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ILC2s in Virus-induced Asthma Exacerbations: A Starring or
Supportive Role?

Perhaps there is no greater proof of the contribution of viral
infections to asthma exacerbation than the significant reductions
in healthcare utilization by patients with asthma since the
coronavirus disease (COVID-19) pandemic began inMarch 2020.
With the introduction of masking and social distancing, seasonal
respiratory viruses—rhinoviruses, respiratory syncytial virus,
influenza, parainfluenza viruses, humanmetapneumovirus,
seasonal coronaviruses (OC43, 229E, NL63, HKU1),
enteroviruses, and others—soon disappeared, first in Australia
and New Zealand and then Europe and North America.
Accordingly, asthma exacerbations requiring steroid treatment,
emergency room visits, and hospitalizations fell around the world.
Medical utilization rates were especially decreased in children.

The role of viruses in asthma exacerbations has not always been
apparent, however. In the 20th century, most reviews of asthma
triggers focused on exposure to allergens, such as pets, dust, and
mold, as well as exposure to air pollution and tobacco smoke. It was
only with the advent of PCR that exacerbations were finally linked
with asthma exacerbation. A series of PCR-based studies looking at
the prevalence of virus identification among various cohorts of
patients with asthma when sick and well consistently showed a higher
prevalence of viral infection during exacerbations, with rhinovirus
making up at least half of the viruses isolated. Subsequent studies
employing experimental infection of humans andmice showed that
rhinovirus can infect the lower airways and cause exacerbations of
allergic airways disease. But the pathogenesis of viral-induced asthma
attacks has beenmore difficult to determine. Previous studies
identified roles for exudative macrophages (1), plasmacytoid
dendritic cells (2), and others.

At the same time, pediatricians recognized an association
between early life viral infections and asthma. Initial attention
focused on infection with respiratory syncytial virus and later
rhinovirus. But how do respiratory viral infections, which
generally induce a short-lived neutrophilic inflammatory
response, cause eosinophilic inflammation and mucus
hypersecretion typical of allergic asthma?

It was then of great interest when type 2 innate lymphoid cells
(ILC2s), also known as natural helper cells or nuocytes, were
identified (3–5). ILC2s, although lymphoid in appearance, do not

express cell surface receptors of the T, B, or natural killer cell lineage
(thus, they are lineage negative). Stimulated by the epithelial-derived
innate cytokines IL-25, IL-33, and thymic stromal lymphopoietin
(TSLP), ILC2s are capable of generating cytokines typically associated
with T-helper 2 (Th2) cells, including IL-5, IL-13, IL-9, and, to a
lesser extent, IL-4. Importantly, ILC2 activation does not require
antigen presentation by dendritic cells. Thus, mucosal ILC2s,
stimulated upon epithelial infection or damage, are optimally situated
to mediate viral-induced asthma phenotypes. Finally, additional
studies suggest that ILC2s play a crucial role in memory responses,
enhancing Th2 cell activation in response to allergens (6).

The stage was now set for an examination of the role of ILC2s in
virus-induced asthma exacerbations. In this issue of the Journal,
Dhariwal and colleagues (pp. 1259–1273) measured nasal and BAL
cytokines and ILC2s in control subjects and subjects with asthma
before and after nasal challenge with rhinovirus A16 (7). Patients with
asthma were required to have a doctor diagnosis, treatment with
inhaled corticosteroids, airways hyperresponsiveness by
bronchoconstrictor challenge testing, and evidence of atopy on skin
prick testing. ILC populations were identified by flow cytometry. In
addition to lineage-negative, CD451 (cluster of differentiation 45
positive), CD1271, and chemoattractant receptor homologous
molecule expressed on T helper type 2 cells-positive (CRTH21)
ILC2s, the investigators measured IFN-g–producing CRTH2-ILC1s.
Thus, the ratio of ILC2 to ILC1 cells represents the skewing of the ILC
response toward, or away from, a type 2 phenotype. As might be
expected, subjects with asthma showed higher baseline levels of nasal
IL-5 and BAL ILC2s than control subjects.

Upon rhinovirus infection, both control subjects and subjects
with asthma showed increased nasal type 1 cytokines (IFN-g, C-X-C
ligand [CXCL]10, CXCL11, and CXCL12) and BAL ILC1s, consistent
with a canonical antiviral response, although the ILC1 response was
delayed in subjects with asthma. In contrast, nasal IL-4, IL-5, IL-9,
and IL-13 levels were significantly higher during infection in patients
with asthma but not control subjects. Both control subjects and those
with asthma showed a significant increase in ILC2s with infection,
again with a delayed response in subjects with asthma. ILC2/ILC1
ratios were higher in subjects with asthma both before and during
infection. Importantly, pulmonary ILC2/ILC1 ratios correlated with
type 2 cytokine levels, viral load, and change in FEV1, consistent with
a causal role for ILC2s in exacerbation severity. Together, these results
establish ILC2s as a likely mediator of viral-induced exacerbations in
patients with allergic asthma. Furthermore, they provide additional
evidence of type 2 skewing of the immune system, with depressed
antiviral responses, in subjects with allergic asthma. Thus, the ILC2
and its upstream activators should be added to list of cell and
molecular targets for asthma therapy. Indeed, antibodies against
IL-25, IL-33, and TSLP are under development. Small molecule
inhibitors of ROR-a (retinoic acid receptor–related orphan
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receptor-a), a transcription factor required for ILC2 development (8),
may also hold promise.

Another important observation was that viral load was
significantly higher in subjects with allergic asthma compared with
control subjects, consistent with a depressed antiviral response.
However, other studies of experimental rhinovirus infection have
found no differences in viral load (9, 10), and data from patients with
real-life viral infections are lacking.

Although the study by Dhariwal and colleagues (7)
represents an advance in our standing of virus-induced asthma
exacerbations, the picture remains incomplete. Recent studies
have illustrated the heterogeneity of ILC2s. Natural ILC2 reside
in the lung and expand modestly in response to IL-33,
consistent with the results of this study (11). In contrast,
inflammatory ILC2s can be detected in the bone marrow and
peripheral blood and appear rapidly and in large numbers after
IL-25 administration. In addition, the plasticity of ILCs has
been emphasized. For example, it is possible that ILC2
expansion in subjects with asthma was limited by conversion
of ILC2s into ILC1s through exposure to IL-1b and IL-12 (12,
13), both of which are induced by viral infection (7, 14). IL-1b
and IFN-g have also been shown to attenuate ILC2 maturation
and function (15, 16). Thus, just as Th1 cell–derived IFN-g
antagonizes Th2 cellular differentiation, counterregulation of
ILC2 responses also exists.

The observed correlations between asthma exacerbation
severity and ILC2/ILC1 ratio do not exclude a causal role for
other innate immune cells, including exudative macrophages
and plasmacytoid dendritic cells. Although naïve T cells would
not be expected to play a significant role in the early response
to a new viral infection, Th2 cells present in the allergic airway
may also play a role. Furthermore, the response of patients
with severe, nonallergic asthma to respiratory viral infections
has not been studied and may be different for patients with
allergic asthma, as it is against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (17). Finally, other
respiratory viruses, and even other rhinovirus species, may
have qualitatively disparate effects on airway inflammation. For
example, we have recently shown that rhinovirus C induces an
exaggerated ILC2 response, which is permitted by reduced
inflammasome/IL-1b activation (18).

Dharwial and colleagues have cast ILC2s as an actor in viral-
induced asthma exacerbation. But will it be a leading or supporting
role?We look forward to further studies examining ILCs in asthma
pathogenesis.�
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