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Abstract. Venous thromboembolism (VTE) is characterized 
by a high recurrence rate and adverse consequences, including 
high mortality. Damage to vascular endothelial cells (VECs) 
serves a key role in VTE and lactate (LA) metabolism is 
associated with VEC damage. However, the pathogenesis of 
VTE and the role of lactate metabolism‑related molecules 
(LMRMs) remain unclear. Based on the GSE48000 dataset, the 
present study identified differentially expressed (DE‑)LMRMs 
between healthy individuals and those with VTE. Thereafter, 
LMRMs were used to establish four machine learning models, 
namely, the random forest, support vector machine and gener‑
alized linear model (GLM) and eXtreme gradient boosting. To 
verify disease prediction efficiency of the models, nomograms, 
calibration curves, decision curve analyses and external 
datasets were used. The optimal machine learning model 
was used to predict genes involved in disease and an in vitro 
oxygen‑glucose deprivation (OGD) model was used to detect 
the survival rate, LA levels and LMRM expression levels of 
VECs. A total of four DE‑LMRMs, solute carrier family 16 
member 1 (SLC16A1), SLC16A7, SLC16A8 and SLC5A12 
were obtained and GLM was identified as the best performing 
model based on its ability to predict differential expression of 
the embigin, lactate dehydrogenase B, SLC16A1, SLC5A12 
and SLC16A8 genes. Additionally, SLC16A1, SLC16A7 

and SLC16A8 served key roles in VTE and the OGD model 
demonstrated a significant decrease in VEC survival rate as 
well as a significant increase and decrease in intracellular LA 
and SLC16A1 expression levels in VECs, respectively. Thus, 
LMRMs may be involved in VTE pathogenesis and be used 
to build accurate VTE prediction models. Further, it was 
hypothesized that the observed increase in intracellular LA 
levels in VECS was associated with the decrease in SLC16A1 
expression. Therefore, SLC16A1 expression may be an essen‑
tial target for VTE treatment.

Introduction

Venous thromboembolism (VTE) and its complications are 
common causes of death worldwide; 30% of patients with 
VTE die <30 days after diagnosis (1). Additionally, one‑third 
of the remaining 70% of patients experience relapse within 
10 years and have long‑term complications, including deep vein 
thrombosis post‑thrombotic and post‑pulmonary embolism 
syndrome, chronic thromboembolic pulmonary hypertension 
in pulmonary embolism and death (2,3). Pro‑ and antithrom‑
botic factors exist in the human body and an imbalance 
between these, such as decreases in the levels of antithrom‑
botic factors and/or increases in the levels of prothrombotic 
factors, may serve key roles in thrombosis (4). However, the 
mechanisms underlying this imbalance remain unclear. To 
predict and diagnose VTE, it is necessary to understand the 
mechanisms underlying its pathogenesis and to construct 
accurate and effective diagnosis and prediction models.

Vascular endothelial cells (VECs) serve key roles in VTE 
pathogenesis. Previous studies have reported that VTE causes 
VEC injury, the accumulation of inflammatory substances, 
blood hypercoagulation and aggravated thromboembolism, 
which lead to severe health consequences (5‑7). Damage to 
VECs may disrupt the integrity of blood vessels and lead to 
bleeding, which affects therapeutic efficacy in VTE (8). In 
addition to damage caused by the accumulation of inflam‑
matory substances, lactate (LA) may serve an important 
role in VEC damage (9,10). LA metabolism is regulated by 
LA metabolism‑related molecules (LMRMs). VECs take up 
glucose from peripheral blood and, via the catalytic activity 
of various enzymes, such as glycogen and pyruvate kinase, 
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convert glucose to tricarboxylic acid. This serves as an energy 
source for cells and pyruvate can also be converted to LA by 
lactic acid dehydrogenase A (LDHA) (11‑14). However, LA 
does not provide energy to cells but must first be converted by 
LDHB to pyruvate, which can then be used as a substrate in the 
tricarboxylic acid cycle (15). LA in VECs is primarily excreted 
through monocarboxylic acid transporter (MCT) 1 (12) and 
Stabenow et al (16) reported that an increase in LA levels 
promotes VEC aging, which may be associated with increased 
conversion of pyruvate to LA by LDHA. Franczyk et al (17) 
suggested that abnormal LA metabolism may be associated 
with VTE. Additionally, VTE can lead to glucose and oxygen 
deficiency in local VECs, which can cause changes in levels of 
metabolic substances, including LA, which serves an important 
role in VTE (17,18). However, the roles of LA metabolism and 
LMRMs in the mechanisms underlying VTE remain unclear.

Therefore, the present study screened differentially 
expressed LMRMs (DE‑LMRMs) in patients with VTE and 
constructed a disease prediction model for VTE to the end 
of clarifying the roles of LA metabolism and LMRMs in 
VTE pathogenesis. Further, the oxygen‑glucose deprivation 
(OGD) model of VECs and an in vitro model of thrombo‑
embolism (19,20) were used to verify the expression of the 
DE‑LMRMs. The present study may provide a novel future 
target for VTE diagnosis and treatment.

Materials and methods

Data acquisition, preprocessing and screening of DE‑LMRMs. 
The datasets were downloaded from the Gene Expression 
Omnibus, which is an open‑access database with gene chips 
and high‑throughput sequencing datasets (ncbi.nlm.nih.
gov/geo). The downloaded datasets included GSE48000 (acces‑
sion no. GPL10558) and GSE19151 (accession no. GPL571; 
Fig. 1). GSE48000 training set comprised 25 peripheral blood 
samples from healthy individuals (control) and 107 peripheral 
blood samples from patients with VTE (VTE group). The vali‑
dation set GSE19151 comprised 63 peripheral blood samples 
from healthy individuals and 70 samples from patients with 
VTE. The datasets were pre‑processed using Perl program‑
ming language. Furthermore, LMRMs were obtained from the 
MsigDB database (version 7.0; gsea‑msigdb.Org/gsea/msigdb/). 
As described by Li et al (21), the ‘limma’ R package was used 
to screen DE‑LMRMs from the GSE48000 dataset and the 
‘ggpubr’ and ‘pheatmap’ R packages were used to generate box 
plots and heatmaps, respectively. Finally, ‘corrplot’ R package 
was used for correlation analysis(Pearson's coefficient) of the 
DE‑LMRMs. Perl programming language (version 5.30.0.1, 
URL: https://www.perl.org/) and ‘RCircos’ package were 
used to determine the location of the LMRMs on chromo‑
somes.) and R programming language (version 4.1.3, URL: 
https://www.r‑project.org/) was employed to conduct this 
study.

Construction of predictive model using machine learning 
methods. Based on screened LMRMs, the ‘caret’ R package 
was used to build machine learning models, namely, the 
random forest (RF), support vector machine (SVM) and gener‑
alized linear model (GLM) and eXtreme Gradient Boosting 
(XGB) (21). The ‘DALEX’ R package was used to interpret 

the four models and generate the residual distribution of each 
model in the test set. The ‘pROC’ R package was used to visu‑
alize the area under the receiver operating characteristic (ROC) 
curve (AUC). Next, the optimal machine learning model was 
identified. The model with highest AUC was considered the 
optimal model. The top five variables were considered key 
predictor genes associated with VTE. ROC curve analysis of 
the GSE48000 dataset was performed to verify the diagnostic 
value of the model.

Construction and validation of the nomogram model. Using 
the ‘rms’ R package, nomogram models were constructed to 
evaluate VTE clusters. Each predictor had a corresponding 
score and ‘total score’ represented the sum of the individual 
scores of all the predictors. Calibration curve and decision 
curve analysis (DCA) were used to estimate the predictive 
power of the nomogram model.

Establishment of the OGD model. The OGD model 
is an in vitro thromboembolic model (19,20). Human 
umbilical (HU)VECs were purchased from Shanghai 
Anwei Biotechnology Co., Ltd. (cat. no. HUVEC‑SV40T). 
Mycoplasma testing was performed on HUVECs and the 
cell line was authenticated using immunofluorescence. Cells 
were cultured in RPMI‑1640 medium (cat. no. 22400097) 
with 10% fetal bovine serum (cat. no. 12483020) and 1% 
penicillin‑streptomycin (cat. no. 15140122; all Gibco; 
Thermo Fisher Scientific, Inc.) in a humidified incubator at 
37˚C with 5% CO2 and 95% air for 7 days. Cells (1.5x105/ml) 
were transferred to a 6‑well plate in glucose‑free DMEM 
(cat. no. 119660‑25; Gibco; Thermo Fisher Scientific, Inc.) 
and cultured for 24 h in a humidified incubator at 37˚C with 
5% CO2 and 95% N2. Cell morphology was observed using 
a light microscope (magnification, x200; cat. no. D‑35578; 
Leica Microsystems GmbH).

MTT analysis of VEC survival rate. VEC survival was 
analyzed as described by Li et al (22) using the MTT kit 
(cat. no. AR1156; Wuhan Boster Biotechnology, Ltd.). MTT 
staining solution (10 µl) was added to each well and incubated 
at 37˚C for 4 h. Next, 100 µl formazan as added to each well 
and samples were incubated at 37˚C for 4 h. Absorbance was 
measured at 570 nm using an enzyme‑labeled instrument.

Detection of LA levels. Total protein was extracted from VECs 
using a protein extraction kit (cat. no. SD‑001/SN‑002; Invent 
Biotechnologies Inc.). BCA assay kit (cat. no. P0012S; Beyotime 
Institute of Biotechnology) was used to evaluate total protein 
concentration levels. LA content assay kit (cat. no. BC2235; 
Beijing Solarbio Science & Technology Co., Ltd.) was used to 
measure the LA levels, as previously described (23,24).

Western blotting analysis. Samples (20 µg protein/lane) were 
obtained as aforementioned and separated using SDS‑PAGE 
(12.5%) and transferred onto nitrocellulose (NC) membranes 
(MilliporeSigma) using wet transfer cell (Bio‑Rad Mini‑Protean 
1658001, Bio‑Rad Laboratories, Inc.). NC membranes were 
blocked with 5% BSA blocking buffer (cat. no. SW3015, 
Solarbio Science & Technology Co., Ltd.) for 1 h at 25˚C 
and incubated overnight with primary antibodies at 4˚C. The 
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primary antibodies were as follows: Anti‑monocarboxylic 
acid transporter (MCT)1 (cat. no. ab85021; 1:1,000; 
Abcam), anti‑embigin (EMB; cat. no. ab170927; 1:1,000: 
Abcam), anti‑MCT2 (cat. no. ab81262; 1:400; Abcam), 
anti‑LDHB (cat. no. ab264358; 1:2,000; Abcam), anti‑solute 
carrier family 5 member 12 (SLC5A12; cat. no. sc‑515141; 
1:800; Santa Cruz Biotechnology, Inc.), anti‑SLC16A8 
(cat. no. D262213; 1:1,000; Sangon Biotech Co., Ltd.) and 
anti‑GAPDH (cat. no. D110016; 1:10,000; Sangon Biotech 
Co., Ltd.). NC membranes were incubated with horseradish 
peroxidase‑conjugated Affinipure goat anti‑rabbit IgG 
(H+L) antibody (cat. no. SA00001‑2; 1:8,000; Proteintech 
Group, Inc.) for 1 h at 25˚C. Further, immunoreactive 
bands were visualized using the Omni‑ECL™ Femto Light 
Chemiluminescence kit (cat. no. SQ201; EpiZyme) and 
ChemiScope6000 (Clinx) visualization system. Band inten‑
sities were quantified used ImageJ software (version: 1.8.0, 
National Institutes of Health). The total protein levels were 
normalized to GAPDH.

Statistical analysis. All statistical analysis was performed 
using SPSS software (version 25.0; IBM Corp.). Data are 
expressed as the mean ± standard deviation (n=6). Unpaired 
independent sample t‑test was performed to analyze differ‑
ences between groups. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Identification of DE‑LMRMs in VTE. The location of the 
LMRMs on chromosomes was determined (Fig. 2A). The 
‘limma’ package in R was used to screen DE genes from the 
dataset(GSE48000) (21). Compared with the control, four 
DE‑LMRMs (SLC16A1, SLC16A7), SLC16A8 and SLC5A12) 
were identified in the VTE group. Specifically, SLC16A1 
demonstrated decreased expression, whereas SLC16A7, 
SLC16A8 and SLC5A12 demonstrated increased expression 
in the VTE group compared with the control group (Fig. 2B 
and C). Correlation analysis was used to analyze correlations 

Figure 1. Experimental design. DE‑LMRM, differentially expressed lactate metabolism‑related molecule; VTE, venous thromboembolism; RF, random forest; 
SVM, support vector machine; GLM, generalized linear model; XGB, eXtreme Gradient Boosting; VEC, venous endothelial cell.
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between the four DE‑LMRMs. Significant positive correla‑
tions were found between SLC16A7 and SCL16A8, SLC16A7 
and SCL5A12, SLC16A8 and SCL5A12. Significant negative 
correlations were found SLC16A1 and SLC16A7, SCL16A1 
and SLC16A8, SLC16A1 and SLC5A12 (Fig. 2D).

Construction and assessment of machine learning models. 
A total of four machine learning models (RF, SVM, GLM 
and XGB) were constructed based on expression levels 
of LMRMs. GLM and XGB machine learning models 
demonstrated relatively low residuals (Fig. 3A and B). 
Discriminative performances of the four machine learning 
algorithms were evaluated by generating ROC curves based 
on five‑fold cross‑validation in the GSE48000 training dataset 
(Fig. 3C). The AUCs were as follows: RF=0.440, SVM=0.759, 
XGB=0.674 and GLM=0.728. Based on the residual and AUC 
values, the GLM machine learning model was optimal with 
respect to distinguishing patients with VTE. The five most 
important genes (EMB, LDHB, SLC16A1, SLC5A12 and 

SLC16A8) determined by this model were selected as predictor 
genes for further analysis. Finally, the GSE19151 dataset was 
used to verify the accuracy of the machine learning model. 
In the GSE152532 dataset, the ROC curve for the GLM gene 
prediction model performed well, with AUC=0.513 (Fig. 3D).

Construction of the nomogram model. A nomogram integrates 
multiple prediction indicators based on multi‑factor regression 
analysis (27). A nomogram model was constructed to estimate 
VTE risk (Fig. 4A). The calibration curve and DCA were used 
to evaluate the prediction efficiency of the nomogram model. 
Based on the calibration curve, the error between the actual 
and predicted risks for the VTE cluster was low (Fig. 4B). 
DCA indicated that the nomogram was accurate (Fig. 4C). To 
facilitate the clinical use of this diagnostic model, a nomo‑
gram was constructed. Based on the actual measured values 
of expression levels of the five DE‑LMRMs in the blood of 
patients with VTE, it was possible to find these DE‑LMRMs 
on the corresponding scale in the nomogram and project to the 

Figure 2. LMRMs in GSE48000 dataset. (A) Location of LMRMs on chromosomes. (B) Heatmap of expression levels of DE‑LMRMs. (C) Boxplot of expres‑
sion levels of four DE‑LMRMs. (D) Correlation analysis between DE‑LMRMs. Red, positive; green, negative. *P<0.05, **P<0.01 vs. control. DE‑LMRM, 
differentially expressed lactate metabolism‑related molecule; VTE, venous thromboembolism; SLC16A1, solute carrier family 16 member 1; EMB, embigin; 
LDHD, lactate dehydrogenase D; LDHAL6B, LDHA‑like 6B.



EXPERIMENTAL AND THERAPEUTIC MEDICINE  27:  70,  2024 5

point scale on top to read the value for each variant. The total 
number of points was obtained by summing the individual 
points and the risk probability for a patient with VTE could be 
estimated using the bottom scale by projecting the total.

Survival rate, LA levels and expression of LMRMs in the OGD 
model. Compared with the control, the OGD model showed a 
lower number of VECs and these VECs appeared swollen and 
ruptured (Fig. 5A). MTT is a cell viability assay that involves 
conversion of the water‑soluble yellow dye MTT to insoluble 
purple formazan by the action of mitochondrial reductase (28). 
MTT assay demonstrated a significant decrease in the survival rate 
of the VECs in the OGD compared with the control. Compared 

with control group, the survival rate significantly decreased 
to 52.49±5.17% in the OGD group (Fig. 5B). Furthermore, 
compared with the control, the OGD VECs demonstrated signif‑
icantly higher LA levels (37.38±4.18 vs. 75.90±4.21 µmol/mg 
protein, respectively; Fig. 5C). Based on the genes predicted 
using the GLM model and DE‑LMRMs, three key molecules 
(SLC16A1, SLC5A12 and SLC16A8) were identified (Fig. 5D). 
Additionally, western blotting to detect the protein expression 
levels of EMB, LDHB, SLC16A1, SCL16A7, SLC5A12 and 
SLC16A8 in VECs demonstrated that the protein expression of 
SLC16A1 significantly decreased to 49.69±2.55% in the OGD 
group (Fig. 5E), while the protein expression levels of the other 
five molecules demonstrated no significant change (Fig. 5E).

Figure 3. Machine learning models in GSE48000 dataset. Residual distribution for machine learning models presented as (A) boxplots and (B) reverse cumula‑
tive distribution. (C) ROC analysis of machine learning models based on five‑fold cross‑validation in the test cohort. AUCs were obtained for the four models. 
(D) ROC curve of five genes of the GLM model, which showed optimal performance. AUC, area under the curve; ROC, receiver operating characteristic; RF, 
random forest; SVM, support vector machine; GLM, generalized linear model; XGB, eXtreme gradient boosting.
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Discussion

Although it has previously been reported that an imbalance 
between prothrombotic and antithrombotic factors serves a key 
role in VTE pathogenesis (4), the associated mechanisms remain 
unclear. It has been suggested that an imbalance in levels of 
several metabolic substances in the blood may also be associated 
with VTE pathogenesis (17). Among these, LA serves an impor‑
tant role in VEC damage (9,10). VECs obtain glucose from blood 

and convert it to ATP to supply cells with energy (11‑14). VTE 
can cause ischemia and hypoxia of local blood vessels that can 
result in glucose and oxygen deficiency in VECs, which may lead 
to energy metabolism disorder. If these are not corrected, cell 
damage can occur (22). It has also been reported that in energy 
metabolism disorder, the accumulation of large amounts of LA 
serves a key role in cell function and structural damage (9).

Additionally, intracellular LA, which is primarily regulated 
by LMRMs, is associated with LA production, consumption 

Figure 4. Nomogram models in GSE48000 dataset. (A) Nomogram for predicting risk of VTE based on the five‑gene‑based generalized linear model. 
(B) Calibration and (C) decision curve analysis showed relatively high accuracy for the nomogram. EMB, embigin; LDHB, lactate dehydrogenase B; SLC16A1, 
solute carrier family 16 member 1.
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and transport (11‑14). In the present study, LMRMs from the 
MsigDB database were screened and DE‑LMRMs were identi‑
fied by comparing gene expression between healthy individuals 
and patients with VTE. A total of four DE‑LMRMs were 
identified in the VTE group, with SLC16A1 demonstrating 
decreased expression levels, whereas SLC16A7, SLC16A8 and 
SLC5A12 demonstrated increased expression. Reportedly, 
these DE‑LMRMs are primarily responsible for LA trans‑
port (12,26), which suggests that abnormal LA transport may 
be involved in VTE pathogenesis. Machine learning models 
have previously been used to predict prevalence of a number of 
diseases, with lower error rates and superior results compared 
with conventional logistic regression (27). Machine learning 
models, such as RF, SVM, GLM and XGB, demonstrate 
clinical relevance in disease prediction (21). In the present 
study, machine learning models based on the expression of 
the LMRMs were constructed. After comparing AUC values 
corresponding to the four models, GLM was identified as the 
optimal model and its verification using external data indicated 
that it demonstrated relatively good accuracy in predicting 
VTE. The five predicted genes in GLM were EMB, LDHB, 
SLC16A1, SLC5A12 and SLC16A8. DCA indicated that the 
nomogram could potentially provide a basis for clinical deci‑
sion‑making EMB is a companion protein located on the cell 
membrane that promotes localization of MCT1 to the plasma 

membrane and alters transport of LA by MCT1 (28). LDH is 
a homologous or heterotetrametric enzyme with two subunits, 
LDHA and LDHB, which are encoded by different genes and 
have different chromosomal locations. LDHA is located on 
chromosome 11, while LDHB is primarily located on chromo‑
some 12 (13,29). LDHA preferentially converts pyruvate to 
LA, whereas LDHB converts LA to pyruvate (15,30,31). The 
present study demonstrated that LDHB was an important gene 
for predicting VTE, which suggested that intracellular LA 
conversion may be involved in VTE pathogenesis.

VTE pathogenesis is a complex process and its simulation 
using in vivo as well in vitro models remains challenging. 
In vivo models of venous thrombosis are primarily established 
via ferric chloride administration (32,33); in in vitro models, in 
which cells are deprived of glucose and oxygen, the cells are 
in a state of hypoxia and sugar deficiency (19,20,34). VTE also 
causes local blood vessel ischemia and hypoxia, which results in 
ECs in these blood vessels being in a state of glucose and oxygen 
deprivation. Hence, the OGD model only partially simulates 
thromboembolism (19,20). In the present study, OGD was used 
to verify the association between LA, LMRMs and VTE. Light 
microscopy demonstrated a decrease in number of VECs and 
edema in the OGD model compared with control cells. A signif‑
icant decrease in the survival rate of VECs in the OGD group 
compared with the control was shown and the intracellular LA 

Figure 5. Experimental Analyses for the OGD model (A) Morphology analysis of VECs showed a lower number of VECs in the OGD compared with the Ctrl 
group. The VECs in the OGD appeared swollen and ruptured. Magnification, x200. Red arrows: swollen and ruptured VECs. (B) MTT results demonstrated 
a significantly lower VEC survival rate in the OGD group compared with the Ctrl group. (C) Significantly increased VEC lactate levels were shown in the 
OGD compared with the Ctrl group. (D) A total of three key molecules in VTE pathogenesis were obtained using prediction genes of the GLM model and 
DE‑LMRMs. (E) Western blotting analysis demonstrated significantly decreased MCT1 protein expression in the OGD group (n=6). #P<0.01 vs. Ctrl. Ctrl, 
control; OGD, oxygen‑glucose deprivation; VEC, vascular endothelial cell; LDHB, lactic acid dehydrogenase B; EMB, embigin; SCL16A1, solute carrier 
family 16 member 1; DE‑LMRM, differentially expressed lactate metabolism‑related molecule.
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levels increased significantly. This suggested that cell survival 
was negatively associated with intracellular LA. Additionally, 
more obvious cell damage and a lower cell survival rate was 
observed at higher LA levels. According to the GLM‑predicted 
genes and DE‑LMRMs, three molecules, SLC16A1, SLC16A7 
and SLC16A8, were identified as key in VTE pathogenesis. 
Western blotting was employed to detect the expression levels 
of the proteins encoded by DE‑LMRMs and GLM‑predicted 
genes. The expression of SLC16A1 was significantly decreased 
in the OGD group, consistent with the prediction results. Further, 
MCT1, which is encoded by SLC16A1, is primarily expressed 
in VECs (12) and decreased SLC16A1 expression may limit 
excretion of intracellular LA, which results in an increase in 
intracellular LA levels, cell acidification and impaired cell func‑
tion (35). The expression levels of proteins encoded by EMB, 
LDHB, SCL16A7, SLC5A12 and SLC16A8 did not change 
significantly in the OGD compared with the control group. EMB, 
a companion protein of MCT1, primarily regulates the expres‑
sion of MCT1 on cell membrane (28). The expression of LDHB 
did not change significantly, which suggested that LA conver‑
sion to pyruvate was not affected in the OGD group. SLC16A7, 
which encodes the MCT2 protein, is primarily expressed in the 
brain (36). SLC5A12, which encodes sodium‑coupled monocar‑
boxylate transporter 2 (SMCT2), is primarily expressed in the 
kidney (37) and SLC16A8, which encodes MCT3, is primarily 
expressed in the retina (38). The aforementioned reports suggest 
that EMB, LDHB, SLC16A7, SLC5A12 and SLC16A8 do not 
serve key roles in LA metabolism in VECs.

The present study had a number of limitations. The in vitro 
OGD model cannot completely simulate VTE, therefore, it 
is necessary to collect clinical samples and build an in vivo 
model for further studies on VTE.

In the present study, it was demonstrated that LMRMs may 
participate in VTE pathogenesis. Thus, a prediction model 
was developed and showed a certain degree of accuracy. 
Model‑predicted results were verified using an in vitro model, 
which confirmed that an increase in intracellular LA levels 
may be associated with a decrease in SLC16A1 expression. 
In summary, LMRMs, particularly SLC16A1, may serve key 
roles in VTE pathogenesis and be a potential target for VTE 
diagnosis and treatment.
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