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Abstract

N-nitroso compounds (NOCs) and Epstein-Barr virus (EBV) reactivation have been suggested to play a role in the
development of nasopharyngeal carcinoma (NPC). Although chemicals have been shown to be a risk factor
contributing to the carcinogenesis of NPC, the underlying mechanism is not fully understood. We demonstrated
recently that N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) enhances the genomic instability and tumorigenicity of
NPC cells via induction of EBV reactivation. However, the mechanisms that trigger EBV reactivation from latency
remain unclear. Here, we address the role of ROS in induction of EBV reactivation under MNNG treatment. EBV
reactivation was induced in over 70% of EBV-positive NA cells and the promoter of Rta (Rp) was activated after
MNNG treatment. Inhibitor experiments revealed ATM, p38 MAPK and JNK were activated by ROS and involved in
MNNG-induced EBV reactivation. Significantly, ROS scavengers N-acetyl-L-cysteine (NAC), catalase and reduced
glutathione inhibited EBV reactivation under MNNG and H,O, treatment, suggesting ROS mediate EBV reactivation.
The p53 was essential for EBV reactivation and the Rp activation by MNNG. Moreover, the p53 was phosphorylated,
translocated into nucleus, and bound to Rp following ROS stimulation. The results suggest ROS play an important
role in initiation of EBV reactivation by MNNG through a p53-dependent mechanism. Our findings demonstrate novel
signaling mechanisms used by NOCs to induce EBV reactivation and provide a novel insight into NOCs link the EBV
reactivation in the contribution to the development of NPC. Notably, this study indicates that antioxidants might be
effective for inhibiting N-nitroso compound-induced EBV reactivation and therefore could be promising preventive
and therapeutic agents for EBV reactivation-associated malignancies.
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Introduction

N-nitroso compounds (NOCs) have been classified by the
International Agency for Research on Cancer as probably
carcinogenic to humans (group 2A) [1]. NOCs are a group of
compounds containing a nitroso group bound to a nitrogen
atom. Humans are exposed to NOCs, not only through diet and
cigarette smoking, but also through nitrogen-containing
compounds which can be converted into nitroso derivatives in
the gastrointestinal tract [2]. Epidemiological studies have
associated human exposure to endogenous NOCs with several
types of cancers including nasopharyngeal, esophageal,
stomach, gastric, colorectal and bladder cancer [3,4].

Nasopharyngeal carcinoma (NPC) is a common head and
neck cancer. The incidence rate is higher (25-30 per 100,000
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person-years) in certain regions of southern China, Taiwan and
Southeast Asia than others around the world (less than 1 per
100,000 person-years) [5,6]. Dietary, viral and genetic factors
are implicated in the development of NPC [7]. Several studies
have reported a close association between the consumption of
salted fish and an excess risk of NPC in high-risk areas [8,9].
Volatile NOCs and their precursors are present in foods from
NPC high risk areas and considered to be a potential
etiological factor for NPC [10,11].

Epstein-Barr virus (EBV) infection has been associated with
the development of many human malignancies, including NPC
[12]. Retrospective studies revealed that NPC patients have
elevated antibody titers to EBV antigens prior to diagnosis and
prospective studies also showed that individuals with elevated
antibodies against EBV have a higher risk of the development
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of NPC [13-15]. Moreover, seroepidemiological studies
revealed that populations living in NPC high risk areas have
high frequencies and serum titers of antibodies against EBV
antigens [16,17]. Based on these observations, detection of
antibodies against EBV antigens has been established as a
standard test for NPC in high-risk populations [16,18,19].
Elevation of antibodies against EBV has been considered as a
marker of EBV reactivation [18,20,21]. These antibody titers
against EBV antigens are correlated with tumor burden,
increase with the advancement of the stage of NPC [22,23],
decrease after therapy with remission [22], and increase prior
to relapse and metastasis [22,24]. These studies incriminate
EBV reactivation as a cause of NPC. It is clear that EBV plays
an etiological role in the carcinogenesis of NPC. However,
infection with EBV is ubiquitous and persists latently in over
90% of the world’s population [25], but an extremely high
incidence of NPC occur predominantly only in specific
geographical regions [21]. Therefore, it is apparent that EBV
infection alone is not a sufficient cause of NPC. Specific
enviromental cofactors such as chemical exposure and dietary
factors, which exist in high-incidence areas, may be critical for
increasing the risk of NPC. Preserved food samples from NPC
high risk areas were also found to contain inducers of EBV
reactivation as well as NOCs [26]. Our recent study showed
that N-methyl-N’-nitro-N-nitrosoguanidine (MNNG, a
nitrosamide) could initiate EBV reactivation in EBV-positive
NPC cells. Repeated treatment with a low dose of MNNG
(0.1pg/ml) could induce EBV reactivation and had a synergistic
effect with TPA/SB (inducers of EBV reactivation abundant in
traditional Chinese herbal medicines and food sources,
respectively) to enhance EBV reactivation [27]. Moreover,
genome instability, invasiveness and the tumorigenicity of NPC
cells were also enhanced after recurrent EBV reactivation [28].
These results strongly support the notion that chemical-induced
EBV reactivation may contribute to the carcinogenesis of NPC
[29]. However, the underlying mechanism by which N-nitroso
compounds cause the initiation of EBV reactivation has not
been extensively studied yet.

Over the past few decades, a considerable number of
studies have demonstrated that cancer cells, compared to
normal cells, are under high oxidative stress and this may alter
metabolic activity significantly, stimulate cellular proliferation,
and promote mutation and genomic instability [30]. Therefore, it
is assumed that ROS are involved in the initiation, promotion
and progression of tumors [31]. ROS are broadly defined as
free radicals that contain unpaired electrons, such as
superoxide (O,-) and hydroxyl radicals (-OH), and reactive non-
radicals that are oxidizing agents or are easily converted into
radicals, such as hydrogen peroxide (H,0,) [32]. There is
evidence that viral infections (hepatitis C, HIV and influenza)
are associated with an increased production of ROS and that
could be involved in the pathogenesis [33,34]. EBV infection is
also associated with the production of ROS [35,36] and this
has been reported in EBV-associated diseases such as
Burkitt's lymphoma and NPC [37,38]. These studies imply that
ROS are incriminated in EBV-associated disease. However,
the effects of ROS on EBV infection remain unknown.
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In this study, we use the ROS scavengers and donors to
explore the role of ROS during EBV infection, in response to
MNNG treatment. We find that ROS generation not only is
required for efficient lytic reactivation by MNNG but also plays
a crucial role in facilitating viral reactivation in response to the
ROS donor, H,0,. Various signaling pathways including ATM,
p38 MAPK and JNK, activated by ROS, are involved in MNNG
induction of EBV reactivation and are responsible for multiple
phosphorylation of p53. We also show that activation of the p53
protein is essential for MNNG induction of EBV reactivation and
the mechanism of p53-mediated Rta promoter (Rp) activation
requires p53 binding to Rp following ROS stimulation. These
results suggest ROS play an important role in initiating EBV
reactivation through p53-dependent mechanism.

Materials and Methods

Cell lines

TWO1 cells are EBV-negative NPC cell line derived from
nasopharyngeal tumors from Taiwanese patients [39]. EBV-
positive cell lines, NA, HA and H1299A cells respectively
derived from TWO01, HONE-1 (NPC cell lines derived from a
Chinese NPC patient) and H1299 cells (human lung
adenocarcinoma cells with a deletion of the p53 gene), were
established by infection with a neomycin-resistant recombinant
Akata-EBV and selected by G418 [40]. All cells were cultured
in Dulbecco's modified Eagle medium supplemented with 10%
fetal bovine serum (HyClone, Waltham, MA) at 37°C with 5%
CO,. G418 (400 pg/ml, Ameresco, Solon, OH) was added to
the medium of NA, HA and H1299A cells to maintain the EBV
genome. C666-1, which consistently carries the EBV in long-
term cultures, is a subclone of its parental cell line C666,
derived from a southern Chinese NPC patient [41]. The cells
were cultured in RPMI-1640 medium (HyClone, Waltham, MA)
supplemented with 5% fetal bovine serum (HyClone, Waltham,
MA) at 37°C with 5% CO2.

Plasmids

Plasmids expressing siRNA targeting p53 and green
fluorescence protein (GFP) were constructed by cloning siRNA
sequences into pSuper vectors (Oligoengine) described in a
previous publication [42]. Plasmids expressing wild-type p53
were kindly provided by Dr. Sheau-Yann Shieh (Institute of
Biomedical Sciences, Academia Sinica, Taipei, Taiwan). The
reporter plasmids driven by the BRLF1 (Rp, nucleotides nt.
106177 to 107144) or the BZLF1 promoter sequence (Zp,
nucleotides nt. 103182 to 103415) of the EBV genome from
B95-8 were amplified by PCR and ligated into the pGL2-basic
vector (Promega).

Antibodies and chemicals

Antibodies against Zta [43] and EA-D [44] were generated in
the laboratories. Anti-Rta antibody was obtained from Argene.
Anti-phospho-ATM  (1981), anti-phospho-ERK1/2  (Thr202/
Tyr201), anti-phospho-SAPK/JNK  (Thr183/Tyr182), anti-
phospho-p38 MAPK (Thr180/Tyr182), Anti-ATM, anti-ERK1/2,
anti-SAPK/JNK, anti-p38 MAPK, anti-B-actin antibody and

December 2013 | Volume 8 | Issue 12 | e84919



phospho-p53 antibody Sampler Kit were purchased from Cell
Signaling Technology. FITC-conjugated anti-mouse antibody
was purchased from Upstate. Anti-Sp1 and anti-p53 were
obtained from Santa Cruz. N-methyl-N’-nitro-N-
nitrosoguanidine (MNNG), 12-O-tetradecanoylphorbol-1, 3-
acetate (TPA), dihydroethidium (DHE), N-acetyl-L-cysteine
(NAC), catalase, reduced glutathione, H,0,, caffeine, U0126,
SB203580, SP600125, rottlerin, wortmannin, Bay11-7082 were
purchased from Sigma-Aldrich.

Western Blotting

Cells were lysed in lysis buffer containing 3.3% SDS, 1.67 M
urea and 4.4% 2-mercaptoethanol. The BCA protein assay kit
(Pierce, USA) was used to determine protein concentrations
using bovine serum albumin as a standard. Cellular lysates
were loaded onto 10% SDS-polyacrylamide gels. The protein
bands were then electrophoretically transferred to Hybond-C
membranes (Amersham). Membranes were probed with
appropriate amounts of primary antibody and followed with a
horseradish  peroxidase-conjugated secondary antibody.
Antibody reactions were detected using the ECL Western
blotting detection reagent (Amersham) according to the
manufacturer's recommendations.

Immunofluorescence assay

Cells were washed with phosphate buffered saline (PBS)
followed by fixation and premeabilization by exposure to ice-
cold 100% methanol for 15 min. The cells were submitted to
immunofluorescence staining using antibodies against the Zta,
EA-D or p53 protein as primary antibodies, and then FITC-
labeled goat anti-mouse IgG as the secondary antibody. The
nuclei were stained with Hoechst 33258 (1ug/ml) for 1 min and
washed with PBS, and the coverslips were mounted on slides
and images were captured by fluorescence microscope.

Quantitative reverse transcription-PCR (qRT-PCR)

Total RNA was extracted by using Trizol reagent (Invitrogen).
Reverse transcription of 1 yg RNA was performed in a 20 pl
SuperScript Il reaction mixtures (Invitrogen) according to the
manufacturer’s instructions. One tenth of the resulting cDNAs
were used for each gqPCR composed of 4 pl diluted cDNA, 5 pl
Power SYBR Green Master Mix (Applied Biosystems) and 1 pl
primer mix (2 pM). Three independent experiments were
performed and each individual samples were performed in
triplicate. The amount of RNA present in each sample was
normalized to 18S rRNA. The primers used in the present
study were as follows: Zta-forward (5-GAGTC AACAT CCAGG
CTTGG-3') and Zta-reverse (5-GCAGC ACTAC CGTGA
GGTG-3'); Rta forward (5-TGGTC AGTTC GTCCA AATGG-3’)
and Rta-reverse (5-CCAGA AGGAG GAAGC AGCC-3’); 18S
rRNA-forward (5'-CGCCG CTAGA GGTGA AATTC-3') and
18S rRNA-reverse (5-TTGGC AAATG CTTTC GCTC-3’). The
reaction was performed on StepOnePlus Real-Time PCR
system (Applied Biosystems).
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Measurement of ROS

Cells were treated with MNNG for 24 h, and finally co-
incubated with 10 yM ROS-sensitive probe DHE for 1 h. After
incubation, cells were harvested by trypsinization. The labeled
samples were analyzed by the FACScan flowcytometer and the
CellQuest software (BD Biosciences, San Jose, CA). Ten
thousand events were collected from each sample. The
intracellular levels of ROS were calculated as the mean
fluorescence intensity (MFI).

Promoter activity assay

Two pg Rp or Zp-firefly luciferase reporter plasmid and 0.1
ug renilla luciferase reporter plasmid (pWP1, Promega) as a
control were co-transfected into TWO01 cells. Twenty-four hours
post-transfection, the cells were treated with MNNG for another
24 h and then harvested and subjected to the luciferase assay
using a Dual-Glo assay kit (Promega). Luciferase activity was
measured for 10s with a Lumat LB9501 luminometer (Berthold
Systems, Inc.). The firefly luciferase activity of each sample
was normalized to the renilla luciferase activity. The fold of
relative promoter activity was calculated by dividing that of the
drug-treated transfectants by that of solvent control
transfectants.

Chromatin-Immunoprecipitation (ChiP) Assay

Cells were trypsinized and cross-linked with formaldehyde
for 10 min. The cross-linking was stopped by adding glycine for
10 min. Cell pellets were resuspended in cell lysis buffer (50
mM HEPES-KOH pH7.5, 140mM NaCl, 1 mM EDTA, 10%
glycerol, 0.5% NP40, 0.25% triton X-100). Nuclei were pelleted
and resuspended in nuclei lysis buffer (50 mM Tris pH 8.1, 10
mM EDTA, 1% SDS) containing phosphatase inhibitor and
complete protease inhibitor cocktail (Roche, Nutley, NJ).
Subsequently, DNA-bound protein lysates were sonicated to
yield 500-1,000 bp DNA fragments and incubated in antibody-
containing ChIP dilution buffer (0.01% SDS, 1.1% TritonX-100,
1.2 mM EDTA, 16.7 mM Tris—HCI pH 8.1, 167 mM NaCl, 1 mM
DTT) at 4°C overnight on a rotating rocker. The
immunocomplexes were precipitated using 200 ul of protein G-
Sepharose beads (GE Healthcare, Waukesha, WI) at 4°C for 2
h. After sequential washes with low salt buffer (20 mM, Tris pH
8.0, 2 mM EDTA, 150 mM NaCl, 1% Triton, 0.1% SDS), high
salt buffer (20 mM Tris pH 8.0, 2 mM EDTA, 500 mM NaCl, 1%
Triton, 0.1% SDS), LiCl buffer (10 mM Tris pH 8.1, 0.25 M LiCl,
1 mM EDTA, 1% NP40, 1% IGEPAL) and TE buffer, the DNA-
bound immunocomplexes were eluted and the DNA were
extracted by PCR clean up kit. PCR reaction which specifically
amplified the -442 to -2 region of Rp was performed using
forward primer 5-TGTGT GAGGT CTCAC CTGGA-3 and
reverse primer 5-AGTAA TCCAT GTCAG CCGGC-3'. The
amplification of -221 to +12 of Zp was performed using forward
primer 5-GCAAG GTGCA ATGTT TAGTG AG-3’ and reverse
primer 5’- CCATG CATAT TTCAA CTGGG C-3..
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Results

MNNG induces EBV reactivation in EBV-positive NPC
cells

To examine the effect of MNNG on the induction of EBV
reactivation, EBV-positive NA cells were treated with MNNG at
various concentrations for 24-72 h. The cell lysates were
subjected to immunoblotting and viral reactivation was assayed
by the detection of EBV immediate early proteins, BRLF1 (Rta)
and BZLF1 (Zta), and the early antigen, BMRF1 (EA-D). As
shown in Figure 1A, treatment with 0.2 pg/ml MNNG did not
lead to marked viral reactivation in NA cells. However, the level
of viral reactivation increased with increasing concentration of
MNNG from 0.5 to 1 pg/ml. Similar effect was observed in
EBV-positive HA (Figure 1B) and C666-1 cells (Figure 1C).
Under the condition of 1 ug/ml for 72 h, more than 70% NA
cells were induced into the EBV lIytic cycle, as determined by
flow cytometry using EAD-staining (Figure 1D) or
immunofluorescence assays for EAD/Zta (Figure 1E). Since
the immediate early proteins, Rta and Zta, play key roles in
initiating EBV reactivation [45], we performed quantitative
mRNA analysis to examine the mRNA level of Rta and Zta.
Figure 1F shows the amount of Rta mRNA was increased to
about 2.2-fold by MNNG treatment (1 pg/ml) for 24h, which is
higher than the solvent control, while the amount of Zta mRNA
was not significantly increased. However, the amount of Zta
mRNA was markedly increased by MNNG treatment (1 pg/ml)
for 72h to about 16.6-fold higher than the solvent control. The
results suggest that MNNG initiates EBV reactivation may
through induction of Rp activation and the expression of Rta
subsequently leads to activation of Zta expression implying that
MNNG induces EBV reactivation may mainly through induction
of Rp activation. To further explore whether MNNG induces
EBV reactivation through induction of the promoters of these
proteins, the reporter plasmid of Rta or Zta promoter (Rp or Zp)
was transfected separately into the EBV-negative TWO01 cells.
As shown in Figure 1G, the Rp was significantly activated by
MNNG (1 pg/ml for 24 h) to levels about 2.1-fold, but the Zp
was only slightly activated to 1.2-fold higher than the solvent
control. This result indicates that MNNG induction of EBV
reactivation may be mainly through increasing the activities of
Rp. Residents in NPC high risk areas maybe exposed to
nontoxic doses of NOCs for a long time before the
development of NPC. Considering this physiological relevance,
repeated treatment with a low dose and non-cytotoxic
concentration of MNNG (0.1ug/ml), once daily for 5 days, was
investigated in NA cells. The result showed that repeated
treatment with non-cytotoxic MNNG significantly induced viral
reactivation (Figure 1H), implying that exposure to NOCs for a
long time may increase the risk of NPC development via the
reactivation of EBV.

ROS, ATM, p38 MAPK and JNK signaling pathways are
involving in MNNG-induced EBYV reactivation

Previous studies have shown that MNNG could rapidly
induce ROS production [46] and activate ATM and MAPK
signaling pathways [47]. Many chemicals which activate the
EBV reactivation induce a variety of signal transduction
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pathways, including MAPKs, ATM, protein kinase C, and NF-
KB, and these kinases also have been shown to be involved in
the induction of lytic EBV transcription following various stimuli
[48,49]. To determine which pathways were involved in MNNG-
induced EBV reactivation, kinase inhibitors, including NAC
(ROS scavenger), caffeine (ATM inhibitor), U0126 (ERK
inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK
inhibitor), rottlerin (PKC inhibitor), wortmannin (PI3K inhibitor)
or Bay 11-7082 (NFkB inhibitor) were utilized. Pretreatment of
NA cells with NAC (1mM), caffeine (1mM), SB203580 (10uM)
or SP600125 (10uM), but not U0126 (10uM), rottlerin (2.5uM),
wortmannin (100nM) or Bay 11-7082 (5uM), blocked MNNG-
induced EBV reactivation (Figure 2A). The phosphorylation of
ATM, p38 MAPK and JNK1/2 were inhibited by NAC or
respective inhibitors. However, SB203580 inhibits p38 MAPK
catalytic activity by binding to the ATP-binding pocket, but does
not inhibit the phosphorylation of p38 MAPK. This result
indicates that ROS, ATM, p38 MAPK and JNK are involved in
MNNG-induced EBYV reactivation. Moreover, it has been shown
that ROS can activate the signaling pathways of ATM, p38
MAPK or JNK. To test whether ROS play a key role in inducing
these signaling pathways, ROS scavengers were used in the
study. Figure 1B shows that MNNG (1ug/ml) can strongly
induce ATM, p38 MAPK and JNK phosphorylation in TW01 and
NA cells. MNNG do induce the phosphorylation of these
kinases in EBV-negative TWO01 cells, which do not contain EBV
genome, that implying lIytic products of EBV were not
responsible for this phenomenon. Moreover, activation of these
kinases by MNNG was completely abolished after pretreatment
with  NAC (1mM), catalase (1000 unit/ml) or reduced
glutathione (1mM). These results indicate ROS is the upstream
effecter of MNNG-induced phosphorylation of ATM, p38 MAPK
and JNK, and MNNG induces EBV reactivation by activating
these kinases.

MNNG induces EBV reactivation through ROS
generation

To confirm that MNNG induces ROS generation, we used
the fluorescent dye dihydroethidium (DHE) to determine the
intracellular level of ROS after MNNG treatment. MNNG
(1ug/ml) not only increased the ROS level to 1.7-fold in TWO01
and NA cells (Figure 3A) but also induced EBV reactivation in
NA cells (Figure 3B). To determine whether MNNG-induced
ROS is required for EBV reactivation, we used ROS
scavengers to reduce the intracellular ROS levels. As shown in
Figure 3A, pretreatment with NAC (1mM), catalase (1000
unit/ml) and reduced glutathione (1mM) inhibited MNNG
induction of ROS generation, respectively, by 1.1-fold, 1.1-fold
and 0.9-fold in TWO1 cells and 1.0-fold, 1.1-fold and 1.0-fold in
NA cells. As expected, ROS scavengers inhibited MNNG-
induced EBV reactivation in a dose-dependent manner (Figure
3B). Similarly, ROS scavengers inhibited MNNG-induced EBV
reactivation were also observed in EBV-positive HA (Figure
3C) and C666-1 cells (Figure 3D). Consistent with these
results, Rp activity was induced 2.2-fold by MNNG and the
induction effect was inhibited by ROS scavengers (Figure 3E).
In addition, 5 times repeated treatment with a low dose and
non-cytotoxic concentration of MNNG (0.1ug/ml) increased the
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Figure 1. MNNG induces EBV reactivation in EBV-positive NPC cells. (A) MNNG induced EBV entry to the Iytic cycle in a
dose-dependent manner. NA cells were mock treated or treated with various concentrations of MNNG. At 24, 48 and 72 h post-
treatment the cells were harvested and subjected to immunoblot analysis of the expression of the lytic EBV proteins, Rta, Zta, EA-D
and cellular B-actin as an internal control. (B) MNNG induced EBV entry to the lytic cycle in HA cells and (C) C666-1 cells. The cells
were mock treated or treated with various concentrations of MNNG. At 72 h post-treatment the cells were harvested and subjected
to immunoblot analysis. (D) Seventy six percent of NA cells were induced into EBV reactivation after MNNG treatment. NA cells
were mock treated or treated with MNNG (1ug/ml) for 72 h. Flow cytometry was performed to detect EA-D expressing NA cells.
Numbers indicates the percentages of EA-D-presenting cells. Each assay was performed with 10,000 cells. (E) Over 70% of NA
cells were induced into EBV reactivation after MNNG treatment. NA cells were mock treated or treated with MNNG (1ug/ml) for 72
h. The cells were first stained with anti-EBV EA-D or Zta antibodies and then FITC-conjugated second antibody. The locations of
cell nuclei in the same fields were revealed by staining with Hoechst 33258. Numbers indicates the percentages of EA-D- or Zta-
presenting cells. (F) MNNG-mediated Zta and Rta transcriptional activations were validated by quantitative RT-PCR. RNAs were
extracted from NA cells treated with MNNG for 24h/72h or mock treated. (G) MNNG increased the activity of Rta promoter (Rp).
Reporter constructs driven by the Rp or Zp were used in this luciferase reporter assay. TWO01 cells were transfected with reporter
plasmids of Rp or Zp and co-transfected with pWP1 as a control. After 24 h post-transfection the cells were mock treated or treated
with MNNG (1ug/ml) for another 24 h. Cell lysates were harvested for luciferase activity assay (H) Repeating treatments with low-
dose MNNG induced EBYV reactivation. NA cells were repeatedly treated with MNNG (0.1 pug/ml) once daily for 5 days. Cell lysates
were harvested and subjected to immunoblotting. *: p<0.05, **: p<0.01, compared to mock treatment of the same mRNA level or
promoter.

doi: 10.1371/journal.pone.0084919.g001
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Figure 2. ROS, ATM, p38 MAPK and JNK pathways are involved in MNNG-induced EBV reactivation. (A) Examination of
signaling pathways involved in MNNG-induced EBV reactivation. NA cells were pretreated with DMSO control or inhibitors including
NAC (1mM), caffeine (1mM), SB203580 (10uM), SP600125 (10uM), U0126 (10uM), rottlerin (2.5uM), wortmannin (100nM) or Bay
11-7082 (5uM) for 1 h and then treated with MNNG (1ug/ml) for additional 72 h. Lytic EBV proteins, Rta, Zta and EA-D, and
phosphorylated forms of ATM, p38 MAPK and JNK1/2 were detected by immunoblotting. Cellular B-actin was as an internal control.
(B) MNNG activated phosphorylation of ATM, p38 MAPK and JNK through ROS generation. TW01 and NA cells were pretreated
with ROS inhibitors, including NAC (1mM), catalase (1000 unit/ml) and reduced glutathione (1mM) for 1 h, and then treated with
MNNG (1pg/ml) for another 24 h. Total forms and phosphorylated forms of ATM, ERK1/2, p38 MAPK and JNK1/2, and lytic EBV

proteins, Rta and Zta were detected by immunoblotting. Cellular B-actin was as an internal control.

doi: 10.1371/journal.pone.0084919.g002

ROS level to 1.3-fold in TW01 and 1.7-fold in NA cells (Figure
3F). ROS scavengers also effectively blocked induction of ROS
and inhibited EBV reactivation by repeated treatment with a low
dose MNNG (0.1ug/ml) (Figure 3F, G). These results indicate
that ROS are required for MNNG-induced EBV reactivation,
and antioxidants can effectively inhibit EBV entering Iytic
replication following induction by MNNG.

H,0, induces EBV reactivation

To confirm the effect of ROS on lytic EBV replication, we
sought to determine whether an increase in intracellular ROS
levels is sufficient to induce EBV reactivation. As shown in
Figure 4A, a dose-dependent induction of ROS was observed
following H,O, treatment of TWO01 and NA cells. Furthermore,
H,0, also consistently induced EBV reactivation in a dose-
dependent manner in NA cells (Figure 4B). H,O, (500uM)
increased intracellular ROS levels to 1.8-fold in TWO01 and NA
cells (Figure 4C), while NAC (1mM), catalase (1000 unit/ml)
and reduced glutathione (1mM) effectively abolished
production of ROS and inhibited EBV reactivation (Figure 4C,
D). Rp activity was induced 2.0-fold by H,O, (500uM) and the
induction effect was inhibited by ROS scavengers (Figure 4E).
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These results suggest that an increase in intracellular ROS
levels can be the trigger that reactivates EBV from latency.

p53 is required for MNNG-induced EBYV reactivation

ROS are known to activate p53 [50] and it has been reported
that p53 participates in chemical-induced EBV reactivation
[51,52]. We used a small interfering RNA (siRNA) expression
approach to determine whether MNNG-induced EBV
reactivation requires p53. NA cells were knocked down for p53
expression using p53 siRNA or GFP siRNA as a control, and
then treated with MNNG (1ug/ml). As shown in Figure 5A,
MNNG increased p53 protein expression and induced EBV
reactivation. However, the induction of EBV reactivation was
highly attenuated in cells knocked down for p53 expression, but
not in cells knocked down for GFP expression (Figure 5A). In
order to further confirm the necessity of p53 for MNNG
mediated EBV reactivation is not a cell line dependent event,
HA cells were examined by p53 siRNA knockdown in MNNG
mediated EBV reactivation. The similar effect was observed in
HA cells (Figure 5B) as NA cells, implying that p53 is essential
for MNNG mediated EBV reactivation. To verify the
requirement of p53 for MNNG-induced EBV reactivation, a
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Figure 3. ROS mediates EBV reactivation by MNNG. (A) MNNG increased the intracellular ROS levels in TW01 or NA cells and
the ROS scavengers reduced MNNG-induced ROS production. Cells were pretreated with ROS scavengers including NAC (0.5 or
1mM), catalase (500 or 1000 unit/ml) and reduced glutathione (0.5 or 1mM) for 1 h and then mock treated or treated with MNNG
(1pg/ml) for 24 h. Cells were stained with the ROS-sensitive probe dihydroethidium (DHE) for 1 h and the fluorescence levels were
measured by flow cytometry. (B) ROS scavengers reduced the expression of Rta, Zta and EA-D proteins induced by MNNG in NA,
(C) HA and (D) C666-1 cells. After pretreatment with ROS scavengers for 1 h and MNNG (1ug/ml) treatment for another 72 h, cells
were harvested and subjected to immunoblotting using antibodies against the lytic EBV proteins, Rta, Zta, EA-D and cellular $-actin
as an internal control. (E) The activity of Rta promoter was induced by MNNG and the effect was inhibited by ROS scavengers.
Luciferase activities were measured in TWO01 cells transfected with the reporter plasmids of Rp or Zp for 24 h. The cells were
pretreatment with ROS scavengers for 1 h, following by treating with MNNG (1ug/ml) for additional 24 h and harvested for luciferase
activity assay. (F) Repeated treatment with a low dose concentration of MNNG increased the ROS level. TW01 and NA cells were
repeatly treated with MNNG (0.1pg/ml) once a day for 5 days and pretreated with NAC (1mM), catalase (1000 unit/ml) or reduced
glutathione (1mM) for 1 h on each occasion. Cells were then stained with the ROS-sensitive probe dihydroethidium (DHE) for 1 h
and their fluorescence levels were measured by flow cytometry. (G) ROS scavengers inhibited EBV reactivation by repeated
treatment with a low dose MNNG (0.1ug/ml). The treatment procedure was the same as described in (F). Cells were harvested and
subjected to immunoblotting. *: p<0.05, **: p<0.01, compared to mock treatment of the same cell line or the same promoter; +:
p<0.05, ++: p<0.01, compared to MNNG treatment or MNNG treatment 5 times of the same cell line or the same promoter.

doi: 10.1371/journal.pone.0084919.g003
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Figure 4. H,0, induces EBV reactivation. (A) H,O, increased intracellular ROS levels in a dose-dependent manner. TW01 and
NA cells were treated with various concentrations of H,O, for 24 h. Cells were then stained with the ROS-sensitive probe
dihydroethidium (DHE) for 1 h and their fluorescence levels were measured by flow cytometry. (B) H,O, induced EBV reactivation in
a dose-dependent manner. NA cells were treated with various concentrations of H,O, for 72 h. Cell lysates were harvested and
subjected to immunoblotting analysis for detection of the expression of the EBV lytic proteins, including Rta, Zta, EA-D, and cellular
B-actin was used as an internal control. (C) ROS scavengers reduced H,O,-induced ROS production. TW01 and NA cells were
pretreated with NAC (1mM), catalase (1000 unit/ml) or reduced glutathione (1mM) for 1 h and then treated with MNNG (1ug/ml) for
24 h. Cells were then stained with the ROS-sensitive probe dihydroethidium (DHE) for 1 h and their fluorescence levels were
measured by flow cytometry. (D) ROS scavengers inhibited H,0,-induced EBV reactivation. NA cells were pretreated with NAC
(1mM), catalase (1000 unit/ml) or reduced glutathione (1mM) for 1 h and then treated with MNNG (1pg/ml) for 72 h. Cell lysates
were harvested and subjected to immunoblotting for detection of the expression of the lytic EBV proteins. (E) The activity of Rta
promoter was induced by H,0O,, and the induction effect was inhibited by ROS scavengers. Luciferase activities were measured in
TWO1 cells transfected with the reporter plasmids of Rp or Zp. The cells were pretreatment with ROS scavengers for 1 h, followed
by treating with H,0, (500 uM) for another 24 h, and harvested for luciferase activity assay. *: p<0.05, **: p<0.01, compared to mock
treatment of the same cell line or on the same promoter; +: p<0.05, ++: p<0.01, compared to H,0O, (500 uM) treatment of the same
cell line or the same promoter.

doi: 10.1371/journal.pone.0084919.g004
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plasmid expressing wild-type p53 was introduced into EBV-
positive but p53-null H1299A cells. Without p53 expression,
MNNG loses its ability to induce EBV reactivation in H1299A
cells. Notably, restoration of p53 expression effectively induced
EBV reactivation by MNNG treatment in a dose-dependent
manner (Figure 5C). These data suggest that p53 expression is
critical for MNNG-induced EBV reactivation. Moreover, the
failure of p53 restoration without MNNG treatment to induce
reactivation indicated the importance of post-translational
modification of the p53 protein by MNNG during MNNG-
induced EBV reactivation. Taken together, these data suggest
that the ability of MNNG to induce EBV reactivation is p53-
dependent and the post-translational modification of p53 may
be required for activation of EBV by MNNG. In addition, Rp and
Zp reporter assays were performed to test whether p53 is
involved in regulating the initial step of EBV lytic entry by
MNNG. Rp or Zp was activated by MNNG (1 pg/ml for 24 h) at
levels about 2.6-fold or 1.1-fold higher than the solvent control,
but was reduced to 1.0-fold or 0.9-fold when the expression of
p53 was abrogated by p53 siRNA in TWO01 cells (Figure 5D).
These results suggest that the ability of MNNG to activate the
Rp requires the presence of p53.

p53 is multiply phosphorylated by ATM, p38 MAPK and
JNK

The functions of p53 are regulated by numerous post-
translational modifications. From the above data, we
hypothesized that post-translational modification of p53 protein
by MNNG is critical for EBV reactivation. To test this
hypothesis, the modification patterns of p53 protein were
examined using antibodies against phospho-Ser6, -Ser9, -
Ser15, -Ser20, -Ser37, -Ser46, -Thr81, and -Ser392 of p53 in
MNNG-treated TW01 and NA cells. As shown in Figure 6A,
phosphorylation of p53 protein was detected at Ser15, Ser37,
and Ser392. Previously studies have shown that ROS induced
phosphorylation of p53 protein is mediated via protein kinases,
including ATM, ERK, p38 MAPK and JNK [50]. ROS
scavengers were used to determine whether the
phosphorylation events observed here were induced through
ROS. As shown in Figure 6B, the phosphorylation of p53
protein at Ser15, Ser37, and Ser392, and the increase of p53
protein expression, were significantly attenuated by NAC
(1mM), catalase (1000 unit/ml) and reduced glutathione (1mM)
in NA cells. These data suggest MNNG induces the
phosphorylation of p53 protein at these sites and the
expression of p53 protein through ROS stimulation. In EBV-
positive but p53-null H1299A cells, MNNG loses its ability to
induce EBV reactivation suggesting p53 expression is critical
for MNNG-induced EBYV reactivation (Figure 5C). The results in
Figure 5C also showed p53 over-expression alone without
MNNG treatment is not sufficient to induce EBV reactivation.
The EBV in H1299A cells can be reactivated only under
restoration of p53 expression and MNNG treatment at the
same time, suggesting p53 phosphorylation by MNNG may be
important for EBV reactivation. In Figures 6B, the result
showed MNNG induces the phosphorylation of p53 protein at
Ser15, Ser37, and Ser392 through ROS. So we used NAC, a
ROS scavenger to eliminate ROS, to address whether the p53
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phosphorylation is induced by MNNG-mediated ROS
production in the H1299A cell line. As shown in Figure 6C,
NAC effectively inhibited MNNG induced p53 phosphorylation,
suggesting p53 phosphorylation is a result of MNNG mediated
ROS production. The EBV reactivation was also abolished by
NAC while p53 phosphorylation was inhibited, which suggested
that p53 phosphorylation induced by ROS may be necessary
for MNNG mediated EBV reactivation. Furthermore,
pretreatment of NA cells with SB203580 (10uM), SP600125
(10uM) and caffeine (1mM), but not U0126 (10uM), not only
reduced the phosphorylation of p53 protein at Ser15, Ser37,
and Ser392, but also blocked the increase of p53 protein
expression (Figure 6D). These results indicate that the
phosphorylation of p53 protein at these specific sites by MNNG
is mediated by ATM, p38 MAPK and JNK, and post-
translational modification of p53 protein may be required for
p53 protein accumulation.

p53 binds to the Rta promoter

Many genotoxic stresses stabilize the p53 protein and lead to
its accumulation in the nucleus via initiating signaling
pathways, and subsequently activate p53 protein as a
transcription factor [53]. To determine whether MNNG induces
the nuclear translocation of p53 protein, NA cells were treated
with MNNG for 24 h and the localization of p53 protein was
visualized by immunofluorescence. The localization of p53
protein was increased markedly in the nucleus after MNNG (1
ug/ml) treatment and this effect was highly attenuated by NAC
pretreatment for 1 h (Figure 7A). The percentages of cells with
p53 translocation to the nucleus were raised markedly by
MNNG from 5.3% to 84.6%, but that was highly attenuated to
4.3% in the presence of NAC. This result suggests that MNNG
induces the phosphorylation of p53 protein through ROS
production and renders it to translocate and accumulate in the
nucleus to function as a transcription factor. According to the
result described above (Figure 5D), we assumed that p53 is
involved in regulating Rp by binding to it. Therefore, the
possibility of p53 binding to Rp or Zp was examined using a
ChIP assay. As shown in Figure 7B, the amount of p53 on Rp
significantly increased by MNNG at level about 3.3-fold higher
than the solvent control. ROS scavenger, NAC, effectively
inhibited the binding of p53 on Rp, suggesting p53 might
regulate Rp activity by binding to it and the DNA-binding
activity of p53 protein is regulated by ROS induced by MNNG.
On the contrary, only slight 1.3-fold increase of p53 binding on
Zp was detected by MNNG, and NAC treatment can not
reverse this phenomenon. These results imply that p53 binding
to Rp rather than to Zp induced by MNNG is more likely the
mechanism for MNNG reactivation of EBV.

According to sequence analysis, there is no typical
consensus p53-response element (PRE) on the region of Rp
we examined. However, it has been shown that p53 interacts
with Sp1 to regulate Zp activity [52]. Because Sp1 binding sites
are abundant on Rp, p53 protein may regulate Rp by
interacting with Sp1 protein to bind indirectly to Sp1 binding
sites. To investigate this possibility, a co-immunoprecipitation
(Co-IP) assay was preformed in NA cells (Figure S1). p53
precipitated with Sp1 was increased about 1.4-fold compared
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Figure 5. p53 is required for MNNG-induced EBV reactivation. (A) p53 is required for MNNG-induced lytic immediate early and
early protein expression in NA and (B) HA cells. NA and HA cells were knocked down for p53 expression using p53 siRNA or
control GFP siRNA. The cells were treated with MNNG (1ug/ml) for 72 h, and immunoblot analysis was performed to detect lytic
protein expression. (C) Restoration of p53 effectively induced EBV reactivation after MNNG treatment. p53-null H1299A cells were
transiently transfected with a p53-expression plasmid for 24 h, followed by MNNG (1ug/ml) treatment for an additional 72 h. Cell
lysates were harvested and subjected to immunoblotting for detection of the expression of the EBV lytic proteins. (D) p53 is
essential for the activation of Rta promoter activity by MNNG. TWO1 cells were co-transfected with the Rp/Zp reporters and p53
siRNA or GFP siRNA. The transfected cells were then treated with MNNG (1ug/ml) for 24 h and harvested for luciferase activity

assay. *: p<0.05, **: p<0.01, compared to mock treatment of the same promoter; +: p<0.05, ++: p<0.01, compared to MNNG
treatment of the same promoter.
doi: 10.1371/journal.pone.0084919.g005

to 1IgG on mock treatment and 1.8-fold on MNNG treatment. It interaction between p53 and Sp1 does exist. An EMSA assay
also showed Sp1 precipitated with p53 was increased about was carried out to examine the possibility of interaction
2.1-fold compared to IgG on mock treatment and 1.4-fold on between the Sp1-binding element on Rp and transcription
MNNG treatment. Although this data is difficult to explain the factor Sp1 or p53. The specific DNA-protein complexes were
role of MNNG in the interaction between p53 and Sp1, the detected in the reactions (Figure S2). Furthermore, the DNA-
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Figure 6. ATM, p38 MAPK and JNK are involved in the multiple phosphorylation of p53 by MNNG. (A) The phosphorylation
profile of p53 protein following MNNG treatment. TW01 and NA cells were treated with MNNG for 24 h. Cell lysates were harvested
and subjected to immunoblotting using antibodies against the indicated phosphorylation residues and total form of p53 protein. (B)
ROS scavengers inhibited phosphorylation of p53 protein at Ser15, Ser37 and Ser392 and reduced accumulation of p53 protein
after MNNG treatment in NA cells. After pretreatment with NAC (1mM), catalase (1000 unit/ml) or reduced glutathione (1mM) for 1 h
and followed by MNNG (1upg/ml) treatment for another 24 h, NA cells were harvested and subjected to immunoblotting. (C) NAC
inhibited EBV reactivation, phosphorylation of p53 protein at Ser15, Ser37 and Ser392, and reduced accumulation of p53 protein
after MNNG treatment in H1299A cells. The cells were transiently transfected with a p53-expression plasmid for 24 h. After
pretreatment with NAC (1mM) for 1 h and followed by MNNG (1pg/ml) treatment for another 72 h cell lysates were harvested and
subjected to immunoblotting. (D) Inhibitors of p38 MAPK, JNK and ATM inhibited phosphorylation of p53 protein at Ser15, Ser37
and Ser392 and accumulation of the p53 protein. NA cells were pretreated with ERK inhibitor (U0126 10uM), p38 MAPK inhibitor
(SB 203580 10uM), JNK inhibitor (SP600125 10uM) and ATM inhibitor (caffeine 1mM) for 1 h and then treated with MNNG (1ug/ml)
for another 24 h. Cells were harvested and subjected to immunoblotting.

doi: 10.1371/journal.pone.0084919.g006
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Figure 7. p53 binds to the Rta promoter. (A) MNNG induced the nuclear translocation of p53 protein. The localization of the p53
protein was determined using immunofluorescence analysis. NA cells were pretreated for 1 h with or without NAC (1mM) and then
exposed to MNNG (1ug/ml) for an additional 24 h. Cells were analyzed using immunofluorescence staining for p53 localization.
Representative photomicrographs were taken using a fluorescence microscope. Numbers indicates the percentages of cells with
p53 translocation to the nucleus. (B) MNNG increased the binding of p53 to the Rta promoter. NA cells were mock treated or treated
with MNNG (1pg/ml) for 24 h. Cell lysates were collected for ChIP assay using mouse monoclonal antibodies against p53 or mouse
IgG as a control. PCR analysis of Rp (-442 to -2) and Zp (-221 to +12) were performed. Numbers indicates the relative fold
compared to the control precipitated by p53 antibody.

doi: 10.1371/journal.pone.0084919.g007

protein complex on Sp1-binding element was abolished in the NPC [55,57]. The apparent protective effect of these foods may
presence of antibody specific to Sp1 and p53. This result be attributed to their antioxidant properties, implying oxidative
suggests that Sp1 and p53 may form a complex and bind on stress may play a critical role in the interplay between NOCs
the Sp1-binding element of Rp. and EBV reactivation, contributing to carcinogenesis. Here, for

the first time, we provide the evidence that MNNG induces
Discussion ROS generation and causes ROS-mediated EBV reactivation

via a p53-dependent mechanism. We also show that MNNG
Previous epidemiological studies have shown that treatment leads to accumulation of p53 in the nucleus,

consumption of salted fish, preserved foods and smoking increasing its binding to the Rp, and initiating viral replication
tobacco is associated with the development of NPC [7]. Volatile via activation of the Rp. Notably, our results reveal the critical
NOCs and their precursors are known to be present in role of ROS in mediating the switch of EBV from the latent to
preserved foods from NPC high risk areas and are considered the lytic phase by NOCs.

to be an etiological factor for NPC [10,11]. However, the We found that over 70% of NA cells were initiated into viral
etiological mechanism has not yet been fully elucidated. A replication after MNNG treatment at a concentration of 1 pg/ml
previous study has shown that Cantonese-style salted fish (Figure 1D, 1E). Low dose MNNG (0.1 pg/ml) did not induce
contain EBV reactivation-inducing substances [54], implying detectable viral reactivation, but a significant increase of EBV
NOCs could induce viral replication. Recently, we showed that reactivation was observed following long term and repeated
MNNG induces EBV reactivation [27] and enhances the treatment (Figure 1H). A previous study showed that total
genome instability and invasiveness, as well as the volatile N-nitrosamines in Chinese salted fish were 0.028 to
tumorigenicity, of NPC cells [28]. These studies reveal that 4.54 mg/kg [11]. A study of Thai cigarettes indicated that the
EBV reactivation triggered by NOCs may play a crucial role in yield of volatile nitrosamines in smoke was observed in ranges
the course of NPC development. However, the molecular from 20.3 to 100.4 ng/per cigarette, while the tobacco-specific
mechanism of the switch from latent EBV infection to lytic nitrosamines ranged from 88 to 1,580 ng/per cigarette [58].
replication, induced by volatile NOCs, remains unclear. In Another study reported that bacon products contained about
contrast to preserved foods, frequent consumption of fresh 0.5 pg/100 g of N-nitroso-dimethylamine, and after cooking the
fruits, fish, or vegetables, has been correlated with a lower risk concentration seemed to increase [59], and sausages

of NPC [55-57]. Furthermore, intake of specific fruits or contained about 10 pg/100 g [60]. These reports suggest that
vegetables, including carrots, green leafy vegetables, fresh the intake of NOCs may be sufficient to initiate EBV replication.
soybean products, oranges, tangerines, or dietary supplements Considering the physiological relevance that residents in NPC
of vitamin C or E has an inverse association with the risk of high risk areas may frequently consume preserved foods
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contained NOCs, EBV reactivation may often occur even if the
exposure dosage on each occasion is low.

Recent study showed that MNNG induces biphasic ROS
production through NADPH oxidase and mitochondria [46]. It
has been reported that H,O, induces reactivation of Kaposi’s
sarcoma-associated herpesvirus [61]. Here, we show that
induction of oxidative stress by MNNG and H,O, effectively
induces EBV reactivation (Figure 3, 4). Similar data in a recent
report indicated that H,O, can induce EBV replication [49].
Moreover, several diseases, such as inflammatory bowel
disease, rheumatoid arthritis and infectious mononucleosis,
were found to be associated with EBV replication and
meanwhile exhibit oxidative stress state [62-64]. Thus,
oxidative stress resulting from physiological factors or chemical
exposure could be an important factor that triggers EBV
reactivation and consequently causes EBV-associated
diseases. EBV infection and replication has been implicated in
the generation of oxidative stress [35,36]. This may explain the
accumulation of ROS in higher amounts in EBV-positive NA
cells after reactivation than in EBV-negative TWO01 cells
following long term treatment with low dose MNNG (Figure 3F).
Previous reports showed EBNA1 is responsible for the
occurrence of oxidative stress in latent EBV infection [65].
However, the role of EBV replication or the expression of lytic
viral antigens in the genesis of oxidative stress remains
unclear. EBV Rta and Zta have been reported to alter
mitochondrial membrane potential, which may imply an
increase of ROS production [66]. The HCV core protein also
has been shown to depolarize mitochondria to increase ROS
production [67]. In addition, the HIV-1 gp120 and Tax were
seen to induce oxidative stress [68]. The questions which viral
lytic antigens are responsible and how they promote ROS
generation will be an important focus of future studies. These
results suggest that a positive feedback may be initiated as
ROS production and EBV reactivation amplify each other and
this may play a key role in the development and progression of
EBV-associated diseases. Furthermore, the use of therapeutic
drugs, such as chemotherapeutic and immunosuppressive
drugs, known to induce oxidative stress, will need to be
considered for the risk of concurrent diseases associated with
EBV reactivation. Thus, it seems inhibition of ROS by
combining antioxidants may be useful in the prevention or
therapy of EBV reactivation-associated diseases.

H,0, has been shown to induce Zta transcription [69]. A
previous study showed the KSHV R homologue (RTA) can be
activated by H,O,, leading to RTA-mediated viral reactivation
[61]. In addition, the switch from latent to lytic EBV infection is
known to be regulated by expression of either the Rta and/or
Zta immediately early proteins [70]. Rta and Zta activate one
another’s promoters and cooperatively activate the early Iytic
viral promoters [45,71]. Current models have favored that Zta
plays the dominant role in reactivation of EBV through
activating transcription by binding to Zta response elements
(ZRE) on promoters of Rp and Zp [72]. Expression of Zta
efficiently initiates the entire lytic cascade in B lymphocytes
[70,73]. It has been reported that the transcription of a class of
viral lytic genes depends on Zta, and EBV is not able to
complete lytic cycle without Zta expression [45,74]. Rta drives
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EBV gene expression by directly binding to responsive
promoters that contain Rta response elements (RRE) or by an
indirect mechanism [72]. Although Rta synergizes with Zta in
the activation of many viral genes, Rta remains capable to
transactivate certain downstream viral genes. Some early and
late genes, such as BaRF1, BMLF1, and BLRF2, are activated
by Rta itself in the absence of Zta [75]. A class of lytic cycle
genes, such as BMRF1 and BHRF1, are activated in synergy
by Rta and Zta (S186A) mutant, whose transactivation function
is manifested only in Rta coexpression [75]. Previous studies
have shown that expression of Rta activates lytic EBV
replication in B lymphocytes, and can activate the transcription
of BRLF1 to autoregulate its own expression [71]. In those
cells, Rta leads to activation of Zp, expression of Zta, and
consequently stimulation of all the lytic gene expression. In this
study, we show that the amount of Rta mRNA was increased
about 2.2-fold by MNNG treatment (1 pg/ml) for 24h, while the
amount of Zta mRNA was not significantly increased (Figure
1F). However, the amount of Zta mRNA was significantly
increased to 16.6-fold by MNNG treatment (1 pg/ml) for 72h.
The reporter assays by MNNG treatment (1 ug/ml) for 24h also
show the remarkable response of Rp activity than that of Zp on
MNNG treatment (Figure 1G, 3E). The results suggest that
MNNG initiates EBV reactivation may mainly through induction
of Rp activation to induce expression of Rta. It is difficult to
examine whether Rta expression alone can reactivate EBV
under MNNG treatment, as Zta is expressed upon induction of
the lytic cycle. In light of previous work that implicating Rta by
itself has less ability than Zta to activate most lytic genes, we
suggest a cooperative model for EBV entry into the lytic cycle
under MNNG treatment. Expression of Rta triggers expression
of the Zta, and together act in synergy to activate the viral lytic
cycle. Furthermore, p53 is crucial for MNNG to induce the
activation of the Rp. We also showed that knockdown of
endogenous p53 expression diminishes the ability of MNNG to
induce EBV reactivation (Figure 5A, B) while loses its effect on
the activation of the Rp (Figure 5D). Furthermore, we showed
that MNNG cannot induce EBV reactivation in H1299A cells
unless the expression of p53 protein is restored (Figure 5C).
Thus, our results suggest that MNNG-induced EBV reactivation
may be executed by the activation of Rp by p53.

Many signaling pathways and transcription factors appear to
be regulated by ROS [76]. Among them, MAPKs, PI3K, PKC,
ATM, AP-1, Sp-1, p53, and NFkB have been reported to be
involved in the activation of EBV replication [48,51,52,77,78]. In
this study, only certain signaling pathways involving both ROS
and EBV replication were tested. Our results show that the
ability of MNNG to induce EBYV reactivation is mediated through
at least the ATM, p38 MAPK, and JNK pathways activated by
ROS (Figure 2). Earlier studies have established that p53 is
activated by ROS and plays an important role in response to
ROS functions [50]. In addition, it is important to note that p53
participates in EBV replication [51,52]. Here, we show that
ATM, p38 MAPK and JNK activated by MNNG-induced ROS
are involved in the multiple phosphorylation of p53 at Ser-15,
Ser37, and Ser-392 (Figure 6). Moreover, p53 is known to be
phosphorylated and consequently stabilized and activated by
multiple signaling pathways, including ATM and MAPKs
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[79,80]. We found that MNNG treatment significantly induced
phosphorylation and stabilization of p53, and these events
were inhibited by ATM, p38 MAPK and JNK inhibitors (Figure
6D). This finding is consistent with previous studies suggesting
that post-translational modification of p53 by these kinases
might increase the stability of p53 protein. The p38 MAPK and
JNK phosphorylated transcription factor ATF2 has been
reported to activate the Zp [77], implying these kinases might
similarly affect the Rp through modification of other
transcription factors, such as p53. Thus, we hypothesized that
the major role of ROS during initiation of EBV reactivation
might be in enhancing the p53 transcriptional function via
activation of ATM, p38 MAPK and JNK. Our data show that the
treatment of cells with MNNG (1ug/ml) through ROS production
resulted in both p53 activation and EBV reactivation (Figure 5,
6). Our data also indicate that p53 activation by post-
translational modification is required for MNNG-induced EBV
reactivation (Figure 5, 6). Furthermore, our data show that a
lower level of p53 activation induced a lower level of EBV
reactivation, whereas a higher level of p53 activation induced a
higher level of EBV reactivation (Figure 5C), suggesting the
activation of p53 seems to be critical for regulating EBV
reactivation.

N-nitroso compounds (NOCs) also have long been known as
alkylating agents, which are capable of reacting with DNA and
generate alkylating DNA adducts by formation of reactive
diazonium ion species[3]. O-6-alkylguanin has been identified
as the main predominant mutagenic and cytotoxic lesion
because of the mispairing properties, which causes point
mutation and chromosomal aberration [3,81]. The lesion
caused by alkylating agents not only appears to be involved in
genotoxic stress but also provides the primary signal activating
specific molecules and signaling pathway to trigger DNA
damage response[82]. On the other hand, nitrosamines have
been reported to increase the formation of radical
intermediates including HO-, NO-, alpha-hydroxynitrosamines
and N-methylformaldimine in the metabolic process[83]. It also
has been shown that NOCs caused formation of ROS and
carbon-centered radicals, which play an important role in
deregulation of gene expression patterns of apoptosis, cell
cycle blockage, DNA repair, and oxidative stress [84,85]. p53
has long been recognized as center of the sensor and
responder in response to DNA damage [86]. Previous reports
have shown that alkylating agents such as MNNG and MMS,
induce an increase in phosphorylation and protein level of p53
through functional protein complexes of mismatch repair in
DNA damage response [82,87]. These data suggest that DNA
lesions caused by both of alkylating and oxidative DNA
damage could be the primary signal to trigger DNA damage
response and then induce p53 activation. Previous study have
also shown that DNA damage response could induce EBV
reactivation [49], thus DNA damage response could be part of
the mechanism involving MNNG stabilizes and activates p53 to
induce EBV reactivation. In general the stability of p53 is under
strict control by its negative regulator MDM2 and activated by a
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post-translation leading to stabilization [80]. It has been
reported NOCs act as mitomycin C (MMC) and MMS in
stabilization and accumulation of p53 through downregulation
of MDM2 mRNA and protein [88]. Furthermore, recent reports
showed p63 and p73, two related p53 families, in part
regulated for p53 recruiting and function, and interacted with
p53 in response to DNA damage [89,90]. Interestingly, p63 and
p73 can also interact with MDM2 and MDM4, but MDM2 and
MDM4 do not cause p63 or p73 degradation [91]. This result
may imply p63 and p73 regulating p53 stability in part through
interaction of MDM2 and MDM4. These reports suggest that
the post-translational modification of p53 may not be the only
mechanism to regulation of p53 stability and activity in the cells
treated with NOCs. Although we demonstrated MNNG induce
phosphorylation and stabilization of p53 through ROS in this
study, the possibility of other factors such as the p63/p73
isoforms involved in the activation of p53 by MNNG to induce
EBYV reactivation should also be considered.

p53 is a potent activator of cellular transcription via binding to
the promoter regions of its target genes [80]. It has been shown
that p53 participates in lytic EBV reactivation by forming a
complex with Sp1 that binds to, and activates, the Zp [52]. In
this study, we found that MNNG, through ROS, promotes p53
translocation into the nucleus (Figure 7A) and increases the
ability of p53 to bind to the Rp (Figure 7B). Promoter
recognition by p53 is determined by the presence of p53-
response elements (PREs) with the consensus sequence of
decamers 5-(PuPuPuC(A/T)(T/A)GPyPyPy)n-3'[92]. However,
the nucleotide sequences of decamers usually violate the
typically consensus sequence in PREs of p53-regulated genes
(e.g. c-Ha-ras, mck, pig3, fas/apo1, tgf-a) [93]. Although there
are no typically consensus PREs on the region of Rp we
examined, p53 might possibly bind onto Rp via a non-
consensus binding sequence. Thus, further study is required to
determine whether p53 can bind directly to the Rta promoter.
On the other hand, p53 was seen to form a complex with Sp1
(Figure S1) and we also found that both Sp1 and p53 can bind
on Rp in EMSA assay (Figure S2). Therefore, these results
suggest that p53 might bind to the Rp directly or at least by
forming a complex with Sp1, and then activate the Rp during
MNNG initiation of EBV reactivation through its DNA binding
and transactivational function. Thus, p53 plays an important
regulatory role in promoting the switch between latent and lytic
EBYV infection in epithelial cells when activated by MNNG.

Together, the results presented here suggest a model
(Figure 8) in which MNNG induces ROS generation to activate
ATM, p38 MAPK, and JNK signaling, leading to
phosphorylation and activation of p53. On the other hand, the
possibility of others factors activated by ROS may involve in
this mechanism should also be considered. The activated p53
translocates and accumulates in the nucleus, which then binds
to and activates the EBV Rp. The expression of Rta
subsequently leads to activation of Zta expression, and the
synergistic effect of Rta and Zta then induce the expression of
all the lytic proteins.
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MNNG —» *

EBV reactivation

Figure 8. Model of the regulation of EBV reactivation by MNNG. In this study, we demonstrated that MNNG induces ROS
production. Subsequently, ROS induces the activation of ATM, p38 MAPK, and JNK and then leads to p53 activation. Activated p53
binds to and subsequently activates the promoter of the EBV immediate early protein Rta (Rp). Induction of Rp activity leads to Rta
expression, which reciprocally induced Zta expression. The synergistic effect of Rta and Zta then induce the expression of all the
lytic proteins. In addition, ROS may also induce the p53 activation through additional pathways other than ATM/p38 MAPK/JNK, and
these mechanisms should also be considered.

doi: 10.1371/journal.pone.0084919.g008
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Supporting Information

Figure S1. p53 interacted with Sp1. NA cells were mock
treated or treated with MNNG (1ug/ml) for 24 h and then
harvested for Co-IP assay using mouse monoclonal antibodies
against p53, Sp1, or mouse IgG as a control. Cells were
trypsinized and lysed with RIPA buffer (50 mM HEPES, pH 7.5,
250 mM NaCl, 5 mM EDTA, 1 mM dithiothreitol , 0.1% NP-40,
1 mM NaF, 0.1 mM Na3VO4), containing complete protease
inhibitor cocktail (Roche, Nutley, NJ). Cell lysates were pre-
cleared with 100 pl protein G-Sepharose beads for 2 h and
incubated with antibodies specific for Sp1 or p53 (4 ug each) at
4°C overnight on a rotating rocker. Immunocomplexes were
collected using 200 pl of protein G-Sepharose beads at 4°C for
another 2 h. The immunocomplexes bound to Sepharose
beads were washed extensively with ice-cold RIPA buffer. The
precipitates were boiled in Laemmli sample buffer and resolved
by SDS-polyacrylamide gel electrophoresis. Inmunocomplexes
were revealed by immunoblotting.

(TIF)

Figure S2. Sp1 and p53 may form a complex and bind on
the Sp1-binding element of Rp. Oligonucleotides of Sp1-
binding element on the -58 to -35 region of Rp (5-CGATT
GTCCC GCCCA TGCCA ATGG-3') were synthesized and
labeled with biotin (Purigo Biotech, Inc.). The binding reaction
was performed in a 20 pl reaction mixtures containing 8 pg of
nuclear extracts from NA cells, 1 uM Biotin-labeled probes, 20
mM Tris-HCI, 50 mM KCI, 5 mM MgCI2, 0.5 mM EDTA, 1 mM
dithiothreitol, 10% glycerol, and 2 pg of poly (dI-dC). Two pg of
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