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1  |   INTRODUCTION

Despite advances in screening, diagnosis, and curative resec-
tion, colorectal cancer (CRC) is still one of the leading causes 
of cancer-related death worldwide, and its clinical outcome 
for individual cases remains unsatisfactory.1 At present, surgi-
cal resection is the only potentially curative therapy for CRC. 
Unfortunately, about 20-25% of patients with newly diag-
nosed CRC present with distant metastases, and only a small 

population of these patients can undergo curative operation.2 
In addition, approximately 50% of CRC patients with resect-
able tumors will develop recurrence, most within 2 years.3 
As a well-recognized heterogeneous disease, the phenotype 
and prognostic diversity of CRC present great challenges in 
making individualized clinical decision.4 During the past de-
cades, genomic and biological changes in cancer cells have 
been extensively investigated to identify patient subgroups 
with different prognosis and treatment response, as well as to 
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Abstract
Immune infiltration of colorectal cancer (CRC) is closely associated with clinical 
outcome. However, previous work has not accounted for the diversity of functionally 
distinct cell types that make up the immune response. In this study, based on a decon-
volution algorithm (known as CIBERSORT) and clinical annotated expression pro-
files, we comprehensively analyzed the tumor-infiltrating immune cells present in 
CRC for the first time. The fraction of 22 immune cells subpopulations was evalu-
ated to determine the associations between each cell type and survival and response 
to chemotherapy. As a result, profiles of immune infiltration vary significantly be-
tween paired cancer and paracancerous tissue and the variation could characterize 
the individual differences. Of the cell subpopulations investigated, tumors lacking 
M1 macrophages or with an increased number of M2 macrophages, eosinophils, and 
neutrophils were associated with the poor prognosis. Unsupervised clustering analy-
sis using immune cell proportions revealed five subgroups of tumors, largely defined 
by the balance between macrophages M1, M2, and NK resting cells, with distinct 
survival patterns, and associated with well-established molecular subtype. 
Collectively, our data suggest that subtle differences in the cellular composition of 
the immune infiltrate in CRC appear to exist, and these differences are likely to be 
important determinants of both prognosis and response to treatment.

K E Y W O R D S
clinicopathological features, colorectal cancer, genomic signature, nomogram

www.wileyonlinelibrary.com/journal/cam4
http://orcid.org/0000-0001-7415-5134
http://orcid.org/0000-0001-8160-2975
http://creativecommons.org/licenses/by/4.0/
mailto:fzx19990521@126.com


      |  4497XIONG et al.

find potential drug targets.5,6 However, the malignant pheno-
types of cancers are defined not only by the intrinsic activi-
ties of tumor cells but also by the immune cells recruited to 
and activated in the tumor-related microenvironment.7 Until 
recently, the roles of immune cells in the tumor-related mi-
croenvironment remain poorly understood.

Tumor-infiltrating immune cells (TIICs), whose function 
and composition subtly altered according to the immune 
status of the host, have been reported to be effectively tar-
geted by drugs and to correlate with the clinical outcome.2,8,9 
Mechanism studies confirmed that between TIICs and ma-
lignant cells in the tumor stroma, there is in fact a complex 
interaction which has significant prognostic relevance as 
the immune system has a dual role by supporting both host 
defense and tumor progression.10 As an immunosensitive 
tumor, CRC infiltrated by a heterogeneous collection of 
TIICs, including T cells, dendritic cells, macrophages, neu-
trophils, and mast cells, and it has been frequently reported 
that the type, density, and location of TIICs within CRC pres-
ent with great prognostic value.11-13 For example, Klintrup 
et al14 evaluated the overall inflammatory cell reaction and 
the density of each TIICs type in a large cohort of CRC pa-
tients. Their immunohistochemistry experiment revealed that 
inflammatory reaction at the invasive margin was generally 
the most significant predictor for both overall survival (OS) 
and disease-free survival (DFS).14 Additionally, mature T 
cells and dendritic cells, memory T cells were commonly de-
tected TIICs subpopulation with favorable prognostic, while 
immune suppressive regulatory T cells are associated with 
impaired prognosis in CRC.15-17 More importantly, several 
recent studies even pointed out that immunological data (the 
type, density, and location of immune cells within the tumor 
samples) are a better predictor of patient survival than the 
histopathological methods currently used to stage colorectal 
cancer.17,18

However, we noted that the prognostic value of certain 
TIICs subpopulation does not always consistent with each 
other even in studies with same experiment design. For in-
stance, one study provided evidence for a role of FoxP3+ Treg 
density in CRC tissue as predictor of prolonged survival.19 
While in another study, the expression of Tregs surface mark-
ers cluster (FoxP3, TGF-b, IL-10) was not associated with 
a particular outcome.20 These results were validated by ge-
nomic and in situ immunohistochemistry analyses. In addi-
tion, IL-17 has been shown to have a dual role in cancer by 
promoting and inhibiting tumor growth, whereas in various 
human cancers, it has been described both as “good” and 
“bad” prognostic factor. Thus, the function and prognostic 
value of IL-17+ T cells were also mutually contradictory in 
different studies.17

Potential explanations for above contradictory results are 
technical limitations. The immune response is characterized 
by numerous specialized cell types that interact in a highly 

coordinated manner. However, previous studies have been 
limited to a very narrow view of immune response. They 
evaluated TIICs by immunohistochemistry-based analysis, 
which depends on a single marker to identify one specific 
TIICs subpopulation. Obviously, this approach can be mis-
leading and are not comprehensive as many marker proteins 
are expressed in different cell types. More importantly, im-
munohistochemistry is considerably less effective for detect-
ing cell types with quite a small number and discriminating 
closely related cell types. Thus, no previous study has shed 
light on the prognostic value of these TIICs subpopulation.

In recent, a metagene approach, known as CIBERSORT, 
was developed.21 This gene expression-based deconvolution 
algorithm assesses the relative expression changes of a set of 
genes compared with the expression of all other genes in a 
sample. Therefore, the diversity and the landscape of TIICs 
can be properly determined by this method. Due to the supe-
rior performance of CIBERSORT, its application in studying 
cell heterogeneity has aroused increasing attention.22-24 In 
this study, we therefore applied CIBERSORT, for the first 
time, to quantify the 22 TIICs subsets of immune response 
in CRC in order to investigate its relationship with molecular 
subpopulation, survival, and response to chemotherapy. It is 
hoped that this research will offer some important insights 
into the complex relationship between the heterogeneity of 
intratumoral immune cells, tumor molecular subtypes, and 
disease progression in CRC.

2  |   MATERIALS AND METHODS

2.1  |  Data acquisition
This study made use of data in the public domain. Publicly 
available datasets with gene expression profiles and corre-
sponding prognosis information from CRC patient-derived 
tumor and normal tissues were identified and downloaded 
from GEO25 and TCGA,26 uploaded up to 31 December 
2017. Datasets with small sample size (N < 50) and du-
plications were excluded. For some datasets whose prog-
nosis information were not with their expression profiles, 
we either searched the supplements or contacted one 
or more of the investigators to get the missing informa-
tion. Subsequently, expression profiles of each sample 
and corresponding clinical data were manually organized. 
Only patients diagnosed with colorectal cancer, and with 
clinicopathological and survival information available, 
were included. In addition, patients with any missing or 
insufficient data on age, local invasion, lymph node me-
tastasis, distant metastasis, TNM stage, and disease-free 
survival were also excluded from subsequent processing. 
Preprocessing and aggregation of raw data were performed 
according to the robust multi-array average algorithm. For 
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the TCGA dataset, RNA sequencing data were firstly trans-
formed using voom27 (variance modeling at the observa-
tional level), converting count data to values more similar 
to those resulting from microarrays. As we pooled numer-
ous studies published over some years, the technologies 
used to measure gene expression differed substantially. 
Thus, analysis in the present study was confined to samples 
measured via the Affymetrix HG-U133 or Illumina Hiseq 
platforms. Quality control of the resulting expression data 
was executed as previously described.28,29 Our study fol-
lowed the Reporting Recommendations for Tumor Marker 
Prognostic Studies (REMARK) criteria as listed in their 
guidelines.30 Details of the study design and which sam-
ples were included at each stage of analysis are illustrated 
in Figure 1 as a flowchart.

2.2  |  Evaluation of tumor-infiltrating 
immune cells
Normalized gene expression data were used to infer the rela-
tive proportions of 22 types of infiltrating immune cells using 
the CIBERSORT algorithm as et al previously reported. 
Briefly, gene expression datasets were prepared using stand-
ard annotation files and data uploaded to the CIBERSORT 
web portal (http://cibersort.stanford.edu/), with the algorithm 
run using the default signature matrix at 1000 permutations. 
CIBERSORT derives a P-value for the deconvolution for 

each sample using Monte Carlo sampling, providing a meas-
ure of confidence in the results.

CIBERSORT is a gene expression-based deconvolution 
algorithm, it uses a set of barcode gene expression values (a 
“signature matrix” of 547 genes) for characterizing immune 
cell composition. In order to estimate the effect of variation 
in barcode genes, we used 644 cases from the TCGA cohort, 
where 100% of the genes are represented. We randomly de-
leted signature matrix genes in increments of 10% until 10% 
of genes remained to produce a graded representation of bar-
code genes matrix.

Immune cytolytic activity representing the geometric 
mean of GZMA and PRF1 is another in silico measure of 
immune infiltration, as described by Rooney et al31 Immune 
cytolytic activity for the TCGA and GEO datasets was de-
termined by calculating the geometric mean of GZMK and 
PRF1.

2.3  |  Immunohistochemical detection of 
immune cell types
Tissue microarrays containing the specimens from 30 CRC 
patients who received curative surgery in the first affiliated 
hospital of Chongqing medical university (Chongqing, China) 
from April 2016 to September 2017 were constructed for im-
munohistochemistry. Specimens were all confirmed by path-
ological analysis as colorectal cancer. Immunohistochemistry 

F I G U R E   1   Flowchart detailing the study design and samples at each stage of analysis. TGCA, The Cancer Genome Atlas; GEO, Gene 
Expression Omnibus; CIBERSORT, Cell type Identification By Estimating Relative Subsets Of known RNA Transcripts; DFS, disease-free 
survival

http://cibersort.stanford.edu/
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was performed as described earlier,32,33 using monoclonal an-
tibodies against CD3 (SP7), CD8 (4B11), CD45RO (OPD4), 
CD57 (NK1), tryptase (AA1), CD1A (Ab-5), granulocytes 
(BM-2), PDPN (D2-40), cytokeratin (AE1AE3), FOXP3 
(ab20034; AbCam, Cambridge, United Kingdom) CD68 
(PGM-1), CD20 (L26; DAKO, Carpinteria, CA), IL3RA 
(IL3RA; ATLAS Antibodies, Stockholm, Sweden), CXCR5 
and IL-17 (H-132; Santa Cruz Biotechnology, Santa Cruz, 
CA). Isotype-matched mouse monoclonal antibodies were 
used as negative controls. Slides were analyzed using an 
image analysis workstation (Spot Browser, ALPHELYS). 
Polychromatic high-resolution spot-images (740 × 540 pixel, 
1.181 μm/pixel resolution) were obtained (x200 fold magni-
fication). The density was recorded as the number of positive 
cells per unit tissue surface area. For each duplicate, the mean 
density was used for statistical analysis.

2.4  |  Statistical analyses
Cases with a CIBERSORT P-value of <0.05 were included 
in the main survival analysis. Median of the proportion of 
each cell type were computed for survival analysis and mod-
eled as continuous variables in order to derive more easily 
interpretable hazard ratios (HRs). Associations between in-
ferred proportions of immune cell types and survival were 
tested using Cox regression. Immune cell subsets signifi-
cantly associated with outcome in unadjusted analyses were 
included in multivariable models. Multivariable analyses 
were adjusted for age, sex, local invasion, lymph node me-
tastasis, distant metastasis, and TNM stage. The associations 
of immune cell infiltrate and corresponding disease-free sur-
vival were analyzed by Kaplan-Meier curves and evaluated 
using log-rank test.

To assess the association between immune infiltration and 
response to chemotherapy, we identified and extracted pa-
tients who received chemotherapy after surgery from TCGA 
and GEO cohort if the relevant clinical information available 
and further investigated the influence of chemotherapy in dif-
ferent stratification.

To investigate whether distinct classes of immune cell in-
filtration are present in different tumors and whether these 
classes are associated with different clinical outcome, we 
conducted hierarchical clustering of immune cell propor-
tions. Values were rescaled to lie between zero (for the small-
est value observed) and one (for the greatest value observed) 
for each cell type to ensure comparability between rare (low 
overall proportion) and abundant (high overall proportion) 
cell types. Hierarchical clustering of these data by Ward’s 
method was conducted across all samples. A combination of 
the Elbow method and the Gap statistic was used to explore 
the likely number of distinct clusters in the data. The associa-
tions between clusters and clinical outcome were tested using 
the methods described above.

All analyses were conducted using R version 3.3. All 
statistical tests performed were two-sided, and the P values 
<0.05 were considered as statistical significance.

3  |   RESULTS

3.1  |  The performance of CIBERSORT for 
characterizing TIICs composition in CRC
Although CIBERSORT coupled with LM22 allows for 
highly sensitive and specific discrimination of human leu-
kocyte subsets, which had already applied in many previous 
studies.22-24 The realistic performance of CIBERSORT in 
CRC is not validated. To assess if the CIBERSORT could 
maintain its accuracy in CRC tissue, we applied an indirect 
compare between genomic and in suit immunohistochemis-
try analysis. Using tissue microarray, we examined the dif-
ferent TIICs subpopulations in CRC tissue of 30 patients 
(Figure 2A). All the TIICs subsets tested were found within 
the tumor at varying cell densities (Figure 2B). When com-
pared against above immunohistochemistry experiment, 
the result of CIBERSORT based on analyzing TCGA CRC 
genomic data shown a high degree of consistent (R2 = 0.59, 
P = 0.003; Figure 2C), which means CIBERSORT could 
accurately discriminate the proportions of TIICs subpopu-
lation in CRC. Additionally, the relative proportions of 22 
TIICs subpopulation, as inferred by CIBERSORT, are com-
pared between two independent datasets (TCGA CRC and 
GSE39582) both containing colorectal tumor and adjacent 
normal specimens. Although above genomic profiles were 
obtained using different technologies and specimen sources, 
the proportions of TIICs subpopulation highly correlated 
and did not show any evident cohort bias (Figure 2D). 
Moreover, as shown in Figure 2D, most TIICs subpopulation 
present with significant discrepancy in relative fractions. 
These data combined with previous studies21 indicated that 
CIBERSORT was powerful enough to discriminate TIICs 
subpopulation in CRC.

CIBERSORT is a gene expression-based deconvolution 
algorithm; it coupled with LM22, a defined “barcodes” 
with 547 gene expression signatures that distinguish 22 
immune cell subpopulations (Table S1), and empirically 
defined global P-value for characterizing immune cell 
composition. To evaluate the influence of P-value and bar-
code genes on CIBERSORT performance, we next com-
parative analyzed the CIBERSORT outcome across 644 
cases from the TCGA cohort where barcode genes were 
randomly removed in increments of 10%. As expected, the 
P-value was highly sensitive to diminishing representation 
of the barcode genes (Figure 2E). However, of the samples 
with 248, TIICs proportions remained relatively stable 
even if the barcode genes diminished from 100% to 40% 
(Figure S1). These findings imply that, while variation in 
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barcode genes greatly influences the measurement accu-
racy of the TIICs subpopulations, this effect is not signif-
icant when analyses are limited to samples with P < 0.05. 

Thus, unless otherwise specified, analyses in the current 
study were restricted to samples with P < 0.05 and bar-
code genes >40%.

F I G U R E   2   The performance of CIBERSORT for characterizing TIICs composition in CRC. A, Representative immunohistochemical images 
of infiltrated immune cells in CRC. T cells (quantified with marker CD3), cytotoxic T cells (CD8), memory T cells (CD45), Treg cells (FOXP3), 
activated T or NK cells (CD57), Tfh cells (CXCR5), Th17 cells (IL-17), B cells (CD20), iDCs (CD1a), macrophages (CD68), mast cells (Tryptase), 
neutrophils (granulocyte) were stained and quantified by immunohistochemistry. B, The cell density of immune cell subpopulations. The density 
of the cells was recorded as the number of positive cells per mm2 surface area by use of a dedicated image-analysis workstation (Spot Browser, 
Alphelys). To approximate ground truth proportions in CRC biopsies, levels were inferred by averaging TIICs counts from the tumor center and 
invasive margin of 30 patients. C, Relative TIICs proportions evaluated in CRC by CIBERSORT vs immunohistochemical analysis (IHC) on 
independent samples. CIBERSORT results are represented as mean TIICs proportions obtained from TCGA CRC cohort. D, Relative proportions 
of 22 TIICs subpopulation, as inferred by CIBERSORT, are compared between two independent datasets (TCGA CRC and GSE39582). E, Box plot 
of the distribution of CIBERSORT P-value and average Pearson’s correlation using datasets with progressively fewer (10% increments) barcode 
genes for 644 cases from the TCGA cohort
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3.2  |  The landscape of immune infiltration 
in CRC
Owing to technical limitation, the landscape of immune 
infiltration in CRC has not been entirely revealed, espe-
cially those low abundance cells subpopulation. Using 
CIBERSORT algorithm, we first investigated the differ-
ence of immune infiltration between paired cancer and 
paracancerous tissue in 22 subpopulations of immune 
cells. Figure 3A summarizes the results obtained from 
32 CRC patients. Detailed results are provided in Table 
S2. Obviously, the proportions of immune cells in CRC 
varies significantly between both intra- and intergroup 
(Figure 3A). Thus, we speculated that variation in TIICs 
proportions might be an intrinsic feature which could char-
acterize the individual differences. Indeed, the proportions 
of immune cells from 32 paired tissues displayed distinct 
group-bias clustering and individual differences by PCA 
(Figure 3B), while the proportions of different TIICs 
subpopulations were weakly to moderately correlated 
(Figure 3C). Compared with paracancerous tissue, CRC 
tissue generally contained a higher proportion for M0, M1, 
NK cells resting, plasma cell, and T-cells CD4 memory 
activated, whereas the mast cells resting and M2 fraction 
was relatively lower (Figure 3D, P < 0.05). Of note, above 
significantly changed TIICs subpopulation also contribute 
most to the distinct group-bias clustering in PCA analysis 
(Figure S2). Moreover, as shown in Figure 3E, using unsu-
pervised hierarchical clustering based on above-identified 
cells subpopulation, the samples of tumor and normal were 
clearly separated into two discrete groups. Together, these 
results indicated that aberrant immune infiltration and its 
heterogeneous in CRC as a tightly regulated process might 
have important clinical meanings.

3.3  |  CIBERSORT P-values reflect the 
overall proportion of immune cells
CIBERSORT algorithm only provides information about 
relative proportions among TIICs subpopulation, instead of 
actual value, which makes the results are not independent 
of each other. Of note, there were large differences in the 
proportions of samples with P-value <0.05 between studies, 
spanning the whole range of 20.63% through 88.72% of sam-
ples (Figure 4A). We speculated that the P-value derived by 
CIBERSORT would reflect the proportions of a sample that 
comprises immune cells vs nonimmune cells, where a greater 
proportion of immune cells would produce a correspond-
ing smaller P-value. To validate this speculation, we tested 
CIBERSORT P-value against immune cytolytic activity, 
which was defined by Rooney et al as the geometric mean 
of GZMA and PRF1 expression, in the two largest data-
sets: GEO and TCGA. Strong ordinal relationship existed 

between different P-value thresholds and cytolytic activity 
in both the GEO and TCGA datasets (Figure 4B). Besides, 
cytolytic activity was most strongly correlated with the pro-
portion of CD8+ T cells (Pearson correlation = 0.31) and M1 
macrophages (Pearson’s correlation = 0.49) in the TCGA 
and GEO cohort at a CIBERSORT P < 0.05 (Figure 3C). 
Collectively, these results strongly indicate that the P-value 
reflects the relative proportion of a sample composed of im-
mune vs nonimmune cells.

In further exploring the association between P-value 
thresholds and survival, we found patients with P < 0.01, 
corresponding to a greater proportion of immune cells, were 
not associated with improved survival. Actually, as shown in 
Figure 4C, stratifying patients according to P-value thresh-
olds formed nonsignificant Kaplan-Meier curves. Above re-
sults directly suggested that the prognostic effect of TIICs 
may mainly rely on the quantity of certain subsets rather than 
entirety.

Although there is still controversy, chemotherapy is uni-
versally recommended for CRC patients with stage II or III 
disease. Intriguingly, we noted that in those patients (TNM 
stage II or III) who were defined as high infiltration of im-
mune cells (CIBERSORT P < 0.01) had a favorable response 
to adjuvant chemotherapy. But for the same group of patients 
who have not received chemotherapy, high infiltration of 
immune cells could not improve the prognosis (Figure 4D). 
Collectively, these results revealed that CRC patients with in-
creased infiltration of immune cells may benefit more from 
chemotherapy.

3.4  |  Identification of prognostic subsets of 
TIICs in CRC
Although the genomic profiles were obtained using different 
technologies, owing to the fact that the proportion of TIICs 
subsets were obtained using uniform algorithm and they did 
not show any evident cohort-bias clustering (Figure 5A). 
Thus, we combined the cohort form TCGA and GEO, and fur-
ther investigated whether there was TIICs subpopulation sta-
tistically correlated with CRC-related recurrence/progress by 
univariate Cox regression analysis. The unadjusted HRs and 
95% confidence intervals for the median proportion of TIICs 
subsets is depicted in Figure 5B. Detailed results are provided 
in Table S3. Macrophages M1 (hazard ratio [HR] = 0.77, 
95% CI = 0.61-0.98; P = 0.031) and dendritic activated 
cells (HR = 0.79, 95% CI = 0.62-0.99; P = 0.045) were 
significantly associated with improved outcome, whereas 
eosinophils (HR = 1.35, 95% CI = 1.07-1.70; P = 0.012), 
neutrophils (HR = 1.37, 95% CI = 1.08-1.73; P = 0.008), 
and macrophages M2 (HR = 1.58, 95% CI = 1.25-2.01; 
P < 0.001) were associated with poorer outcome. Kaplan-
Meier curve and log-rank test for above-identified TIICs sub-
sets and the rest are shown in Figures 5C and S3, respectively.
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We next assessed whether those selected TIICs sub-
sets represent an independent indicator in CRC patients. 
Multivariable analyses adjusted for known prognostic factors 

revealed that, besides TNM stage, distant metastasis (M0/
M1) and Local invasion (T3-T4/T1-T2) and lymph node me-
tastasis (N0/N1-N2), relative proportions of Macrophages 

F I G U R E   3   The landscape of immune infiltration in CRC. A, The difference of immune infiltration between paired cancer and paracancerous 
tissue. B, Principal components analysis performed on all paired CRC samples. The first two principal components which explain the most of the 
data variation are shown. C, Correlation matrix of all 22 immune cell proportions and immune cytolytic activity in the TCGA cohort. Variables 
have been ordered by average linkage clustering. D, Volcano Plot visualizing the differentially infiltrated immune cells. The red and blue points 
in plot represent the differentially subpopulations with statistical significance (P < 0.05). E, Heat map of the 22 immune cell proportions. The 
horizontal axis shows the clustering information of samples which were divided into two major clusters
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M1 (HR = 0.58, 95% CI = 0.42-0.82; P = 0.002), neutro-
phils (HR = 1.41, 95% CI = 1.00-1.98; P = 0.049), and ma-
rophages M2 (HR = 1.34, 95% CI = 1.05-1.897; P = 0.042) 
was independent prognostic factors for DFS (Table S3), 
which means those TIICs subsets could add additional prog-
nostic value to the current stage system.

3.5  |  Immune clusters associated with 
prognosis and molecular subtypes
According to our findings, the variation of TIICs subsets 
change considerably at individual level and partly reflect the 
prognosis. We wonder whether distinct patterns of immune 
infiltration could be discerned based on the 22 TIICs subpro-
portions by performing hierarchical clustering of all samples. 
The optimal number of clusters was determined by combin-
ing Elbow method and Gap statistic method, and the more 
balanced partition, as suggested, appeared to be for k = 5 
(Figure S4). The consensus matrix heatmap revealed the iden-
tified five clusters, among which C1, C4, and C5 appeared as 
well individualized clusters, whereas there was more clas-
sification overlap between C2 and C3 (Figure 6A). The cell 
proportions of each clusters were shown in Figure 6B, and 
their distributions were depicted as box plots in Figure S5. 

Moreover, clusters were associated with distinct patterns of 
survival (Figure 6C). For example, cluster 4, defined by high 
levels of M2 macrophages, and cluster 2, defined by a rela-
tive high level of M2 macrophages and CD4 memory resting 
T cells, were both associated with poor outcome. In contrast, 
cluster 5, defined by moderate M1 macrophages and plasma 
cells and a high level of NK resting cells, was associated with 
improved outcome (Figure S5). More importantly, clusters 
were also significantly associated with previously defined 
molecular subtype (P < 0.001; Figure S6). Collectively, 
these findings not only suggested that there is considerable 
variability in the nature of the immune infiltrate across CRC, 
which partly determined by the molecular characteristics of 
tumour, but also revealed that immune clusters could influ-
ence clinical outcome.

4  |   DISCUSSIONS

In addition to malignant neoplastic cells, cancer tissues also 
include immune cells, fibroblasts, endothelial cells, and an 
abundant collection of cytokines, chemokines, growth fac-
tors.10 Those components and their complicated interaction 
form the tumor-related microenvironment which can exert 

F I G U R E   4   CIBERSORT P-values reflect the overall proportion of immune cells. A, The proportion of samples with different P-value 
threshold between studies. B, Box plots depicting the association between immune cytolytic activity and CIBERSORT P-value, depicted P-values 
are from Kruskal-Wallis tests. C, Survival plots of groups defined by CIBERSORT P-value separately by data source (TCGA, GEO), depicted P-
values are from log-rank tests. D, Effect of overall immune infiltration on disease-free survival in patients with records of chemotherapy or not. The 
survival of CRC patient subgroup with tumours containing low and high immune infiltration by CIBERSORT P-value, depicted P-values are from 
log-rank tests



4504  |      XIONG et al.

inhibitory effects on even aggressive malignant cell, but 
during their progression, tumor cells may circumvent these 
inhibitory signals and instead exploit immune cells and oth-
ers for their own benefits, resulting in growth, invasion, and 
metastasis.34-36 The predominant host cells recruited to and 
activated in the tumor microenvironment are various immune 
cells.10 It is well recognized that between immune cells and 
malignant cells in the tumor stroma, there is in fact a complex 
biological process which has significant prognostic relevance 
as the immune system has both tumor-promoting and tumor-
inhibiting roles.37 In CRC, there is a marked infiltration of 
different types of immune cells, and the distribution, tissue 
localization, and cell types are significantly associated with 
progression and survival. For example, patients with stage III 
CRC whose tumors had low TIICs, the 5-year OS and DFS 
rates were significantly lower as compared to the high TIICs 
group.38 In addition, high infiltration of TIICs in rectal can-
cer biopsies was associated with improved tumor response 
to preoperative radiochemotherapy and was significantly 

correlated with prolonged disease-free and overall survival.39 
These results providing evidence that immune cell infiltra-
tion represents not only a favorable prognostic factor but also 
could be predictive for the outcome of chemotherapies.

Despite growing studies shown that TIICs present with 
great promise in predicting the clinical outcome and treat-
ment response at the individual level. One emerging ques-
tion is whether certain subpopulation of TIICs plays a major 
role in influencing prognosis instead of overall infiltration. 
Actually, many previous studies demonstrated that certain 
TIICs subpopulation such as increased mature T cells, den-
dritic cells, and memory T-cells infiltration are commonly 
related with favorable prognosis, while immune suppressive 
regulatory T cells are opposite.15-17 However, owing to the 
technical limitation, previous studies have been limited to a 
very narrow view of immune response. They evaluated TIICs 
by immunohistochemistry-based analysis, which depends 
on a single surface marker to identify TIICs subpopulation. 
Obviously, this approach considerably less effective for 

F I G U R E   5   Identification of prognostic subsets of TIICs in CRC. A, Scatter plots depicting the variation of 22 TIICs subpopulations cross 
all sample from GEO and TCGA. The first two principal components which explain the most of the data variation are shown. Patients are labeled 
with different color according to the cohort to which they belong. B, Prognostic associations of TIICs subpopulation. Unadjusted HRs (boxes) and 
95% confidence intervals (horizontal lines) limited to cases with CIBERSORT P-value <0.05. Box size is inversely proportional to the width of the 
confidence interval. Number marked in red denote estimates with a P-value <0.05. C, Survival plots of median of immune cell subsets. Depicted 
P-values are from log-rank tests.HR, hazard ratio
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discriminating closely related cell types and can be mislead-
ing as many marker proteins are expressed in different cell 
types. Thus, inconsistent results could usually be observed in 
clinical researches.

Advances in computational methods have reinvigorated 
the potential of large public repositories of genomic data 
collected over the past two decades. Surprisingly, integrating 
genomic profiles and the state-of-the-art deconvolution algo-
rithm, it is now possible to accurately resolve relative propor-
tions of diverse TIICs subpopulation and overcome the defect 

of traditional immunohistochemistry-based method.40,41 
Thus, in the current study, using a silicon analyses, known 
as CIBERSORT,21 to infer the proportions of 22 immune cell 
subsets from CRC transcriptomes, we have performed, to our 
knowledge, the most comprehensive analysis of the clinical 
impact of the immune response in CRC to date.

However, as an emerging technologies, CIBERSORT 
was only conducted in breast cancer,24 lung cancer,22 and 
artificial leukocyte signature matrix.41 The realistic perfor-
mance of CIBERSORT in CRC is not validated. Thus, before 

F I G U R E   6   Immune clusters associated with prognosis and molecular subtypes. A, Consensus matrix heatmap defining five clusters of 
samples for which consensus values range from 0 (in white, samples never clustered together) to 1 (dark blue, samples always clustered together). B, 
Hierarchical clustering of all samples based on immune cell proportions. Stacked bar charts of samples ordered by cluster assignment. C, Kaplan-
Meier survival analysis of patients within different clusters. Depicted P-values are from log-rank tests
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our further analysis, we first applied an indirect compare be-
tween genomic and in suit immunohistochemistry analysis. 
We found that CIBERSORT was not only powerful enough 
to discriminate TIICs subtype in CRC, but also could remain 
consistency cross different genomic data resources. Those 
data were well in line with the results obtained by Gentles 
et al in comparing flow cytometry and immunohistochem-
istry experiment with CIBERSORT results.42 In addition, 
we also assessed the influence of P-value and barcode genes 
on CIBERSORT performance. We found that the number of 
barcode genes greatly influences the accuracy of discrimi-
nating TIICs subpopulation, while this effect is not signif-
icant when analyses are limited to samples with P < 0.05.

As an important statistical value, Raza Ali and his col-
leagues24 speculate that P-value derived by CIBERSORT 
would reflect the proportion of a sample that comprises im-
mune cells vs nonimmune cells, and finally validated their 
hypothesis. In the present study, we also obtained similar 
conclusions in CRC by using the same verification process. 
Recent studies demonstrated that the presence of TIICs was 
correlated with increased survival in the patients who had 
complete responses after chemotherapy.2,43 In further explor-
ing the association between overall proportion of immune 
cells (P-value thresholds) and survival, we also found CRC 
patients with increased infiltration of immune cells may ben-
efit more from chemotherapy.

Previously, it was thought that CRC was not an immuno-
genic cancer type, in contrast to melanoma or breast cancer.44 
However, our unbiased method clearly confirmed that the im-
mune infiltration is indeed involved in colorectal tumorigene-
sis. Using CIBERSORT, we directly compared the alteration 
of 22 subpopulations of immune cells between paired CRC 
and adjacent normal tissue for the first time, and found sig-
nificant change occurred in both intra- and intergroup. More 
importantly, proportions of immune cells from 51 paired tis-
sues displayed distinct group-bias clustering and individual 
differences by PCA, which indicated that the variation of 
TIICs subtype as an intrinsic feature of CRC could charac-
terize the individual differences and have important clinical 
meanings. Additionally, our data first revealed the detail of 
infiltration of 22 TIICs subsets in CRC that the proportions 
of macrophages account for more than 30%, in which 21% is 
M0, 13% is M2, whereas M1 only make up 5%. Moreover, 
CD4 memory resting T cells as a single TIICs subset occu-
pied the biggest proportion (24%). As a subpopulation of T 
cells, CD4 memory resting T cells could further differentia-
tion and been given a various function, including aid CD8+ 
T cells in tumor rejection, suppressing harmful immunologi-
cal reactions to self- and foreign antigens and even blocking 
CD8+ T-cell activation and NK cell killing.45,46 Thus, it can 
be seen that CD4 memory resting T cells play a pivotal role 
in the development of CRC and its direction of differentiation 
could be a potential therapeutic target.

In univariate Cox regression analysis, we found that mac-
rophages M1 (hazard ratio [HR] = 0.77, 95% CI = 0.61-0.98; 
P = 0.031) and dendritic activated cells (HR = 0.79, 95% 
CI = 0.62-0.99; P = 0.045) were significantly associated 
with improved outcome, whereas eosinophils (HR = 1.35, 
95% CI = 1.07-1.70; P = 0.012), neutrophils (HR = 1.37, 
95% CI = 1.08-1.73; P = 0.008) and macrophages M2 
(HR = 1.58, 95% CI = 1.25-2.01; P < 0.001) were asso-
ciated with poorer outcome. It is well known that the M1 
(activated; anti-tumoural) and M2 (alternatively activated; 
pro-tumoral) phenotypes are associated with distinct im-
munoregulatory functions. Tumors are likely to change its 
macrophages subtype based on the microenvironment, which 
process represent a spectrum of functional states rather than 
truly distinct cell types,22 and our finding of an association 
between M1/M2 macrophages and improved/poorer outcome 
may reflect this gradation of function. We also found that 
the proportions of M1, and M2 macrophages defined several 
immune cell signatures in our clustering analysis, with prog-
nostic implications. Moreover, neutrophils have been associ-
ated with angiogenesis and metastasis in animal models and 
increased neutrophil numbers are related to poor prognosis.47 
The presence of high dendritic cells showed a trend toward 
an improved DFS.16 Our data came to confirm and extend 
the findings from previous studies mentioned above that it is 
the certain TIICs subpopulation instead of overall immune 
cell infiltration has the capacity to predict clinical outcomes. 
Interestingly, some TIICs subsets such as M0, mast cells 
resting, and NK cells resting differently infiltrated between 
tumor and adjacent normal tissue in CRC and the difference 
was statistically significant, which means above TIICs sub-
sets play a role in colorectal tumorigenesis. However, we did 
not find association between those TIICs subsets and clinical 
outcomes. This may reflect the functional heterogeneity of 
TIICs subsets during the development of tumor.

Jérôme Galon et al defined the concept of cancer immune-
contexture, pioneered the immunoscore as a new method for 
routine clinical assessment of prognosis of patients with 
CRC.48,49 According to the immunoscore, the most import-
ant cells associated with the prognosis are CD8+ cytotoxic T 
cells. However, in this study, the percentage of CD8+ T cells 
in entire TIICs were uncorrelated with DFS. The results in 
this study were obtained based on integrating gene expres-
sion profiles and computer algorithm. The radical difference 
in the methods between our and Jérôme Galon’s study may 
the potential explanation for the discrepancy. Of note is that 
our results dose not negate the fact densities of CD8+ T cells 
allowed the stratification of patients into groups with differ-
ent DFS rates.

Despite the significant results obtained in this present 
study, there were several shortcomings. In order to increase 
our sample size, we combined the clinical annotated genomic 
data from GEO and TCGA. Notwithstanding statistical 
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methods has been conducted to eliminate cohort bias, het-
erogeneity in these data still impede the repeatability in some 
level. In addition, in our effort to obtain reliable estimates 
of association with clinical outcome, we collated diverse and 
heterogeneous studies and only remained the disease-free 
survival, which with the highest integrality, and this process 
inevitably resulted in losing of some useful information.

In summary, our analysis of 22 immune cell subsets in 
CRC has revealed important associations with clinical out-
come that have the potential to identify patients who could 
benefit from chemotherapy, as well as highlighting possible 
targets for new drugs. Coupling reliable deconvolution algo-
rithms with large-scale genomic data have the potential to 
further uncover the clinical and biological significance of the 
noncancer cells that comprise the tumor microenvironment 
in CRC.
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