function of the normal distribution:
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with μ = 1 and σ = 0.25. Negative values sampled from this density function were rare, but when encountered 
were set to zero. Lognormally distributed weights were sampled from the probability density function of the 
lognormal distribution:
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with μ = 0 and σ = 1. For both distributions the weights were divided by the maximum weight of the network so 
that the values are between 0 and 1. Different parameters and normalizations were tested without any significant 
differences in the results.

Unless otherwise stated the number of nodes, n, in our analysis was 100 and the number of connections was 
m = ⌊2 log(n)(n − 1)⌋ = 912, which is twice the critical density of a random Erdös–Rényi graph for which it is 
connected with probability 136. Most simulations vary two parameters from the rewiring algorithm: prandom and 
τ. For each combination of parameter values, we run the rewiring algorithm 100 times. Each run involves 4000 
rewirings, since by then networks typically have diverged from a random connectivity pattern. We also examined 
the rewiring algorithm’s behavior for approximately asymptotic τ values; for the sake of convenience we denote 
them ε = 10−15 and δ = 1015. Unless otherwise stated, the figures show mean values of these 100 runs. Figure 1 
shows an example evolution of a network at progressive stages of rewiring.

The network before rewiring is randomly connected. The weights of the connections are normally distributed. 
The rewiring parameters throughout ((τ, prandom) = (3, 0.2)) give rise to a modular network. The networks are 
shown in the form of adjacency matrices; the color scaling indicates the weights of the connections.

Description of the different metrics (clustering coefficient, efficiency, small-worldness, modularity, assorta-
tivity coefficient and rich club coefficient for binary and weighted networks) is found in S3 Appendix. Unless 
otherwise stated, the analyses were programmed in Python. The code package of the functions producing the 
rewired adjacency matrices, as well as the metrics described in Supplementary Materials are publicly available in a 
GitHub repository (https://github.com/rentzi/netRewireAnalyze). The interested reader can run the whole gamut 
of simulations in the jupyter notebooks included in the toolbox package.

Results
We divide this section into different subsections according to the metrics provided. First, we show that, similarly 
to binary networks, both normally and lognormally weighted networks evolve to have small world structures 
for a wide range of prandom and τ values. Networks with identical small world values can have diverging topo-
logical structures depending on the value of τ. The modularity index and a degree outlier measure differentiate 
between these topologies. Using these metrics we show that, typically for small τ values, all types of networks 
evolve to have densely clustered, modular structure, while for larger τ values they have a centralized connectivity 
pattern, where only a small subset of the nodes acts as the network backbone. For a narrow range of τ values in 
between the ones producing modular and centralized connectivity patterns, rewired networks show great var-
iability in their connectivity structures, ranging from modular to centralized. Finally, networks in the modular 
and in-between states have distinct topological and weighted rich club behavior similarly to what is observed in 
empirical studies of the human brain.

Small-worldness.  Small-worldness (S) is observed for all networks following rewiring, albeit with 
non-identical profiles across the system parameters τ and prandom (Fig. 2A). S increases more steeply as a func-
tion of τ for binary networks than for normal and lognormal ones, the latter showing the most gradual increase 
(Fig. 2B). For τ = τplateau (different for each of the three weighting regimes), S reaches a maximum value, Smax, 
henceforth sustaining it. Smax decreases significantly for prandom > 0.4. (Fig. 2B) since the increased random rewir-
ing partially cancels out the clustering created by diffusion.

Small worldness is traditionally defined as the ratio of the network’s clustering coefficient (C) over its path 
length (L). For our purposes, we use efficiency (E) instead of L. E which is the inverse of L, indicates the ease of 
flow of information between edges and is a more natural metric for weighted connections: the larger the weight of 
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Figure 1.  Example of an initially random network at progressive stages of rewiring.
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an edge the greater the flow and the more efficient the paths that include that edge. In this context S is equal to the 
product of E and C (Eq. 8 in S3 Appendix). An increase in a network’s clustering coefficient or efficiency induces by 
definition an increase in its small worldness. We probed the dynamics of C and E that drove up the small worldness 
of the networks. We found that along τ, S shows a strong positive correlation with C (ρbinary = 0.91, ρnormal = 0.96, 
ρlognormal = 0.97; ρ = Pearson coefficient) and a moderately negative one with E (ρbinary = −0.42, ρnormal = −0.52,  
ρlognormal = −0.31). In the Watts and Strogatz model37, the authors start with a structured network and paramet-
rically swap the connections constituting the structure (the ones where neighboring nodes are connected) with 
random ones. This induces a significant decrease in L but a more moderate one in C, resulting in an increase in 
the small worldness of the network following rewiring. Our model uses the reverse process, in which rewiring 
induces a random network configuration to morph into a more structured one, and thus becoming small world 
due to an increase in C (S4 Appendix describes in more detail the dynamics of C and E).

Modularity.  Small worldness characterizes networks with widely diverging topological qualities38. For exam-
ple, both of the adjacency matrices in Fig. 3 have the same S value. However, the one in Fig. 3A consists of clusters 
with dense intragroup and sparse intergroup connections. This characterizes modular connectivity patterns. On 
the other hand, the one in Fig. 3B comprises of a small number of nodes that are heavily connected, acting as 
hubs with the rest having very few connections. This is a feature of centralized topologies. Newman’s39 modularity 
index (Q) differentiates between the two networks of Fig. 3 (Q: 0.70 vs. 0.22 for Fig. 3A,B respectively).

To identify the clusters or modules, we use the spectral algorithm introduced by Newman39 (S3 Appendix). 
In the case of the weighted networks we used the strengths instead of the degrees of the modularity matrix the 
algorithm aims to optimize (Eq. S9). Binary, normally and lognormally weighted networks develop modularity 
as a function of τ and prandom in a similar fashion (Fig. 4A). Generally, Q initially increases as a function of τ, 
reaching a plateau, but eventually drops off to a value close to that of a random network (τ = 0) (Fig. 4B). Binary 
networks reach their maximum Q faster (τ = 10−15) compared to normal (τ = 2), and lognormal networks (τ = 4) 
(Fig. 4B). This is directly related to the behavior of h(τ) for different weighted regimes (S1 Appendix). In the case 
of binary networks, heat from each node spreads to its neighbors the fastest (smallest τ value). This effects in the 
creation of clusters after a number of iterations and subsequently in networks with high Q values. For normal 
and lognormal networks the τ values that are critical for h(τ) to induce clusterings are greater. For larger τ values 
(slower rewiring rate) heat is diffused throughtout the nodes almost homogeneously, effectively breaking down 
modularity (example in Fig. S1, h(τ = 10)).

Furthermore, the binary networks sustain the maximum Q value for a greater range of τ values compared 
to the two weighted regimes, with the lognormal networks having the smallest range. For all networks, random 
rewiring diminishes the maximum Q value, with the binary networks being the most resistant and the lognormal 
ones the most exposed to this effect (Fig. 4B). The pattern of results presented here were identical with the ones 
from a multilevel algorithm40 implemented by the igraph toolbox41 (compare Fig. S4 with Fig. 4A).

Figure 2.  Networks with binary, normal and lognormal weight distributions develop into small worlds. (A) 
From left to right, small world values (S) for networks with binary, normal and lognormal weight distributions 
for different rewiring rates (τ) and random rewiring probabilities (prandom). ε = 10−15, δ = 1015. (B) S as a function 
of τ for different values of prandom. The s.e.m lines are not visible since they do not exceed the markers.
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Degree and strength distributions of modular and centralized networks.  For a fixed number 
of total connections, centralized networks can be distinguished from modular ones according to the number 
of nodes with degrees deviating significantly from the mean. Centralized networks have a small number of 
high-degree nodes acting as hubs and, correspondingly, a large number of nodes with low degree. Both of these 
groups constitute outliers in the connectivity distribution. Hence, the proportion of outliers characterizes the 
centralization in the network. Degrees in the vicinity of the mean were established as <k> ± 3σκ, where <k> is 
the mean degree of the network and σκ its dispersion. We used the Poisson distribution with mean <k> to calcu-
late the value of the dispersion parameter (σκ = <k>1/2). A Poisson distribution is a suitable baseline distribution 
since random networks by virtue of their construction have most node degrees close to the mean and are well 
approximated by it. We probed how the proportion of outliers changes with τ, and which range of τ gives rise to 
centralized networks. We found that the proportion of outliers in networks as a function of τ follows a sigmoid 
function, with binary and normal networks having almost identical values but lognormal ones having a more 
gradual transition (Fig. 5A).

Both the modularity and outlier analyses are in accord with each other: the range of τ values for which the 
networks have a small number of outliers includes the τ values for which the Q value is at its highest (it also 
includes τ values close to zero for which the Q value is small where the network is in a state starting to deviate 
from randomness but not quite reaching a definite structure). For τ values greater than this modular range, net-
works qualify as centralized according to our outliers criterion. Modular and centralized networks have different 
degree distributions, the former’s being concentrated around the mean (Fig. 5B) and the latter’s having a large 
spread with a heavy tail (Fig. 5C). The τ values giving rise to the distributions in Fig. 5B,C are typical for modular 
and centralized topologies respectively. Furthermore, weighted networks show the same degree and strength 
distributions (Fig. 5B,C, inset plots).

We probed the heavy tail degree and strength distributions of representative centralized networks (τbinary = 5, 
τnormal = 5, τlognormal = 7, in all cases prandom = 0.2). The power-law and lognormal distributions were a better fit 
than the exponential one (Fig. S3). Power law distribution functions are of the form P(k) ~ k−α. For the degree 
distributions the exponent α that fitted best the data was 1.7, for the strength distributions it varied between 2 and 
2.6 for the different types of networks (S5 Appendix has a detailed description of the analysis). Note that this anal-
ysis shows that power law is a better fit than the exponential distribution, not necessarily that diffusion rewiring 
can generate scale-free networks. We used publicly available code for this analysis42.

Assortativity and rich club structure.  We probed the possibility that the rewiring process favors homo-
phily by measuring the topological assortativity coefficient, r. Networks with positive r are assortative, meaning 
that nodes with similar degrees tend to connect. Networks with negative r are disassortative. In this case nodes 
with dissimilar degrees are more prone to connect compared to a randomly connected network with the same 
degree distribution. We found that for modular networks, r shows weak or zero assortativity; centralized net-
works dip into the disassortative realm (Fig. S5).

We further measured the rich club metrics of the networks. Topological rich club, Φ(k), refers to the tendency 
of typically high degree nodes to connect with each other; when its normalized counterpart, Φnorm(k), is above 
the baseline (greater than 1), then the subset of nodes with degree greater than k is more densely interconnected 
compared to Φrandom(k), a random control with the same degree distribution. The rich club coefficient is not triv-
ially connected to assortativity, since a disassortative network could still be rich club and vice versa43. We tested 
the rich club metrics for τ values that produce modular and centralized connectivity patterns. We also tested the 
rich club behavior of networks produced from τ values in the middle of the phase transition from modular to 
centralized networks (τtransition). This τtransition point is the one that gives the largest derivative value on each of the 

0
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0.4

0.6

0.8

1A B

Figure 3.  Networks can have the same small world value but diverging connectivity pattern. (A) Example of a 
modular network (τ = 3) where nodes within clusters are densely intraconnected but sparsely interconnected 
between clusters. (B) Example of a centralized network (τ = 5) where there is a degree imbalance between 
nodes, with the vast majority of the nodes having very few connections and the rest being heavily connected, 
acting as hubs. Both networks have the same small world value (S = 3.4) despite their different topological 
characteristics. In both cases prandom is 0.2 and the weight distribution is normal. The color scaling indicates the 
weights of the connections.
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sigmoid curves in Fig. 5A (inflection point). In all cases, τtransition gives rise to networks with the highest variability 
of network topologies compared to all the other τ values, varying from modular to centralized ones.

By definition, the number of nodes in a rich club as a function of degree threshold is monotonically decreas-
ing. We found that the decrease profiles are similar for binary and weighted networks, but varied in their rate 
across different τ values with modular networks showing the steepest rate of decrease, centralized the most 
gradual one and transition an intermediate one (Fig. S6). Typically, for all τ values tested, Φ(k) is greater than 

Figure 4.  Modularity profiles between networks with binary, normal and lognormal weight distributions have 
similar shape. (A) From left to right, Modularity index Q for networks with binary, normal and lognormal 
weight distributions for different values of the system parameters τ and prandom. (B) Q as a function of τ for 
different prandom. The s.e.m. lines do not exceed the markers.
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Figure 5.  Degree distribution for modular networks is close to the mean value; for centralized networks it is 
heavy tailed. (A) Proportion of nodes with outlier degrees as a function of τ for binary, normal and lognormal 
networks. The s.e.m. lines do not exceed the markers. (B) From left to right, the distribution of degrees for 
binary, normal and lognormal networks (τbinary = 2, τnormal = 3, τlognormal = 4.5) which are modular. Inset 
plots show the strength distributions. C. Same as in B, but for centralized networks (τbinary = 5, τnormal = 5, 
τlognormal = 7). In all cases prandom = 0.2.
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Φrandom(k) for a range of intermediate degree thresholds, with transition networks showing the widest range of 
degree thresholds for which this difference is significant and centralized networks the narrowest one (Fig. S7). The 
greatest divergence between Φ(k) and Φrandom(k) indicated by their ratio (Φnorm(k)) is shown for binary modular 
networks and for both modular and transition weighted networks (Fig. 6).

For normal and lognormal networks, we evaluated the normalized weighted rich club coefficient, Φw,norm(k). 
Φw,norm(k) above the baseline indicates that the edges of the rich club nodes have larger weights compared to a 
random control network (a network with the same topology but randomly reshuffled weights). We found that for 
the lognormal networks Φw,norm(k) did not deviate from 1; for the normal networks, Φw,norm(k) similarly hovered 
around 1 in the modular and centralized regimes. Hence for these states the rewiring process does not distribute 
the larger weights preferentially to the high degree nodes. In general the data show that there is a distinction 
between the topological and weighted measures; the former being above baseline for a range of degrees, but not 
the latter. For normally distributed networks, this distinction becomes more pronounced in the transition zone, 
where Φw,norm(k) tilts below baseline for nodes with larger degrees (k > 20) (Fig. 7).

Taken together, these topological and weighted coefficient profiles are in agreement with anatomical data on 
the human brain. Specifically, van den Heuvel and colleagues25 mapped human brain structural connectivity by 
estimating via diffusion tensor imaging (DTI) the number of connecting white matter streamlines between 1,170 
subdivisions of the cortex. In a subsequent analysis of the same data, based on topology the human network exhibits 
rich club behavior, but its weighted counterpart does not (Fig. S8; reproduced from 24), exhibiting the same qualitative 
properties as the normal –and the lognormal to a lesser extent- network at τtransition (compare Fig. 7 to Fig. S8).

Figure 6.  Weighted networks show the most prominent topological rich club for rewiring rates in the modular 
and transition ranges, binary networks only in the modular range. Topological normalized rich club, Φnorm(k), 
for binary, normal and lognormal networks in the (A) modular (τbinary = 2, τnormal = 3, τlognormal = 4.5) (B) 
transition (τbinary = 4.1, τnormal = 4.15, τlognormal = 5.5) and (C) centralized (τbinary = 5, τnormal = 5, τlognormal = 7) 
state. In all cases prandom = 0.2. Vertical lines indicate s.e.m.

Figure 7.  Topological and weighted rich club coefficients diverge similarly to physiological data. Topological 
and weighted rich club coefficient for the normal network at τtransition = 4.15, prandom = 0.2. Vertical lines indicate 
s.e.m.
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Discussion
Graph diffusion and other rewiring models.  Adaptive rewiring robustly drives random binary networks 
to complex architectures matching brain anatomy on the key characteristics of small world structure, modular 
and centralized topology. A test of generality for adaptive rewiring is whether it can drive networks to brain-like 
architectures with differentially weighted connections. Our first observation is that the adaptive rewiring model 
passes this test.

In previous adaptive rewiring models, functional connectivity was represented as synchronous activ-
ity9,10,12,13,21,44,45 of linearly coupled nonlinear oscillators46 or, somewhat more realistically, by spiking model neu-
ron synchrony47,48. While these representations more closely resemble artificial neural networks than the current 
graph diffusion model, their shortcomings are twofold. They rely on arbitrary functional connectivity dynamics, 
whereas a representation in terms of diffusion is empirically adequate19. Moreover, rewiring in the older models 
involved a global search for the best (i.e. most synchronized) rewiring target. Even though this problem was rem-
edied in Jarman and colleagues44 by taking rewiring distance into account, this introduced arbitrary assumptions 
about the spatial embedding of these networks. Jarman and colleagues11 developed the graph-based solution to 
this problem adopted here, based on the speed of rewiring relative to that of the heat diffusion (τ). The lower τ is, 
the faster the rewiring, and hence the narrower the network search for the best rewiring candidate; higher τ values 
offer slower rewiring rates, allowing the search to be incrementally broader. The possibility to choose an appro-
priate value for τ offers a natural control parameter to determine whether the resulting network structure tends 
to be modular or centralized. In biological systems, this choice may reflect global homeostatic forms of plasticity 
regulating the network’s dynamicsfor a review 20.

The current graph diffusion model offers an explanation on the topological structure of the brain just with 
a single parameter, τ (since for a wide range of prandom we get the same connectivity characteristics). We believe 
that by introducing more parameters we would have given the impression of a more realistic network but our 
results would have been of lesser value since we would have been able to fit divergent patterns solely by fine tuning 
within a large parameter space. Naturally, our model uses certain simplifying assumptions. The Laplacian oper-
ator implies that the dynamic system is conservative and that the diffusion is also perfectly symmetric. However 
the brain is not a symmetric system, there is a directionality of the flow. Furthermore, the leakage rate along each 
neuron or brain region is not perfectly balanced with the flow it receives. Future studies will need to relax and test 
the assumptions imposed by the model.

Graph diffusion and small worldness.  For a wide range of species from C. elegans to humans, neuronal 
connections have been shown to form small world networks, with small path length and high clustering coeffi-
cient2,37,49. Adaptive rewiring based on diffusion when driven by the network’s own functional connectivity, leads 
to similar small world structure. Networks evolve to small worlds for a wide range of rewiring rates and random 
rewiring probabilities (Fig. 2). This is by and large because diffusion shapes the initial random network into a 
more structured connectivity pattern with high clustering coefficient while at the same time it maintains high 
efficiency-or else small path length (Fig. S2).

Adaptive rewiring based on diffusion is an abstraction of the consequences of Hebbian learning, where con-
nections with heavy traffic are strengthened whereas the ones with less activity are weakened or pruned. Hebbian 
processes may lead to changes in the connectivity pattern of higher cognitive regions throughout childhood and 
adolescence. For example, using resting state functional connectivity MRI on children and adults, Fair and col-
leagues showed that with age, short-range functional connections between regions that are involved in top-down 
control regress whereas some long-range functional connections develop or increase in strength50. This process 
leads the connectome of the regions involved mostly in higher cognitive functions to have a small world structure51.

Rewiring rate and network topology.  Even though small-worldness is a key property of biological sys-
tems, these systems may have diverging topologies because of differentially weighted trade-offs between multiple 
constraints52. Diffusion-based models show topological variety across the range of the rewiring rate parameter τ. 
Across a wide range of rewiring rates, adaptive rewiring leads to approximately the same small world values, but 
different topological structures (Fig. 3). For smaller τ values (faster rewiring rate) the emerging network is modu-
lar (Fig. 4), with dense connectivity within clusters but sparse between them. For larger τ values (slower rewiring 
rate), we obtain centralized topologies where a subset of nodes are acting as hubs (Fig. 5C). Both of these patterns 
are present in the brain. Clustered neuronal modules facilitate local computations, an example being cortical 
minicolumns, the highly structured functional patterns in the sensory cortex. Neurons within a minicolumn and 
typically across the layers are densely connected, but tangential ones, across the layers to other minicolumns are 
sparsely connected53. On the other hand, centralized connectivity patterns resemble brain modules that receive 
and integrate a distributed set of neural inputs, for example the different association areas in the cortex7,54.

In the centralized regime, all types of networks show a similar degree distribution that is approximated by a power 
law distribution with an exponent of 1.7, for both binary and weighted networks (Fig. S3). Diffusion tractography55 and 
fMRI methods56 have shown a degree distribution between cortical and subcortical regions that follow an exponentially 
truncated power law with exponents of 1.66 and 1.80 respectively. Brain functional connectivity inferred from fMRI in 
different tasks shows a scale free distribution with a power law exponent of 257. Given the simplicity of our model, we 
consider it to provide a surprisingly good approximation to the empirically observed degree distributions.

Rich club structure.  Brain networks at different levels and for different species have been shown to be topo-
logically rich club25,58,59, that is, regions or neurons acting as hubs are also preferentially connected among them-
selves. Rich club connections in the brain constitute its backbone, communicating information from diverse 
functional modules. Empirical evidence has indicated that rich club connections extend over long distances form-
ing a high capacity structure that facilitates global communication25.
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We found that the nodes of both the normal and lognormal networks show topological rich club behavior for 
fast rewiring rates, but also for rewiring rates in the transition range and to a much lesser degree for slow rewiring 
rates (Fig. 6). Their corresponding weighted rich club index, which measures to what extent larger weights are 
attached to the connections within the rich club, was either at or below baseline (Fig. 7). This interesting contrast 
between topological and weighted rich clubs is in line with physiological data on the human brain (Fig. S8)24,25.

Conclusion
The brain is responding continuously to a changing environment by strengthening or adding new connections 
and weakening or pruning existing ones. We tested whether an abstract rewiring model acting on weighted net-
works can reproduce graph properties found in the brain. Indeed, the model adaptively rewires an initially ran-
domly connected network into a more structured one, with properties akin to the human brain such as small 
worldness and rich club structure. The adaptive changes made to the network follow heat diffusion, an abstract 
representation of brain functional connectivity. Moreover, depending on a parameter of the model, the rewiring 
rate, either modular or centralized connectivity patterns emerge, both found across different regions of the brain. 
For a narrow range of intermediate rewiring rates, the transition range, networks develop a full range from mod-
ular to centralized connectivity patterns. Weighted networks following rewiring in the modular and transition 
range are topologically rich club for a range of degrees, however the larger weights do not preferentially cluster 
in the rich club network. This combination of results has been shown in physiological studies. Overall, we show 
that rewiring based on heat diffusion is a parsimonious model suitable for representing the plastic changes taking 
place in the differentially weighted connections of the human brain.
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