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Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering.

However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose

the cellular and cartilage phenotype during long-term culture in vitro or implantation

in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated

ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering

hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic

peptide (CNP) is found to correlate with the development of the cartilage, affect the

chondrocytes proliferation and differentiation. Besides, based on its biological effects

on protection of extracellular matrix of cartilage and inhibition of mineralization, we

hypothesize that CNP may contribute to the stability of chondrocyte phenotype of

MSCs-derived chondrocytes.

Keywords: mesenchymal stem cells, chondrogenic differentiation, phenotype stability, C-type natriuretic peptide,

hypothesis

INTRODUCTION

Cartilage damage caused by the osteoarthritis (OA) can lead to chronic pain and disability. The
global prevalence of knee OA was estimated to be 3.8% (2010), which brings a heavy burden to
the society (Cross et al., 2014). Articular cartilage has a limited capacity for spontaneous repair
after injury (Savkovic et al., 2014). Cartilage tissue engineering is considered more applicable for
articular cartilage repair. Articular chondrocytes (ACs) andmesenchymal stem cells (MSCs; Hubka
et al., 2014; Savkovic et al., 2014) are often employed as the seed cells in cartilage engineering.
As a native and differentiated cell type, the application of ACs is limited because it is associated
with dedifferentiation during expansion in vitro and limited donor tissue supply (Hong and Reddi,
2013; Hubka et al., 2014). MSCs, for example, bone marrow-derived MSCs, or adipose-derived
MSCs, have the ability of differentiation into functional chondrocytes under appropriate culture
conditions (Mazor et al., 2014). With many advantages, MSCs are widely used in the field of tissue
engineering and being put prodigious faith by researchers.

However, accumulated evidences have indicated that the application of MSCs as seed cells for
cartilage engineering is not yet as ideal as previously proposed. The chondrocytes and cartilage
tissue obtained from MSCs are not stable and will easily lose their cellular and hyaline cartilage
tissue phenotype during long time culture in vitro and transplantation in vivo (Tatebe et al.,
2005; Pelttari et al., 2006; Farrell et al., 2014; Hubka et al., 2014). These phenotypic instability is
characterized by an up-regulated expression of collagen type X (Col X), matrix metalloproteinase
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(MMP), and an increase in alkaline phosphatase (ALP) activity,
which are all associated with osteogenic differentiation (Hubka
et al., 2014). Switch from chondrogenic to osteogenic phenotype
of the MSCs-derived cartilage results in loss of the physiological
function of articular cartilage. Thus, how to maintain the stability
of MSCs-derived chondrocytes phenotype is an important
problem that needs to be solved.

Developmentally, transient cartilage is found in the cartilage
anlage of endochondral bones (Delgado-Martos et al., 2013),
such as the growth plate of long bones of the limbs. In
this unique microenvironment, the mesenchymal stem cells
undergo a series of special biological processes: condensation,
overt differentiation of chondrocytes, proliferation, maturation,
hypertrophy, and replacement of chondrocytes by osteoblasts.
(Hall and Miyake, 2000; Tuan, 2006; Nguyen et al., 2016).
Therefore, if out of the microenvironment of cartilage formation
or the microenvironment was damaged, it is likely a natural
propensity for the MSCs to differentiate into chondrocytes
and then progress to hypertrophy, eventually ossified. In
contrast, the chondrocytes in permanent hyaline cartilage on
the articular joint surface would not develop to hypertrophy
through lifespan. Thus, to make MSCs-derived cartilage as an
available clinical therapy, measures must be taken to maintain
the phenotype of MSCs-derived chondrocytes at the proliferating
or prehypertrophic stage and prevent them from undergoing
terminal differentiation to calcified tissue.

In order to solve this problem, some methods have been
searched: co-culture of ACs and MSCs (Hubka et al., 2014),
Hypoxia (Lee et al., 2013), supplement parathyroid hormone-
related protein (PTHrP; Kim et al., 2008) or activation of
TGFβ pathway (Craft et al., 2015), etc. However, ideal methods
for maintaining the phenotype stability of MSCs-derived
chondrocytes have not been established and proved clinically
translatable, and each of the methods mentioned above has its
disadvantages. For example, in order to co-culture of MSCs and
ACs, it may require additional surgery and incision; Hypoxia
is relatively difficult to implement; PTHrP and TGFβ pathway
have extensive biological functions, which will affect other cells,
tissues or organs. Besides, the main purpose of cartilage tissue
engineering is to repair cartilage damage caused by OA, so it is
important to find an effective solution to maintain the phenotype
under the inflammatory microenvironment.

C-type natriuretic peptide (CNP) is one member of the
natriuretic peptide family which consists of atrial natriuretic
peptide (ANP), brain/B-type natriuretic peptide (BNP) and CNP
(Olney, 2006). Different from the other natriuretic peptides, CNP
mainly expresses in the growth plate of long bones limbs and
plays a critical role in maintaining cartilage homeostasis through
its effects on both chondrocyte proliferation and differentiation
(Mericq et al., 2000; Prickett et al., 2005; Peake et al., 2014). Data
from in vivo and vitro studies show that CNP and its receptor
of natriuretic peptide receptor-B (NPR-B) can affect growth of
cartilage, chondrogenic differentiation, and mineralization of
the cartilage. Genetic mutations in CNP or NPR-B can lead to
achondroplasia-like dwarfism in both mice and humans (Chusho
et al., 2001; Nakao et al., 2015). CNP can stimulate chondrocytes
proliferation and cartilage matrix production, down-regulates
the expression of endochondral ossification markers (Waldman

et al., 2008) and delay mineralization of tibia (Agoston et al.,
2007). Even under the environment of inflammation, CNP can
protect the cartilage matrix from degradation (Krejci et al., 2005).
Therefore, CNP may play an important role in maintaining the
stability of chondrocyte phenotype derived fromMSCs.

HYPOTHESIS

For clinical application, a stable chondrogenic phenotype of
MSCs must be achieved. Based on the previous reports,
we hypothesize that CNP is potentially a candidate to
maintain the stability of chondrogenic phenotype MSCs-derived
chondrocytes.

EVALUATION OF THE HYPOTHESIS

CNP Promotes the Cartilage Development
and Chondrogenic Differentiation
In mammals, the long bones of limbs are formed through
endochondral ossification, which involves the conversion of an
initial cartilage template into bone via proliferation, hypertrophy,
cell death, and eventually ossified in the growth plate. The
mRNA of CNP and NPR-B can be detected in the growth
plate (Yamashita et al., 2000; Chusho et al., 2001) and the
immunofluorescence also confined this (Olney, 2006). In animal
models, mutation or knockout of CNP or NPR-B can lead to
dwarfism (Komatsu et al., 2002; Tamura and Garbers, 2003); In
contrast, ectopic CNP can rescue growth retardation in mouse
model of achondroplasia (Yasoda et al., 2004).

In humans, genetic mutations of NPR-B can result in a
disproportionate dwarfism, named acromesomelic dysplasia,
Maroteaux type (AMDM) (Bartels et al., 2004). Conversely,
skeletal overgrowth has been observed in patients with over-
expression of CNP caused by a balanced translocation (Moncla
et al., 2007).Moreover, the CNP analog has been used as a therapy
for achondroplasia in some clinical trials (Legeai-Mallet, 2016).

In vitro studies have revealed that CNP can promote
proliferation of primary chondrocytes (Waldman et al., 2008),
as well as chondrocytes-derived from MSCs (Tezcan et al., 2010;
Kocamaz et al., 2012). Woods et al. revealed that CNP could
regulate cellular condensation of mouse embryonic limbs bud
cells during micromass culture by increasing the expression of
N-cadherin (Woods et al., 2007). Besides, CNP can stimulate
cartilage extracellular matrix deposition. Supplement of 10 nM
CNP increased accumulation of proteoglycans and collagen in
the culture of chondrocytes (Waldman et al., 2008). Bymeasuring
the 35SO4, Mericq V et al. found that CNP increased the synthesis
of glycosaminoglycan (GAG), one of the main cartilage matrix
components (Mericq et al., 2000). Addition of CNP further
increased the GAG synthesis in the human trabecular bone
derived MSCs (Tezcan et al., 2010) and chicken bone marrow
derived MSCs (Kocamaz et al., 2012).

What’s more, in rat chondrosarcoma (RCS) chondrocyte
model, CNP counteracts fibroblast growth factor 2 (FGF2) effects
(which inhibit proliferation and trigger matrix degradation)
by inhibiting the Erk pathway at the level of Raf-1. (Krejci
et al., 2005; Pejchalova et al., 2007). Besides, CNP can activate
protein kinase G (PKG) II and upregulate the synthesis of
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the chondrocyte extracellular matrix through as yet unknown
mechanism (Pejchalova et al., 2007). Additionally, increased
CNP expression can be stimulated by dexamethasone, which is
routinely used for chondrogenic culture of MSCs (Agoston et al.,
2006).

CNP Protects Extracellular Matrix of
Cartilage
CNP protects the RCS extracellular matrix from degradation
by inhibiting the FGF2-mediated catabolic effects and partially

antagonizes FGF2-induced expression, release and activation of
MMP2, MMP3, MMP9, MMP10, and MMP13 (Krejci et al.,
2005), which are all associated with the degradation of cartilage
matrix. Manoj Ramachandran revealed that treatment with CNP
can protect the cartilage matrix by reducing the release of nitric
oxide (NO) and prostaglandin E2 (PGE2) and blocked catabolic
effects induced by interleukin-1 β (IL-1β) in a dose-dependent
manner (Ramachandran et al., 2011; Peake et al., 2013).

Even in the inflammatory environment, CNP overexpression
in chondrocytes can turnover endochondral growth delay and

TABLE 1 | Summary of the positive effects of CNP on maintaining the chondrocytes phenotype stability.

Objects Treatment Targeted gene/ protein/cytokine Effects of CNP/NPR-B

bovine ACs (Waldman et al., 2008) Cells treated with CNP proteoglycans and collagen ↑ • Promote proliferation

• Promote ecm deposition

type X collagen ↓ • Inhibit endochondral ossification

human ACs (Peake et al., 2015) Cells treated with CNP TNF-α, IL-1β, IL-8,L-10 and IFN-γ ↓ • Protect cartilage matrix

• Maintain cartilage homeostasis

human ACs (Ramachandran et al., 2011;

Peake et al., 2013)

Cells treated with CNP PKG II↑ • Promote matrix synthesis

IL-1β ↓ • Inhibit ECM degradation

RCS (Krejci et al., 2005) Cells treated with CNP MAPK/Erk pathway ↓ • Protect the ECM

• Promote proliferation

PKG II↑ • Promote ECM synthesis

mouse embryonic limb bud cells (Woods

et al., 2007)

Cells treated with CNP N-cadherin ↑ • Promote cell adhesion

GAG and chondroitin sulfate↑ • Promote ECM synthesis

human trabecular bone MSCs (Tezcan

et al., 2010)

Cells treated with CNP GAG synthesis↑ • Promote chondrogenic differentiation

chicken bone marrow MSCs (Kocamaz

et al., 2012)

Cells treated with CNP GAG synthesis↑ • Promote chondrogenic differentiation

tibia organ culture (Agoston et al., 2007) Organ treated with CNP Tnfsf11 gene (encoding RANKL)↓ • Delay mineralization and cartilage remodeling

gdf5 gene ↑ • Stimulate cell adhesion

• Mediate the anabolic effects of CNP

p38 ↑ • Promote proliferation and ECM synthesis in

growth plate chondrocytes

tibia organ culture (Mericq et al., 2000) Organ treated with CNP 3H-thymidine ↑ • Stimulate cell proliferation in the proliferative zone
35SO4-GAG ↑ • Stimulate cartilage matrix production

mouse (Nakao et al., 2015) CNP or GC-B knockout SOX-9, type II collagen, Ihh↓ • Promote proliferation and differentiation

mouse (Bukulmez et al., 2014) Arthritis model with CNP

overexpressing and the

chondrocytes

MAPK/Erk pathway ↓ • Prevent endochondral growth delay

• protect against cartilage damage

SOX-9 gene ↑ • Promote matrix synthesis

• Maintain cartilage integrity

mouse (Chusho et al., 2001) CNP knockout cGMP↓ • Promote chondrocyte proliferation and

differentiation

mouse (Yasoda et al., 2004) CNP overexpression in

achondroplasia mouse model

MAPK pathway ↓ • Rescues achondroplasia

• promote ECM in the growth plate

human (Bartels et al., 2004) Mutation of NPR-B – • Regulation of skeletal growth (NPR-B)

↑, up-regulate, promote, activate or increase; ↓, down-regulate, inhibit, or decrease; RCS, rat chondrosarcoma; ACs, articular chondrocytes; ECM, extracellular matrix; GC-B, guanylyl

cyclase-B; Ihh, Indian hedgehog homolog; GAG, glycosaminoglycan.X.
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inhibit cartilage damage in mouse model (Bukulmez et al.,
2014). By culture of human chondrocytes in IL-1β conditioned
medium in vitro, Peake et al. revealed that CNP can reduce
inflammatory factor and hyaluronan production in human
chondrocytes via members of the multidrug resistance protein
(MRP) and diminish proinflammatory effects, suggesting that the
CNP pathway is protective (Peake et al., 2015).

An appropriate microenvironment is important for the
physiological activities of the cells. In the growth plate,
chondrocytes undergo metabolic changes from proliferating
to hypertrophic state and may also transdifferentiate to
osteoblast-like cells (Yang et al., 2014). While in the proliferative
zone, instead of becoming hypertrophy, or calcify. (Brighton,
1984) This zone composed large amount of extracellular
matrix, such as proteoglycans. Besides, it was concluded
that very little degradation of the extracellular matrix
occurs in the proliferative zone. (Brighton, 1978, 1984)
Considering that NPR-B mRNA is expressed primarily in
these zones (Olney, 2006), CNP may play a critical role in
maintaining the chondrocytes phenotype by balancing the
rate of cartilage production of the extracellular matrix of the
chondrocytes.

CNP Inhibits Mineralization
As previously mentioned, Col X, ALP, MMP, and RANKL,
etc., are the main markers associated with endochondral
ossification. CNP can inhibit endochondral ossification by
inhibition of the expression of these factors and maintain the
chondrocyte phenotype. In vitro, CNP stimulation decreased
the expression of Col X in chondrocytes (Waldman et al.,
2008). Besides, in an organ culture model, CNP can delay
tibia mineralization by down-regulating the Tnfsf11 gene
that encodes RANKL (Agoston et al., 2007). RANKL is
expressed in hypertrophic cartilage and it can stimulate the
removal of hypertrophic cartilage by osteoclasts and facilitate
vascular invasion and ossification (Xing et al., 2005). These
remodeling events could be delayed after the expressing
of RANKL was inhibited. Moreover, CNP may participate
in the Indian hedgehog/Parathyroid hormone-related protein
(Ihh/PTHrP) loop that inhibits prehypertrophic chondrocytes
from entering the hypertrophic phase (Yamashita et al., 2000;
Olney, 2006). The positive effects of CNP on maintaining the

MSCs-Derived chondrocytes phenotype stability are summarized
in Table 1.

CONCLUSION

Phenotypic instability restricts the application of the MSCs as
seed cells in cartilage engineering and an ideal solution has
not been established. These previous studies indicate that CNP
can promote the MSCs differentiate into chondrocytes at a
higher efficiency compared to the traditional methods and it can
increase the expression of related chondrogenic markers in a
short term. However, none of these papers has long-term in vitro
or in vivo studies to observe the effect of CNP on the stability of
the MCS-derived chondrocytes/cartilage.

Based on available research results on CNP and MSCs studies
and the developmental biology of cartilage and bone tissue,
we propose that CNP may represent an important candidate
as a regulator to maintain the chondrogenic phenotype of
MSCs-derived chondrocytes as well as MSCs-based engineered
cartilage both in vitro and in vivo. The potential mechanisms
maybe: (1) CNP could down-regulate the expression of RANK
and Col X to maintain the MSCs derived chondrocytes at
the proliferating or prehypertrophic stage. (2) CNP could
protect the cartilage matrix and inhibit calcification under
the inflammation environment caused by the OA. Once
verified, our hypothesis will likely direct the development
of phenotypically more stable cartilage tissue for cartilage
regeneration.
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