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Chronic kidney disease is a common disease closely related to renal tubular inflammation and oxidative stress, and no effective
treatment is available. Activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)
inflammasome is an important factor in renal inflammation, but the mechanism remains unclear. Micheliolide (MCL), which is
derived from parthenolide, is a new compound with antioxidative and anti-inflammatory effects and has multiple roles in tumors
and inflammatory diseases. In this study, we investigated the effect of MCL on lipopolysaccharide- (LPS-) induced inflammation in
renal tubular cells and the related mechanism. We found that MCL significantly suppressed the LPS-induced NF-κB signaling and
inflammatory expression of cytokines, such as tumor necrosis factor-α and monocyte chemoattractant protein-1 in a rat renal
proximal tubular cell line (NRK-52E). MCL also prevented LPS- and adenosine triphosphate-induced NLRP3 inflammasome
activation in vitro, as evidenced by the inhibition of NLRP3 expression, caspase-1 cleavage, and interleukin-1β and interleukin-18
maturation and secretion. Additionally, MCL inhibited the reduction of mitochondrial membrane potential and decreases the
release of reactive oxygen species (ROS). Moreover, MCL can prevent NLRP3 inflammasome activation induced by rotenone, a
well-known mitochondrial ROS (mROS) agonist, indicating that the mechanism of MCL’s anti-inflammatory effect may be closely
related to the mROS. In conclusion, our study indicates that MCL can inhibit LPS-induced renal inflammation through
suppressing the mROS/NF-κB/NLRP3 axis in tubular epithelial cells.

1. Introduction

Tubular inflammation plays a central role in the loss of
renal function in chronic kidney disease (CKD) [1, 2].
Renal tubules are the main component of the kidney and
are vulnerable to various injuries, such as hypoxia,
proteinuria, toxins, metabolic disorders, and aging [2].
Proinflammatory cytokines such as interleukin- (IL-) 1β,
IL-18, tumor necrosis factor-α (TNF-α), and chemokines,
including monocyte chemoattractant protein-1 (MCP-1),

and reactive oxygen species (ROS) are involved in the
occurrence and progression of tubular inflammation [2–
4]. Mounting evidence shows that the nucleotide-binding
oligomerization domain-like receptor protein 3 (NLRP3)
inflammasome promotes renal inflammation and contrib-
utes to CKD [5].

The NLRP3 inflammasome is a multiprotein complex
composed of NLRP3, the adaptor protein apoptosis-
associated speck-like protein, and effector cysteine prote-
ase caspase-1 [6]. NLRP3 recognizes pathogen-associated
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molecular patterns (PAMPs), such as lipopolysaccharide
(LPS) or peptidoglycan, and damage-associated molecular
patterns from cells or tissues, such as adenosine triphos-
phate (ATP). Under the action of agonists, such as bacteria
[7], viruses [8], ROS [9], monosodium urate [10], and albumin
[11], NLRP3 recruits the adaptor protein apoptosis-associated
speck-like protein and caspase-1 to form the macromolecular
inflammasome complex. Studies have shown that mitochon-
drial reactive oxygen species (mROS), mainly derived from
mitochondrial oxidative phosphorylation electron leakage,
are essential for the activation of the NLRP3 inflammasome
[6]. The activated NLRP3 inflammasome cleaves procaspase-
1 into enzymatically active caspase-1, which promotes themat-
uration and secretion of IL-1β and IL-18 and results in an
inflammatory response [12]. The NLRP3 inflammasome is
activated in various kidney diseases, including obstructive
nephropathy, diabetic kidney disease, lupus nephritis, IgA
nephropathy, minimal change disease, membranous
nephropathy, focal segmental glomerulosclerosis, and cres-
centic glomerulonephritis [5, 13, 14]. Gu et al. found that
NLRP3 inflammasome activation was also involved in
hyperuricemia-induced renal inflammation, albuminuria,
and fibrosis [15, 16]. Therefore, pharmacological inhibitors
of the NLRP3 inflammasome have a potential therapeutic
value for treating tubular inflammation.

As a novel guaianolide sesquiterpene lactone semisynthe-
sized from the well-known NF-κB inhibitor parthenolide
(PTL), micheliolide (MCL, Figure 1(a)) exhibits higher
stability, lower toxicity, and a longer half-life compared to
PTL. Moreover, MCL has been demonstrated to have anti-
inflammatory [17, 18], antifibrotic [19, 20], and anticancer
[21, 22] effects. Dimethylaminomicheliolide (DMAMCL,
i.e., ACT001), the prodrug of MCL, has better water solubil-
ity and exerts its therapeutic effects by releasing MCL slowly
but consistently in the plasma and in tissues [23]. Most nota-
bly, DMAMCL is currently regarded as a potential drug since
it has been approved for clinical trials to treat glioblastoma
multiforme in Australia (trial ID: ACTRN12616000228482)
and China (trial ID: CTR20171274). However, the role of
MCL in the activation of the NLRP3 inflammasome in renal
tubular inflammation and the related mechanism remain
unclear. In this study, we investigated the protective effect
of MCL on LPS-induced inflammation in renal tubular epi-
thelial cells and further investigated the potential mechanism
of MCL in renal inflammation.

2. Materials and Methods

2.1. Cell Culture and Treatments.A rat renal proximal tubular
cell line (NRK-52E) was kindly provided byXiao-li Nie, a pro-
fessor of School of Traditional Chinese Medicine, Southern
Medical University. The cells were cultured at 37°C with 5%
CO2 in DMEM/basic medium (Gibco BRL, USA) supple-
mented with 10% fetal bovine serum (Gibco BRL, USA) and
1% penicillin/streptomycin (Gibco BRL, USA). To investigate
LPS-induced renal inflammation in NRK-52E cells, cells were
stimulated with 5μg/mL LPS (L4391, Sigma) for 3 h and total
protein or RNA was extracted. Besides, to investigate the
levels of inflammatory cytokine secretion in the supernatant

through an enzyme-linked immunosorbent assay experiment,
cells were treatedwith 5μg/mLLPS for 24 h. To investigate the
anti-inflammatory effect ofMCL in vitro, cells were pretreated
with different concentrations of MCL (1.25μM, 2.5μM, and
5μM) (Accendatech Co., Ltd., Tianjin, China) for 48h and
then incubated with LPS. To induce NLRP3 inflammasome
activation, cells were incubated with LPS and then with
3mM ATP (S1985, Selleck, USA) for 1 h before the cells were
extracted. In some experiments, cells were treated with 1μM
mitoquinone (MitoQ) (MedChemExpress) for 24 h or 1μM
rotenone (MedChemExpress) for 24h.

2.2. Cytotoxicity Assay. An MTT assay was used to detect the
cytotoxicity of MCL towards NRK-52E cells. Upon reaching
60%-70% confluence, cells were incubated with different con-
centrations of MCL (0μM, 1μM, 1.25μM, 2.5μM, 5μM,
10μM, and 20μM) for 48 h. Then, 20μL per well of MTT
(5mg/mL, Sigma-Aldrich, St. Louis, MO, USA) was added
for 4 h in the cell culture incubator. After the culture super-
natant was aspirated from each well, 150μL per well of
dimethyl sulfoxide was added and incubated for 10min at
room temperature. The absorbance was measured with a
microplate reader at a wavelength of 490 nm.

2.3. Western Blotting. Whole-cell lysates of NRK-52E cells
were prepared using NP40 cell lysis buffer (Beyotime Insti-
tute of Biotechnology), and protein concentrations were
quantified using a protein assay kit (Thermo Fisher Scien-
tific, Waltham, MA, USA). Cytoplasmic and nuclear
proteins were extracted with the Nuclear/Cytoplasmic Pro-
tein Extraction Kit (ComWin Biotech, Beijing, China). Pro-
tein samples were separated by electrophoresis on 12%
SDS-PAGE and transferred to PVDF membranes (Milli-
pore). The membranes were blocked with 5% nonfat dry
milk in TBST for 1 h at room temperature and incubated
overnight at 4°C with the following primary antibodies:
anti-NLRP3 (1 : 500, BIOSS), anti-MCP-1 (1 : 1000, BOS-
TER), anti-TNF-α (1 : 1,000, BIOSS), anti-IL-1β (1 : 500,
BIOSS), anti-CASP1 (P10, BOSTER), anti-IL-18 (1 : 500,
BIOSS), anti-p65 (1 : 1000, Cell Signaling Technologies),
anti-PCNA (1 : 500, Wanleibio), anti-β-actin (1 : 5000,
EarthOx), and anti-α-tubulin (1 : 5000, Beijing Ray Anti-
body Biotech). The washed membranes were then
incubated with matched HRP-conjugated rabbit or mouse
secondary antibodies (1 : 5000, EarthOx) for 1 h at room
temperature and visualized with ECL plus western blotting
detection reagents (Millipore). The relative expression of
each protein was normalized to the internal control protein
β-actin or α-tubulin. Protein band densities were quantified
with Photoshop CS5 software (Adobe System Inc.).

2.4. Quantitative Real-Time PCR Analysis (qPCR). Total RNAs
were extracted from the cells using the TRIzol reagent
(TransGen Biotech, Beijing, China). A total of 1μg RNA
was used to synthesize cDNA, which was used as a template
for PCR by the use of a SYBR Green Master Mix kit (Takara
Biotechnology, Shiga, Japan) according to the manufac-
turer’s protocol. Primers were shown as follows: TNF-α:
forward primer: 5′-ATGGGCTCCCTCTCATCAGTTCC-
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3′ and reverse primer: 5′-GCTCCTCCGCTTGGTGGTT
TG-3′, MCP-1: forward primer: 5′-CAGCCCAGAAA
CCAGCCAACTC-3′ and reverse primer: 5′-CAACAG
GCCCAGAAGCGTGAC-3′, IL-1β: forward primer:
CTCACAGCAGCATCTCGACAAGAG and reverse
primer: TCCACGGGCAAGACATAGGTAGC, and β-
actin: forward primer: 5′-GTGACGTTGACATCCGTAA
AGA-3′ and reverse primer: 5′-GCCGGACTCATCGTAC
TCC-3′. To quantify the expression of target genes, β-
actin was used as an internal reference. The results were
calculated by the 2-ΔΔCt method.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA). The
supernatant of cultured cells was collected, and the levels of
MCP-1 (CSB-E07429r, Cusabio) and TNF-α (KRC3011,
Invitrogen) and IL-18 (EK0592, BOSTER) were determined
with an ELISA kit according to the manufacturer’s protocols.
The photometric measurements were performed at 450 nm
using a microplate reader.

2.6. Determination of Intracellular ROS by Flow Cytometry.
The level of intracellular ROS was measured with a ROS
Assay Kit (S0033, Beyotime Institute of Biotechnology).
The oxidant-sensitive fluorescent probe 2′,7′-dichloro-
fluorescein diacetate (DCFH-DA) diffuses easily into cells
and is deacetylated to form nonfluorescent 2′,7′-dichlor-
ofluorescein (DCFH), which reacts with ROS to form the
highly fluorescent 2′,7′-dichlorofluorescein (DCF). After
treatment with LPS and different concentrations of MCL,
the cells were trypsinized and collected in ice-cold PBS.

Cells were then incubated with 10μM DCFH-DA at
37°C for 20min. Cells were collected by centrifugation,
washed, and resuspended in PBS. The intracellular ROS,
as indicated by DCF fluorescence intensity, was measured
with a flow cytometer.

2.7. Measurement Analysis of Mitochondrial Membrane
Potential (MMP). The MMP of NRK-52E cells was measured
using an MMP assay kit with JC-1 (5,5′,6′,6-tetrachloro-1,1′
,3,3′-tetraethylbenzimidazolcarbocyanine iodide; C2006;
Beyotime Institute of Biotechnology), a cationic stain accu-
mulating on mitochondrial membrane yielding red fluores-
cence in healthy mitochondria whereas it displayed green
fluorescence in depolarized or damaged mitochondria. The
kit provides carbonyl cyanide 3-chlorophenylhydrazone
(CCCP) as a positive control for inducing a decrease in
MMP. The experimental operation was carried out according
to the manufacturer’s instructions. Briefly, cells were pre-
treated with 5μM MCL for 48 h and incubated with LPS for
3 h. Then, the cells were incubated with JC-1 dye at 37°C for
20min. After aspirating the supernatant and washing, the cell
culture medium was added, and the fluorescence was mea-
sured using a fluorescence microscope (Leica). The red/green
fluorescence intensity ratio was used to express the change in
mitochondrial membrane potential.

2.8. Statistical Analysis. All the data are presented as the
mean ± SEM of at least three independent experiments. Sta-
tistical analyses were performed with one-way ANOVA
using SPSS for Windows version 20 (SPSS, Chicago, IL,
USA). P < 0:05 was considered significant.
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Figure 1: Molecular structure of MCL and its cytotoxicity. (a) Schematic diagram of DMAMCL synthesis from PTL and the mechanism of
sustainable release of MCL by DMAMCL under neutral conditions. (b) The MTT reagent was used to assess the cytotoxicity of different
concentrations (0, 1, 1.25, 2.5, 5, 10, and 20μM) of MCL in NRK-52E cells after 48 h of exposure. ∗P < 0:05 versus normal controls.
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Figure 2: Continued.
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3. Results

3.1. MCL Alleviates the LPS-Induced NK-κB-Dependent
Inflammatory Response in NRK-52E Cells.We initially tested
the cytotoxicity of MCL using an MTT assay. The results
showed that low concentrations (1-10μM) of MCL had no
significant effect on cell viability after 48 h of incubation.
However, high concentrations (20μM) of MCL significantly
reduced the survival rate of NRK-52E cells (Figure 1(b)).
Therefore, MCL concentrations of 1.25, 2.5, and 5μM were
used in our subsequent experiments.

As shown in Figures 2(a)–2(c), MCL blunted LPS-
induced nuclear translocation of p65, indicating that MCL
inhibits LPS-induced activation of the NF-κB pathway. To
investigate the role of MCL in NF-κB-dependent inflamma-
tory responses, we examined the level of inflammatory cyto-
kines in NRK-52E cells induced by LPS with or without MCL
intervention. The ELISA results showed that compared to the
control group, LPS exposure resulted in a significant increase
in the levels of the cellular inflammatory factors such as
MCP-1 and TNF-α, suggesting that LPS induces an inflam-
matory response in rat renal tubular cells. However, MCL
pretreatment inhibited LPS-induced inflammatory factor
expression in a concentration-dependent manner
(Figures 2(d) and 2(e)). We obtained similar results through
immunoblotting and qPCR experiments (Figures 2(f)–2(k)).
Taken together, these data indicate that MCL alleviates the
LPS-induced NK-κB-dependent inflammatory response in
rat renal tubular cells.

3.2. MCL Inhibits LPS+ATP-Induced Activation of the
NLRP3 Inflammasome in NRK-52E Cells. As known, LPS
plus ATP can induce NLRP3 inflammasome activation
[24]. In our study, the expression levels of NLRP3, caspase-
1 p10, IL-1β, and IL-18 in the LPS+ATP stimulation group
were significantly upregulated compared with those in the
control group, indicating that the NLRP3 inflammasome

was activated (Figure 3). After MCL pretreatment at different
concentrations (1.25μM, 2.5μM, and 5μM), the expression
levels of NLRP3 (Figures 3(a) and 3(b)), IL-1β (Figures 3(e)
and 3(f)), caspase-1 p10 (Figures 3(c) and 3(d)), and IL-18
(Figures 3(h) and 3(i)) were significantly reduced compared
with those in the LPS+ATP stimulation group. Besides,
qPCR analysis revealed that MCL reduced IL-1β mRNA
expression upregulated by LPS+ATP (Figure 3(g)). The
ELISA results showed that the IL-18 level was decreased after
MCL pretreatment compared with that in the LPS+ATP
stimulation group (Figure 3(j)). The above results indicate
that MCL treatment inhibits the activation of the NLRP3
inflammasome.

3.3. MCL Inhibits the LPS-Induced Reduction in MMP in
NRK-52E Cells. Mitochondria are the main sites where cells
make ATP. Normal mitochondrial membrane potential is a
prerequisite for maintaining mitochondrial oxidative phos-
phorylation and ATP production, which is crucial for main-
taining mitochondrial function [25]. In our study,
fluorescence detection showed that in cells treated with the
mitochondrial electron transport chain inhibitor CCCP, the
red-green fluorescence ratio decreased significantly, indicat-
ing that the MMP was sufficiently decreased (Figure 4).
Besides, cells stimulated with LPS also showed a decrease in
the MMP (Figure 4). MCL pretreatment significantly
restored membrane potential which was disrupted with LPS
(Figure 4), suggesting the proposed mitoprotective property
of this new compound.

3.4. MCL Inhibits NLRP3 Inflammasome Activation through
Suppressing the mROS in NRK-52E Cells. To assess the effect
of MCL on intracellular ROS production, we measured ROS
level using DCFH-DA in NRK-52E cells. The flow cytometry
results showed that the release of ROS in the LPS-stimulated
group was significantly higher than that in the control group,
and the release of ROS was significantly reduced after MCL
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Figure 2: MCL alleviates the LPS-induced NK-κB-dependent inflammatory response in NRK-52E cells. (a) NRK-52E cells were treated with
LPS with or without MCL (5 μM). Cytoplasmic and nuclear proteins were extracted, and p65 protein expression was detected by western
blotting. (b) Cytoplasmic p65 expression relative to β-actin was quantified. (c) Nuclear p65 expression relative to PCNA was quantified.
Data are presented as the mean ± SEM. ∗P < 0:05 versus normal controls; #P < 0:05 versus the LPS stimulation group. (d, e) ELISA
analysis of (d) MCP-1 and (e) TNF-α expression in each group. (f, g) Western blot analysis of (f) MCP-1 and (g) TNF-α expression. (h, i)
The relative expression levels of the indicated proteins which were normalized to β-actin (ACTB) expression. (j, k) Real-time PCR analysis
of (j) MCP-1 and (k) TNF-α expression in renal tubular epithelial cells. Data are presented as the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01
versus normal controls; #P < 0:05, ##P < 0:01 versus the LPS stimulation group.
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intervention (Figures 5(a) and 5(b)). Furthermore, we used
the mROS inhibitor MitoQ in vitro experiments. The immu-
noblotting results showed that compared with the LPS+ATP

groups without MitoQ pretreatment, pretreatment with
MitoQ significantly inhibited the activation of the NLRP3
inflammasome, as evidenced by the decreased expression of
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Figure 3: MCL inhibits LPS+ATP-induced activation of the NLRP3 inflammasome in NRK-52E cells. (a, b) Western blot analysis of the
NLRP3 expression and its relative expression levels normalized to β-actin (ACTB). (c, d) Western blot analysis of the caspase-1 p10
expression and its relative expression levels normalized to α-tubulin. (e, f) Western blot analysis of the IL-1β expression and its relative
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NLRP3, IL-1β, IL-18, and caspase-1 p10 (Figures 5(c)–5(g)).
Rotenone is a mitochondrial complex I inhibitor which can
promote mROS production [26]. In our study, we found that
rotenone induced NLRP3 inflammasome activation, whereas
MCL or MitoQ inhibited rotenone-induced NLRP3 inflam-
masome activation (Figures 5(h)–5(l)), suggesting that MCL
inhibits the activation of the NLRP3 inflammasome by reduc-
ing the release of mROS.

4. Discussion

Chronic inflammation and oxidative stress play an important
role in the pathogenesis and progression of CKD. NLRP3
inflammasome activation is involved in several inflammatory
diseases. MCL has multiple roles in tumors and inflamma-
tory diseases. We previously found that MCL reduces renal
inflammation by blocking the NF-κB pathway [17, 18]. Here,
in this study, our data showed that MCL can inhibit the acti-
vation of the NF-κB pathway and NLRP3 inflammasome by
inhibiting the release of mROS, thereby ameliorating tubular
inflammation. These data suggest that MCL may represent a
promising therapeutic strategy for renal inflammation in
CKD.

Renal inflammatory injury induces inflammatory cell
infiltration via modulation of chemokines [27]. MCP-1 is
the most important chemokine involved in regulating mono-
cytes in inflammatory diseases and is a key player in the path-
ogenesis of inflammatory nephropathy [28, 29]. The main
characteristic of MCP-1 is its chemoattractant effect on

monocytes/macrophages [30]. These inflammatory cells in
turn secrete inflammatory factors and chemokines that pro-
mote inflammation and fibrosis. A variety of cells of normal
kidney tissue, such as glomerular endothelial cells, mesangial
cells, and tubular cells, secrete trace amounts of MCP-1.
When renal tissue is stimulated, the expression of MCP-1 is
significantly higher than that in unstimulated kidney tissue,
and MCP-1 expression positively correlates with the degree
of renal damage [30]. TNF-α and IL-1β are important
inflammatory factors that can promote the secretion of
MCP-1. In this study, LPS stimulated the expression of the
inflammatory factors MCP-1 and TNF-α in NRK-52E cells.
This finding confirms that LPS stimulation can induce tubu-
lar inflammation. Furthermore, MCL significantly inhibited
LPS-induced activation of NF-κB and the expression of these
inflammatory factors driven by NF-κB. These data indicate
that MCL can significantly inhibit the tubular inflammatory
response.

The inflammasome is a multiprotein complex assembled
by intracytoplasmic pattern recognition receptors. Inflam-
masomes recognize PAMPs or host-derived risk signaling
molecules and recruit and activate the proinflammatory pro-
tein caspase-1. Caspase-1 plays a decisive role in pyroptosis.
The activation of caspase-1 results in intracellular bacterial
clearance in vivo and induces pyroptosis as an efficient mech-
anism of bacterial clearance by the innate immune system
[31]. Activated caspase-1 cleaves precursors of IL-1β and
IL-18, producing the corresponding mature cytokines [32].
IL-1β and IL-18 are members of the IL-1 superfamily and
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are important proinflammatory factors in cells. IL-1β is
mainly secreted by mononuclear macrophages, which can
further trigger an inflammatory response and play a central
role in local and systemic inflammatory responses. IL-18 is
mainly produced by activated macrophages, which stimulate
Th1 cells to secrete granulocyte-macrophage colony-
stimulating factor, IFN-γ, and IL-2 and promote the pro-
liferation of Th1 cells. IL-1β and IL-18 can increase the
expression of α-SMA protein in renal tubular epithelial
cells, promote the transdifferentiation of renal tubular epi-
thelial cells into myofibroblasts, and promote renal interstitial
fibrosis [33, 34]. Currently, the NLRP3 inflammasome is the
most widely studied inflammasome. NLRP3 inflammasome
activation can be divided into two necessary phases. The first
stage is induced by NF-κB pathway activation, initiating IL-
1β, IL-18, and NLRP3 transcription and translation. The
second stage is related to the assembly of the NLRP3 inflam-
masome [35, 36]. The NLRP3 inflammasome contributes to
a wide range of acute and chronic kidney diseases via mecha-
nisms that regulate inflammation, pyroptosis, apoptosis, and
fibrosis [37]. Therefore, inhibition of NLRP3 inflammasome
activation is a new strategy for the treatment of CKD. LPS is
an endotoxin that has been shown to promote activation of
the NLRP3 inflammasome and increase the expression of
proinflammatory cytokines such as IL-1β and IL-18 [38,
39], which is consistent with our experimental results. Our
results show that MCL significantly inhibits LPS-induced
activation of the NLRP3 inflammasome in NRK-52E cells
and reduces the expression of downstream factors such as
caspase-1, IL-1β, and IL-18, suggesting that MCL attenuates
LPS-induced inflammation by inhibiting the activation of
the NF-κB and NLRP3 inflammasome in NRK-52E cells.

Mitochondria are the major sites of cellular aerobic respi-
ration and play a key role in regulating pattern recognition
receptor signaling pathways [39], including the regulation of
NF-κB and NLRP3 inflammasome activation. Mitochondria
are the main source of ROS. External stimuli promote the
mitochondrial production of ROS during signal transduction,
which in turn stimulates signaling pathways and participates
in cellular signaling processes that alert the immune system
[40–42]. Studies found that mROS production mediates
LPS-induced NF-κB activation [43] and NLRP3 activation
[44, 45]. Lysosomal membrane permeabilization caused by
the release of mROS is essential for NLRP3 activation. When
mitochondrial function declines, ROS production increases,
causing damage to tissues and organs. In addition, mito-
chondria are also the main targets of ROS damage. The
accumulation of ROS stimulates the continuous opening
of mitochondrial membrane pores, causing a decrease in
MMP, respiratory chain abnormalities, and the induction
of mitochondrial protein release and cell death [44]. To
explore the effect of MCL on mitochondrial function in
renal tubular epithelial cells, we examined the levels of
ROS and MMP in each group of cells. Our data show that
MCL administration significantly inhibits LPS-induced
cellular ROS release and MMP reduction and that the
mROS inhibitor MitoQ significantly inhibits LPS-induced
activation of the NLRP3 inflammasome. MCL or MitoQ
inhibited rotenone-induced NLRP3 inflammasome activa-

tion, suggesting that MCL inhibits the activation of the
NLRP3 inflammasome by reducing the release of mROS.
Hence, we speculate that MCL alleviates the LPS-induced
inflammatory response in rat renal tubular cells through
the mROS/NF-κB/NLRP3 pathway.

5. Conclusions

In conclusion, this study shows that MCL significantly reduces
renal tubular epithelial cell inflammation. Besides, MCL
inhibits the activation of the NF-κB and NLRP3 inflamma-
some by inhibiting the release of mROS, thereby ameliorating
the inflammatory response. Our study provides a novel theo-
retical basis for the use of MCL to treat CKD (Figure 6).
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