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a b s t r a c t

Here, we present the draft genome sequence of Bacillus sp. strain
MHSD28 which was sequenced, and assembled with a total length
of 5,571,729 bp. The genome has 43 contigs, the largest contig with
1,785,042 bp, N50 of 1,474,247 bp, G þ C% content of 35.23%. The
strain was isolated from surface sterilized leaves of Dicoma
anomala, obtained in Limpopo province, South Africa. The genome
has 5792 total genes which include 5701 protein coding sequences
(CDS), 192 pseudogenes, 7 rRNA genes with 3 operons (5S, 16S and
23S), 79 tRNA genes and 5 noncoding RNA (ncRNA) genes. This
whole genome shotgun project has been deposited in DDBJ/ENA/
GenBank under accession number VHIV00000000. The version
described in this paper is version VHIV01000000.
© 2019 University of Johannesburg. Published by Elsevier Inc. This

is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Data

Plant growth promoting bacteria (PGPB) are microorganisms that stimulate plant growth and
suppress plant diseases. Bacterial strains that have been successfully utilized as PGPB include species
lamini).
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Specifications Table

Subject area Biology
More specific subject area Bacterial Genomics, Bioinformatics, Molecular biology, Plant microbiology
Type of data Tables, Figures
How data was acquired Genome sequencing with Illumina MiSeq at Agricultural Research Council (ARC),

Onderstepoort, South Africa.
Genome assembly with de novo assembly Unicycler (Galaxy version 0.4.6.0). Genome
annotation with NCBI Genome Automatic Annotation Pipeline (PGAAP)

Data format Assembled and Analyzed
Experimental factors Genomic DNA extraction, genome assembly and annotation.
Experimental features Genomic DNA extraction was performed with Zymo Research Fungal/Bacterial DNA

MiniPrep Kit (Catalog no: D6005). Whole genome Sequencing of Bacillus sp. strain
MHSD28 was sequenced with Illumina MiSeq platform at Agricultural Research Council
(ARC), Onderstepoort, South Africa.
The genome was assembled with de novo assembly Unicycler (version 0.4.6.0) a web
platform on Galaxy (https://usegalaxy.org).Quast (Galaxy version 0.4.6.3) was used to
assess genome quality which was annotated with NCBI Prokaryotic Genome Automatic
Annotation Pipeline (PGAAP).

Data source location Bacillus sp. strain MHSD28 was isolated from fresh sterilized leaves of medicinal plant
Dicoma anomala obtained in Limpopo province, South Africa.

Data accessibility Genome assembly and annotation data are found in this article. All raw, assembled and
annotation data have been deposited in DDBJ/ENA/GenBank with BioProject number:
PRJNA549839, BioSample number: SAMN12098152 under the accession VHIV00000000
(https://www.ncbi.nlm.nih.gov/nuccore/VHIV00000000). The version described in this
paper is version VHIV01000000.

Value of the data
� This study will identify genes, important for bacterial endophyte lifestyle.
� The outcome of whole genome sequence of Bacillus sp. strain MHSD28 will improve data analysis in genomics for studies

of plants associated with Bacillus species.
� Genome sequence analysis of Bacillus sp. strain MHSD28 will provide further information to distinguish the differences

between strains within the genus Bacillus at gene level.
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from genera Bacillus, Pseudomonas and Stenotrophomonas [1]. Bacillus is a genus that belongs to the
phylum Firmicutes, with diverse bacterial species that are Gram-positive, rod-shaped and spore for-
mers [2]. Bacillus species are ubiquitous in nature and have been isolated fromnumerous environments
such as plants, animals, freshwater and the soil [3]. Some strains of Bacillus genus promote growth of
different plants through various mechanisms, such as biofertilization, increasing accessibility of pri-
mary nutrients such as nitrogen, phosphate, potassium for the plant, phytostimulation through the
production of phytohormones such as indole acetic acid (IAA), auxin and ethylene, as well as biocontrol
by production of antimicrobial metabolites [4e6]. In addition, Bacillus species can form spores, an
advantage that allows this group of bacteria to survive in unfavorable conditions [7].

Bacillus sp. strain MHSD28 was isolated from surface sterilized leaves of Dicoma anomala, and
initially identified using the 16S rRNA gene (GenBank accession number MN029053). D. anomala is a
medicinal plant with various pharmacological properties such as anti-inflammatory, anti-bacterial,
anti-plasmodial, anti-helminthic, anti-viral, analgesic and wound healing activities [8]. The plant was
isolated from Limpopo province, South Africa. The genome sequence of Bacillus sp. strain MHSD28 was
sequenced with Illumina MiSeq platform. De novo assembly was performed on Galaxy web platform
(https://usegalaxy.org) using Unicycler (version 0.4.6.0) and assessed with Quast (version 0.4.6.3).
Genes were predicted using the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP)
[9]. The genome annotation statistics are provided in Table 1. The resulting draft genome of Bacillus
sp. strainMHSD28 has 5,571,729 bp, with 43 contigs, the largest contig of 1,785,042 bp, N50 of 1,474,247
bp and G þ C% content of 35.23%. Bacillus is a distinctive genus with G þ C% content ranging from 34 to
35% (Bacillus cereus and other Bacillus related species) to 44e46% (Bacillus subtilis and other Bacillus
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Table 1
Genome statistics of Bacillus sp. strain MHSD28.

Attribute Value

Genome size (bp) 5,571,729
Largest contig (bp) 1,785,042
N50 1,474,247
G þ C (%) 35.23
Number of contigs 43
Total genes 5792
Total protein coding genes (CDSs) 5701
tRNAs 79
rRNAs 4,1,2 (5S, 16S, 23S)
ncRNAs 5
Pseudo genes 192
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related species) and genome size ranges from 3.7 to 6.4 Mb [10,11]. Bacillus sp. strain MHSD28 genome
size and G þ C% content is within the range of most sequenced genomes of Bacillus cereus species
[12,13]. Bacillus sp. strain MHSD28 has 5792 total genes of which 5701 are protein coding sequences
(CDSs),7 are rRNA genes with 3 operons (4 5S,116S and 2 23S), 79 code for tRNA genes, 5 are noncoding
RNA (ncRNA) and 192 are pseudogenes. A number of genes associated with plant growth promotion
activities were identified and these include siderophore production, nutrition utilization such as (ni-
trogen, magnesium, phosphate and potassium), growth promoting hormones [Indole-3-acetic acid
(IAA)] and stress response (Table 1, Supplementary Data). Similar genes were previously identified in
an endophyte B. flexus KLBMP 4341 [14], B. velezensis LDO2 [15] and Enterobacter sp. J49 [16].

Phylogenomic classification of MHSD28 was undertaken with the Type Strain Genome Server
(TYGS), a free bioinformatics platform available under (https://tygs.dsmz) for a whole genome-based
taxonomic analysis [17]. In addition, the Orthologous Average Nucleotide Identity Tool software
(OAT) was used to determine the OrthoANI value with closely related species [18]. The TYGS results
(Fig. 1, Supplementary Data) indicate that MHSD28 forms a monophyletic relationship with closely
related Bacillus species. This was consistent with the extended 16S rRNA gene analysis (Fig. 2,
Supplementary Data). Both trees had low d values which corresponded to high branch support
for the trees (Table 2, Supplementary Data). MHSD28 had a digital DNA-DNA hybridization (dDDH) of
77.4% with Gþ C% content difference of 0.03 and 70.9% with Gþ C% content difference of 0.04 (Table 3,
Supplementary Data) with B. tropicus N24T and B. paranthracis MCCCT, respectively. The dDDH values
with both Bacillus species exceed the species boundary value of dDDH>70% [19]. Fig. 1 shows that
strain MHSD28 exhibited OrthoANI values of 94.15% with B. thurengiensis serovar konkuT, 91.84% with B.
cereus ATCCT and 91.22%with B. toyonensis BCT-7112T all of themwhich are below the species boundary
value (ANI, >95e96%) [18]. Phylogenomic analysis distinguishes strain MHSD28 from its closest
neighbours and represents a prospective novel species of Bacillus. This potential new Bacillus species is
now in the process of being described using genomic data substantiated with phenotypic and
phylogenetic properties.
2. Experimental design, materials and methods

2.1. Bacterial isolation

Bacillus sp. strain MHSD28 was isolated from sterilized leaves of medicinal plant Dicoma anomala
using the method described by Patle et al. [20], with some modifications. Briefly, immediately after
plant material collection, in the lab, plant leaves were washed with running tap water followed by a
sequential sterilization with 70% ethanol for 5 minutes, a rinse with distilled water, soak in 2% sodium
hypochlorite for 3 minutes, sterile distilled water wash 3 times and the last wash plated on nutrient
agar plates as control. Sterile leaves were crushed using mortar and pestle macerated with phosphate
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Fig. 1. Heatmap generated with OAT software indicating the OrthoANI values of Bacillus sp. Strain MHSD28 and closely related
Bacillus species.
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buffer (8g NaCl, 0.2 g KCl, 1.44g Na2HPO4 and KH2PO4, pH 7.4), aseptically streaked on nutrient agar
plates and incubated at 30 �C for 48 hours. The plates were monitored for growth daily, grown colonies
were sub-cultured several times on fresh media, preserved in 30% glycerol stock solution and stored at
�80 �C for future use.
2.2. DNA extraction and genome sequencing

Bacillus sp. strain MHSD28 was cultured aerobically on nutrient agar plates at 28 �C for 24e48
hours. Extraction of genomic DNA was performed using the Zymo Research Fungal/Bacterial DNA
MiniPrep Kit as per manufacturer's instructions. The quality of the DNAwas assessed with a Nanodrop
spectrophotometer determining A260/280 ratio. The DNA was sent to a commercial service provider,
Agricultural Research Council (ARC), Onderstepoort in South Africa for sequencing. Illumina libraries
were generated using NEBNextUltra™ II DNA library preparation kit for Illumina and paired-end
(2 � 300 bp) sequenced using Illumina MiSeq instrument v3.
2.3. Genome assembly and annotation

All pre-annotation analysis was performed on Galaxy (www.usegalaxy.org) [21]. Quality of raw
sequence datawas assessed by FastQC (version 0.72). De novo assembly was performed using Unicycler
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(version 0.4.6.0) and the assembly assessed with Quast (version 0.4.6.3). The final genome assembly
was annotated through the NCBI PGAAP [9].

2.4. Phylogenomic classification

The genome sequence data was uploaded on the Type Strain Genome Server (TYGS) (https://tygs.
dsmz.de), for a whole genome-based taxonomic analysis with other validly published type strains
[17]. The average nucleotide identity with closely related species was determined using the Ortholo-
gous Average Nucleotide Identity Software Tool (OAT) [18].
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