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Abstract

Chinese wheat mini core collection (262 accessions) was genotyped at 531 microsatellite loci representing a mean marker
density of 5.1 cM. One-thousand-kernel weights (TKW) of lines were measured in five trials (three environments in four
growing seasons). Structure analysis based on 42 unlinked SSR loci indicated that the materials formed two sub-
populations, viz., landraces and modern varieties. A large difference in TKW (7.08 g, P,0.001) was found between the two
sub-groups. Therefore, TKW is a major yield component that was improved in the past 6 decades; it increased from a mean
31.5 g in the 1940s to 44.64 g in the 2000s, representing a 2.19 g increase in each decade. Analyses based on a mixed linear
model (MLM), population structure (Q) and relative kinship (K) revealed 22 SSR loci that were significantly associated with
mean TKW (MTKW) of the five trials estimated by the best linear unbiased predictor (BLUP) method. They were mainly
distributed on chromosomes of homoeologous groups 1, 2, 3, 5 and 7. Six loci, cfa2234-3A, gwm156-3B, barc56-5A, gwm234-
5B, wmc17-7A and cfa2257-7A individually explained more than 11.84% of the total phenotypic variation. Favored alleles for
breeding at the 22 loci were inferred according to their estimated effects on MTKW based on mean difference of varieties
grouped by genotypes. Statistical simulation showed that these favored alleles have additive genetic effects. Frequency
changes of alleles at loci associated with TKW are much more dramatic than those at neutral loci between the sub-groups.
The numbers of favored alleles in modern varieties indicate there is still considerable genetic potential for their use as
markers for genome selection of TKW in wheat breeding. Alleles that can be used globally to increase TKW were inferred
according to their distribution by latitude and frequency of changes between landraces and the modern varieties.
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Introduction

China is the largest wheat producer and consumer in the world,

with 23.6 million ha, a mean 4,762 kg/ha, and a 112 million tonnes

total production in 2008. There is long history of wheat cultivation

in China extending over more than 2,000 years. Production extends

from latitude 22u499 to 48u039 and much progress has been

achieved in breeding and production in the last 60 years. Average

wheat yields increased annually by 1.9% and production increased

more than six-fold [1]. Thousand-kernel weight (TKW), as one of

three major components of yield in wheat, has steadily increased

over the period. Based on phenotyping of 1,800 cultivars released

since the 1940s, TKW increased from a mean 31.5 g in the 1940s to

44.64 g in the 2000s, with a 2.19 g increase in each decade (Zhang

et al. unpublished). Previous studies also showed that TKW was one

of the three yield components with highest heritability, which varied

from 59% to 80% [2]. Most genes affecting TKW have additive

effects. Selection for TKW in the early generations of breeding is

highly effective [2].

Crop domestication is an artificial evolutionary process of

combining traits to meet human needs. During the domestication

of cereals, for example, reductions in plant height to avoid lodging,

large spikes, increased grain size, and disease resistance, were

selected and conserved. Modern breeding involved further

directional selection, which resulted in lower genetic diversity

within the domesticated population than in the entire species. At

the genome level, only a small number of genes (alleles) were

positively selected and conserved [3]. Many other alleles at specific

loci were gradually eliminated, leading to reduced genetic diversity

at these loci compared with those present in the entire species.

Diversity in genomic regions flanking the target genes was

simultaneously reduced because of linkage. This phenomenon is

referred to as linkage drag, hitchhiking, or selection sweep [4].

Hitchhiking generally leads to reduced diversity at target loci,

linkage disequilibrium at loci surrounding the selected gene, and

changed distribution patterns of alleles within the selected region

[5,6]. These effects also provide the bases for association of neutral

markers, such as SSR and DArT, with agronomic traits [6–10].

We established a Chinese common wheat core collection (CC)

and a mini core collection (MCC) after genotyping 5,029

candidate accessions at 78 SSR loci [11]. Choice of candidate

entries was based on documentary data in the national gene bank
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[12]. The MCC contains 231 accessions, or 1% of the basic

collection (23,135 accessions) with an estimated 70% representa-

tion of the genetic variation in that collection [11,13]. The higher

genetic diversity and artificial diminishment of dominant allelic

frequencies in the MCC makes it a suitable population for

detection of major QTLs controlling yield traits. It was shown to

be a good reference set for revealing geographic distribution and

time changes of important functional genes [10,14–18]. In this

study, we target loci associated with TKW to show the value of the

MCC in dissecting complex yield traits in wheat. This association

analysis provides useful information for marker-assisted selection

in breeding wheat for increasing yield.

Results

Phenotypic Assessment
TKWs of the Chinese mini core wheat collection were

measured in 4 growing seasons and 3 environments, including

Luoyang, Henan province 2002, 2005, and 2006; Shunyi, Beijing

2010; and Qingdao, Shandong 2010 (Table 1). Minor differences

in mean TKW occurred among different planting environments,

and there were major differences between landraces and modern

varieties. The MTKW of modern varieties (39.23 g) calculated

using BLUP methods based on multiple environments was

significantly higher (P,0.001) than that of landraces (32.15 g),

confirming that TKW was a yield trait improved by breeding. The

maximum TKW was not in a modern variety, but was in a

landrace. This indicates that further genes for this trait are present

in landraces and can be accessed for breeding. The total

agronomic data were considered in whole genome association

analysis.

Population Structure Analysis
Population structure analysis can identify locus associations that

are statistically significant, but biologically invalid due to strong

correlation with population structure. However, if the population

structure is properly dealt with, the likelihood of spurious

associations can be minimised [7,19]. Forty-two loci distributed

across every arm of the 21 wheat chromosomes were chosen to

examine the population structure of entries in the mini core

collection. We selected K values of assumed groups from 1 to 10.

After 80 cycles of simulation, we found that K = 2 was the best

separator providing the highest delta k value, and showing that the

MCC entries comprised two sub-populations. One group was

mainly the landraces, and the other included modern varieties and

introduced lines (Fig. 1). Overlapping occurs between the two

groups because in the early breeding period (1940–1960s), most of

the released varieties were derived from crosses between Chinese

landraces and introduced European or American varieties [20].

This was consistent with results based on 512 SSR loci using a

similar set of materials [13].

SSR Loci Associated with TKW
We firstly used the MLM model [21] to make a marker/

MTKW (TKW) association analysis. Thirty-two loci were

significantly (P,0.05) associated with MTKW. An association

with cfa2257 on 7AL was detected in all five trials; 8 loci were

detected in four trials, i.e. wmc304-1A, wmc147-1D, gwm312-2A,

gwm547-3B, gwm234-5B, gwm174-5D, gwm55-6D, and wmc17-7A;

6 loci were detected in three environments, viz., gwm268-1B,

cfa2234-3A, gwm156-3B, cfd266-5D, gwm356-6A and gwm471-7A; 9

loci in two environments, and eight loci were detected in one trial

(Fig. 2, Table S1).

Among the 24 loci associated with MTKW in at least two trials,

we found breeder-favored alleles with strong positive effects on

MTKW at 22 loci; and they were mapped to 11 chromosomes,

viz. 1A, 1B, 1D, 2A, 3A, 3B, 5A, 5B, 5D, 6D, and 7A. The 7A

effect spanned four loci, including gwm471, wmc168, wmc17 and

cfa2257. The genetic distance between wmc17 and cfa2257 is

2.72 cM. No stronger linkage disequilibrium (LD) was found

between the two loci (r2 = 0.10, P.0.05) indicating they may not

relate to a single yield gene, a result also suggested by previous

QTL studies of TKW [22–26]. Three loci on chromosomes 1B

and 2A were associated with MTKW. The allelic effect at each

locus on MTKW was estimated by ANOVA (SPSS16). Significant

or extremely significant differences in MTKW were detected

between varieties with the favored allele and those with other

alleles. Six loci with the strongest effects, and individually

explaining more than 10% of the total variation were detected

on chromosomes 3A, 3B, 5A, 5B and 7A (R2.10%) (Table 2).

The Distribution of Favored Alleles at Associated Loci
We estimated the frequencies of favored alleles at each of the 22

loci in the landrace and modern entries groups in the mini core

collection. Except at gwm403-1B, favored allele frequencies were

much higher in modern varieties than in the landraces (Figure 3,

Table S2). This reflects positive selection of those alleles in

breeding programs.

Modern varieties usually have fewer allelic variations than

landraces [13]. However, the major allele frequency is not always

higher in modern varieties than in landraces (Table S3). At the 42

loci without obvious signs of selection, the average major allelic

Table 1. Comparison of 1,000-kernel weights between landraces and modern varieties in the Chinese wheat mini core collection
in the 5 environments.

TKW-L02 TKW-L05 TKW-L06 TKW-S10 TKW-Q10 MTKW

Mean Landraces 33.7260.58 30.6660.51 33.0660.43 32.2360.47 30.3760.51 32.1560.37

M varieties 41.6960.74 38.6760.67 40.8160.65 39.6760.73 37.8760.64 39.2360.54

p-value 3.59E-15 3.98E-18 1.03E-20 1.51E-16 5.45E-17 1.33E-23

Min Landraces 23.78 16.47 22.65 20.22 17.06 22.78

M modern varieties 23.5 23.46 27.7 22.9 23.76 26.56

Max Landraces 57.56 53.94 53.66 55.02 54.48 52.57

M varieties 55.68 49.91 53.43 53.58 52.12 49.99

L: Luoyang, Henan province; S: Shunyi, Beijing; Q: Qingdao, Shandong province.
doi:10.1371/journal.pone.0029432.t001

Loci Influencing 1,000-Kernel Weight in Wheat
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frequency increased from 28.46% in landraces to 32.87% in

modern varieties, and the t-test indicated that the change was not

significant (t = 1.661, p = 0.1), but with equal variances

(F = 1.23),F0.05 = 1.69). However, at the 22 loci associated

significantly with MTKW, their average frequency increased from

11.58% to 30.52%, an extremely significant difference (Table S2;

t = 4.591, p = 7.95E-05), and unequal variances (F = 5.13,

F0.05 = 2.07).

Among the four loci with favored allelic frequencies higher than

50% in modern varieties, cfa2234-3A, barc56-5A and wmc17-7A

were among the six loci with the highest effects on phenotype

variation of TKW (Table 2). In addition, dramatic increases were

also detected at wmc17 and cfa2257 on 7A (Table S2); these were

also among the six loci (Table 2). The increased numbers and

frequencies of favored alleles were accompanied by increased

mean MTKW in modern varieties (Table 3). Therefore, we

believe that the increase in favored allele frequencies at the 22 loci

was mainly caused by selection for grain size over the five decades

before 2000 (Table S2).

Accumulation of Favored Alleles from Breeding
Positive selection of favored alleles at key loci was also clearly

implicated by changes in their number and frequency (Table 3).

The best modern variety (44.01 g) had 15 favored alleles at 22

critical marker loci, whereas the best landrace (38.84 g) had 10.

Almost 92% of the landraces had 0–5 favored alleles, whereas

85.2% of modern varieties had more than 5 favored alleles,

ranging from 5–15. Modern breeding has significantly promoted

the accumulation of favored alleles in varieties (Fig. 4). These

results illustrate the reliability of identifying favored alleles.

Importantly, no modern cultivar has favored alleles at all 22

marker loci (Table 3, Fig. 4), indicating further capacity for

improvement of TKW by maker-assisted selection.

Geographic Distribution of Favored Alleles at the Six Loci
with the Highest Contributions to TKW

Closely located loci cfa2257 and wmc17 on chromosome 7AL

with the highest contributions to TKW were chosen to analyze

Figure 1. Population structure analysis of 262 wheat cultivars based on 42 unlinked SSR loci. a: Population structure as determined by
Structure v2.2 analysis. Since Dk peaks at k = 2, the varietal set was split into two sub-groups. b: Structure analysis reveals that the 262 wheat cultivars
are clustered into two sub-populations. I. Landrances. II. Modern varieties and introduced lines.
doi:10.1371/journal.pone.0029432.g001

Figure 2. Genome wide association analysis of 1,000-kernel weight with SSR loci. TKWs collected from 5 trials were used to estimate mean
values (MTKW). TKW-L02, TKW-L05, TKW-L06, TKW-S10, and TKW-Q10 indicate 1,000-kernel weights in 2002, 2005 and 2006 in Luoyang (Henan
province), 2010 in Shunyi (Beijing) and Qingdao (Shandong), respectively.
doi:10.1371/journal.pone.0029432.g002

Loci Influencing 1,000-Kernel Weight in Wheat
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Table 2. Favored alleles, their frequencies, genetic effects and R2 at 22 SSR loci significantly (P,0.05) associated with MTKW.

Loci Chr.
Genetic
Position (cM)

Favored
allele (bp)

Freq.
(%)

MTGW
(mean±S.E) P value R2 (%)

Times
associated

QTL reported
[Reference No.]

cfa2153 1A 15.4 198 28.24 36.5860.67 0.002** 3.43 2

others 71.76 34.0960.41

wmc304 1A 52.0 126 16.41 37.8360.87 1.31E-4*** 5.12 4 [34]

others 83.59 34.1960.38

gwm11 1B 57.0 199 15.27 37.0860.89 0.006** 2.47 2 [25,34,36]

others 84.73 34.3860.38

gwm403 1B 61.4 134 22.14 36.2960.81 0.024* 1.56 2 [25,65]

others 77.86 34.3660.39

gwm268 1B 75.2 230 8.02 39.8061.45 2.58E-5*** 6.23 3

others 91.98 34.3560.35

wmc147 1D 0 150 22.14 37.3160.81 1.41-4*** 5.07 4 [35]

others 77.86 34.0860.38

gwm275 2A 56.12 110 11.45 38.8760.85 3.02E-5*** 6.13 2 [26,34,38]

others 88.55 34.2660.37

gwm312 2A 79.26 190 16.41 38.5560.91 1.98E-6*** 7.99 4 [22,26]

others 83.59 34.0560.37

gwm372 2A 80.45 331 6.11 40.9361.80 8.16E-6*** 7.03 2 [22,26]

others 93.89 34.3960.35

cfa2234 3A 107.38 142 43.89 37.5960.49 5.00E-13*** 18.2 3 [34]

others 56.11 32.660.43

gwm156 3B 40.05 311 11.45 40.9161.07 1.56E-10*** 14.27 3 [34]

others 88.55 34.0060.35

gwm547 3B 100.0 null 11.45 39.5460.83 1.00E-6*** 8.46 4 [34]

others 88.55 34.1860.37

barc56 5A 18.8 119 27.86 38.0260.60 6.46E-9*** 11.84 2 [24,25,34,36]

others 72.14 33.5460.40

gwm234 5B 20.57 237 and 239 16.79 40.0560.83 4.86E-12*** 16.48 4 [26]

others 83.21 33.7360.35

wmc415 5B 61.29 154 40.46 36.3860.58 2.85E-4*** 4.84 2 [37]

others 59.54 33.7160.43

cfd266 5D 22.0 167 19.08 37.4960.82 1.99E-4*** 4.83 3

others 80.92 34.1560.38

gwm174 5D 51.85 191 9.92 40.0161.13 6.86E-7*** 8.71 4 [65]

others 90.08 34.2260.36

gwm55 6D 83.45 130 21.76 37.8260.74 5.09E-6*** 7.35 4 [36]

others 78.24 33.9560.39

gwm471 7A 1.0 109 6.11 41.1461.39 3.85E-6*** 7.54 3 [23,34]

others 93.89 34.3860.35

wmc168 7A 32.9 307 8.4 37.9361.50 0.007** 2.35 2 [23,34]

others 91.6 34.560.36

wmc17 7A 89.17 182 and 184 37.4 38.1260.55 3.09E-14*** 19.62 4 [23,24]

others 62.6 32.8060.39

cfa2257 7A 91.89 129 20.61 40.1360.71 5.99E-16*** 21.99 5 [22,25,26]

others 79.39 33.4160.35

*: P,0.05;
**: P,0.01;
***: P,0.001.
R2: indicates the percentage of total variation explained.
Genetic positions of SSR markers on chromosome 1A to 7D were based on Röder et al. [54]; Somers et al. [55] and http://www.shigen.nig.ac.jp/wheat/komugi/maps/
markerMap.jsp.
Two favored alleles were detected at gwm234 and wmc17, respectively. To simplify the data process, the two alleles were considered to be the same in estimating their
genetic effects on MTKW.
doi:10.1371/journal.pone.0029432.t002
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their distributions in different production regions in China

(Figure 5). The favored alleles (182 bp and 184 bp) of wmc17

occurred in both landraces and modern varieties, but their

frequencies were significantly higher in modern varieties than in

landraces. Among landraces the highest frequency of the favored

allele with high TKW was in region VI with region VII in second

place. Both of the regions grow spring wheats with high TKW. For

modern varieties, regions IV and VI had the highest frequency,

with VII in third place. Other regions showed large variations in

the frequencies of favored alleles. Regarding cfa2257, the highest

frequency of the favored 129 bp allele was in region V with region

VI in second place, a little lower than its frequency in landraces in

region V. This allele was not present in landraces from 5 wheat

regions (I, II, VII, VIII, and IX), a situation clearly different from

the modern variety group where all modern lines, for example in

region IX, carried the favored allele. This allele was also common

in varieties from regions VI and VIII and occurred in the other

regions. The geographic distributions of favored alleles at four

other loci are included in Figure S1.

Genetically Additive Effects of Favored Alleles on TKW
To determine if additive effects occur among the favored alleles

at the 22 loci, we estimated the mean TKW of varieties with

different numbers of favored alleles. There was a high linear

correlation (Y = 1.294X+29.33, R2 = 0.95) between MTKW and

number of favored alleles (Figure 6) indicating clearly additive

effects of favored alleles. However, an obvious negative interaction

among loci after the number of favored alleles reached 10 and

resulting in larger differences between real and expected TKW

cannot be ignored (Fig. 6). A confounding factor was that some

subgroups included only one or two varieties (Table 3).

Discussion

SSR Loci Associated with TKW may Represent Major QTLs
affecting Yield

According to Nordborg and Weigel [27], association mapping

represents next-generation plant genetics. It uses ancestral gene

associations and natural genetic diversity within a population to

dissect quantitative traits, and is built upon the presence of linkage

disequilibria. It offers a potentially powerful approach for mapping

causal genes with modest effects [28,29]. The association results

and allelic effects are influenced by population type and size, and

the breeding system of the species. Core collections are very

suitable for association analysis of highly heritable and domesti-

cation traits [8]. In the Chinese wheat mini core collection, the

mean LD decay distance for landraces at the whole genome level

was ,5 cM compared to 5–10 cM in modern varieties. Only

0.05% of marker pairs in significant (P,0.001) LD reached

threshold levels of r2 = 0.2 [13]. The observed LD is much lower

than for CIMMYT historical breeding materials, but is similar to a

population of European varieties released since the beginning of

the last century [9,30]. The overall population structure is very

weak, but the two sub-populations, landraces and modern

varieties, were clearly distinguished [11,13]. This separation

makes the MCC population suitable for marker/trait association

analysis. Earlier analyses revealed differences in regard to latitude

distribution and changes over time in important genetic

haplotypes, such as those of Pina and Pinb [14], Ppd-1 [15], GS2

(glutamine synthetase) [17], TaGW2 [18], TaSus2 [10,16].

However, compared with the candidate core entries, the

frequencies of predominant alleles declined to enable the

maximum representation of allelic variation at each locus [6,11].

This likely reduced the association power, allowing the major

QTLs to be targeted [8,10,29]. This was supported by the data in

Table 2, i.e. most of the associated loci were detected within QTL

intervals controlling TKW. Comparative analysis of modern

varieties and landraces reveals major loci that have been almost

fixed in modern varieties because of positive selection in breeding.

For example, in wheat, two haplotypes coding an invertase gene

on chromosome 5D were detected among 384 European wheat

varieties released since the 1880s, with 382 being the same

haplotype, and only two being the other. The latter would

obviously have a very low chance of being detected in general

association mapping populations. However, in our MCC, 58

accessions carried the above minority haplotype (Jiang YM and

Zhang XY unpublished data).

Integration of Association Mapping and QTL Mapping
Generates More Reliable Results

Artificial selection (domestication and breeding) leaves strong

foot-prints in plant genomes [4,6,10,31]. Understanding the

Figure 3. Comparative frequencies of favorable alleles at 22 loci for landraces and modern varieties in the Chinese wheat mini core
collection.
doi:10.1371/journal.pone.0029432.g003
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relationship between DNA sequence variation and variation in

phenotypes for quantitative or complex traits will increase the

speed of selection in breeding programs for predicting adaptive

evolution [32]. Both linkage and association mapping aim to

identify markers sufficiently closely linked to functional sequence

variations (causal genes) encoding changes in phenotype, allowing

breeders to select and manipulate these alleles routinely in diverse

breeding populations [29].

Localization and interpretation of QTLs and associated loci

provide confidence in results from association analysis [6,27,32].

In soybean,a high correlation (R2 = 0.83) between the distribution

of SSR markers and genes suggested close association of SSRs with

genes [33]. This makes us believe that SSR markers are suitable

for association analyses. Most of the associated markers were

found in genomic regions where genes or quantitative trait loci

(QTL) influencing the same traits were found previously. This

provides an independent validation of the approach. Additionally,

new chromosome regions for TKW were identified in the wheat

genome through association analysis. Overall, 22 SSR loci on 11

chromosomes were associated with TKW with high confidence.

This is much greater than the number of QTLs mapped in any bi-

parental population, indicating the dissection power of this

methodology in natural populations (Table 2) [34–36]. After

genotyping 254 loci in 194 F7 recombinant inbred lines, Groos

et al. [37] detected nine chromosome regions controlling TKW

(chromosomes 1D, 2B, 2D, 3A, 5B, 6A, 6D, 7A, 7D). These are

largely consistent with our association results (Table 2) from which

three QTLs, on chromosomes 2B (Xgwm148 - Xgwm374 -

Xgwm388), 5B (Xgwm639 - Xgwm271 - Xgwm604) and 7A (Xcfa2049

- Xbcd1930) were detected in six environments. The QTL on 7A

mapped to the middle to terminal region of 7AL, and partially

overlapped the region wmc17 - cfa2257 detected in the present

study. QTL controlling TKW were also detected at a homologous

region of 7DL [37]. Furthermore, the association mapping result

for this region is much more precise than with QTL mapping; the

genetic distance between the two nearest markers being only

2.72 cM (Table 2, http://www.shigen.nig.ac.jp/wheat/komugi/

maps/markerMap.jsp). This raises the question of whether a single

causal gene is involved. The r2 value between the two markers is

about 0.1 in the MCC. Thus there may be two linked causal genes,

a possibility that is consistent with the obvious geographic

distribution difference in favored alleles at two loci (Fig. 5).

Similarly, gwm312 and gwm372 on chromosome 2A also reflect

effects of two causal genes, which formed weak LD (r2 = 0.23) in

the MCC population. These examples illustrate how haplotype

and LD analyses enable dissection of yield QTLs in practice [10].

In another comprehensive QTL mapping report based on 12 data

sets obtained over three years of trials with 2–5 environments/year,

Snape et al. [38] detected seven relatively stable QTLs controlling

TKW in 11 DH populations. These QTLs were distributed on

chromosomes 2A (gwm445), 2B (gwm148), 2D (wmc41), 3A (gwm428 -

psp3001), 5A (gwm293), and 6A (wmc32, gwm518). The gwm445-

associated QTL was not detected in the MCC population, but was

detected in the core collection (1,160 entries) with a 2.89 g increase

in TKW (Zhang and You unpublished); gwm445 is very close to an

almost orthologous region of chromosome 2D marked by wmc41.

Both gwm148 on 2B and gwm275 on 2A mapped to orthologous

regions detected in our study (Table 2). Loci gwm55-6D and gwm415-

6B associated with TKW may be homologous to a QTL on 6A

flanked by wmc32 and gwm518 in the pericentromeric region, in

which TaGW2 is located [18](http://wheat.pw.usda.gov/ggpages/

SSRclub/GeneticPhysical/). In addition, distinct changes in fre-

quencies of SSR alleles between the landraces and modern varieties

at the 22 loci caused by hitchhiking effects provided positive
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Figure 4. Accumulation of favorable alleles in landraces and modern varieties from different regions of China. Modern breeding
promoted the accumulation of favored alleles.
doi:10.1371/journal.pone.0029432.g004

Figure 5. Favored alleles and their frequencies at the cfa2257 and wmc17 loci on chromosome 7AL in the Chinese wheat mini core
collection in ten ecological regions in China. A and B indicate wmc17 frequencies in landraces and modern varieties, respectively; C and D
indicate cfa2257 frequencies in landraces and modern varieties, respectively. Zone I: North winter region Zone II: Yellow and Huai River valleys, winter
wheat region. Zone III: Middle and Low Yangtze River valleys, winter wheat region. Zone IV: Southwestern winter wheat region. Zone V: Southern
winter wheat region. Zone VI: Northeastern spring wheat region. Zone VII: Northern spring wheat region. Zone VIII: Northwestern spring wheat
region. Zone IX: Qinghai-Tibetan Plateau, spring-winter wheat region. Zone X: Xinjiang winter-spring wheat region. Source: Zhuang QS [20].
doi:10.1371/journal.pone.0029432.g005
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evidence of selection for specifically favored alleles (Fig. 4; Table S2)

[4,6].

Linear Correlation between TKW and Favored Alleles
Showing the Practical Value of Genome Selection in
Breeding

Compared with QTL mapping, another attribute of association

analysis is the validation of favored alleles in germplasm collections

[8]. For example, Röder et al. [39] mapped a major TKW QTL

to the interval Xgwm295 - Xgwm1002 located in the distal telomeric

bin (7DS4-0.61-1.00) in the physical map of wheat chromosome

7DS. Zhang et al. [6] found that allele Xgwm130132 underwent

very strong positive selection during modern breeding. Xgwm130

maps between Xgwm295 and Xgwm1002, with a genetic distance of

1.1 cM from Xgwm295. Thus the identification of favored alleles

will help in choosing parents for crossing programs, to ensure

maximum levels of favored alleles across sets of loci targeted for

selection, and to promote fixation at these loci [40].

Whereas linear correlations between TKW and favored alleles

indicate the additive effects of QTLs or genes, the possibility of

other genetic effects should not be ignored in practice. Higher

standard errors when the numbers of favored alleles exceed 10

(Figure 6) reveals the possibility of threshold effects with excessive

numbers of favored alleles. Another cause of the higher standard

errors was that the number of varieties carrying more than 10

favored alleles was much fewer (Fig. 4).

The concept of genome-wide selection (GWS) was recently

introduced in plant breeding; this method uses information from

all markers, as opposed to significant markers, to evaluate the

breeding value of each line [41,42]. Frisch et al. [43] used

transcription data from 46,000 oligonucleotide arrays to develop a

prediction model for the value of parental maize lines in relation to

the grain yield performance of their hybrid progeny. They found

that predictions based on 50 well chosen genes were as accurate as

predictions based on 5,000 random genes. Therefore, the

combination of GWA and GWS will in future enhance the

practical application of GWS in crop improvement [29]. This

work paves the way for further targeted diversity mining in

landrace populations and wild relatives via comparative genomics

analysis. The most interesting example is that genes on a

Thinopyrum ponticum group 7L chromosome enhance grain yield

by 13% in the genetic background of newly released varieties

[44,45]. The 7L gene may be orthologous to the TKW chromatin

block flanked by wmc17 and cfa2257 on 7AL (Table 2) [46]. These

examples indicate that increased grain weight in wheat is feasible

using genomic selection.

Frequency and Geographical Distribution of Favored
Alleles Indicate Potential for Yield Increases by Selection
of Loci Associated with TKW

In wheat, some genes or SSR loci associated with yield vary

across latitudes, such as TaSus2 on chromosome 2B [16], TaGW2

on 6A [18] and gpw7596 on 7B (EST-SSR) [47]. Favored alleles

usually occur at relatively lower latitudes. This might indicate that

the functional genes at these loci, including mapped alleles and

those linked with markers, might be responsive to sunlight and

temperature during the growing season [48,49]. None of the 6

SSR loci with determination coefficients higher than 10%

associated with favored MTKW alleles cfa2234142 (3AL),

gwm156311 (3BS), barc56119 (5AS), wmc17182, 184 (7AL) and

cfa2257129 (7AL) had obvious correlations with latitude (Fig. 5,

Fig. S1). They can therefore be used globally for increasing TKW.

None of the 88 genotyped modern varieties, and 17 introduced

lines, carried favored alleles at all 22 loci, and only one variety had

15 favored alleles (Table 3, Fig. 4). Therefore, there are still

opportunities for maker-assisted selection for TKW in wheat

breeding.

Materials and Methods

Phenotypic Assessment
A Chinese wheat mini core collection [6,11,13] was chosen for

genome-wide association of 1,000-kernel weight (TKW) using SSR

markers. The mini MCC contained 262 wheat lines including 157

landraces, 88 modern varieties, and 17 introduced lines repre-

senting 1% of the national collection, but more than 70% of its

genetic diversity [11]. The phenotype data were collected in five

environments, viz. 2002, 2005 and 2006 in Luoyang, Henan

province, and 2010 in both Shunyi, Beijing, and Qingdao,

Shandong. The field planting design and methods of TKW

measurement were described in Su et al. [18] and Jiang et al. [16].

Mean values of TKW and standard errors were analyzed by SPSS

16.0 (http://www.brothersoft.com/downloads/spss-16.html). The

Figure 6. Linear regression analysis of MTKW based on five trials.
doi:10.1371/journal.pone.0029432.g006
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mixed mean TKW (MTKW) was estimated by the best linear

unbiased predictor (BLUP) method according to Bernardo [50–

52].

SSR Genotyping
Genomic DNA was extracted from young leaves of 10 seedlings

of each entry according to Sharp et al. [53] and fingerprinted by

PCR amplifications that identified alleles at 531 SSR loci. Genetic

map positions for most of the markers (512 loci) can be found in

Hao et al. [13]. The loci were distributed evenly across all 21

wheat chromosomes. The primer sequences and genetic locations

of the loci were obtained from http://www.shigen.nig.ac.jp and

http://wheat.pw.usda.gov [54,55]. The annealing temperature for

each primer pair was obtained from Röder et al. [54] and

GrainGenes (http://wheat.pw.usda.gov). After purification, the

amplified PCR products were separated on an ABI3730 DNA

Analyzer (Applied Biosystems, Foster City, CA, USA). Fragment

sizes were determined using an internal size standard (LIZ500,

ABI, USA), and the outputs were analyzed using GeneMapper

software (http://www.appliedbiosystems.com.cn/). The minor

allele frequency (MAF) was set as 0.05 during the following

statistics.

Association Analysis
To reduce the risk of false or spurious associations, population

structure was estimated by STRUCTURE v2.2 software accord-

ing to Pritchard and Rosenberg [56] and Pritchard et al. [57],

based on 42 unlinked loci from both arms of each chromosome

with a length of burn-in period equal to 50,000 iterations and a

run of 500,000 replications of Markov Chain Monte Carlo

(MCMC) after burn in. A total of 80 independent runs were set

with the number of presumptive groups (k) varying from 1 to 10.

In order to select the most appropriate number of sub-groups, the

Dk value, based on the average Ln probe of each run, was

calculated allowing the internal population structure of the sample

set to be determined [58], then Q data were obtained according to

the corresponding K value.

In order to define the degree of genetic covariance between

pairs of individuals, a kinship (K) analysis was conducted by

genotypic data with SPAGeDi software [59]. The calculation of

pairwise kinship coefficients was according to Loiselle et al. [60]

with 10,000 permutation tests. Negative values between individual

pairs were then set to 0, as this indicated that they were less related

than random individuals [21].

The mixed linear model (MLM) module with Q+K of the

TASSEL 2.1 software package (http://www2.maizegenetics.net/)

[61,62] was used for genome wide association of MTKW and

TKW in each trial. The relative value of the favored allele for

TKW (R2) was calculated according to the equation, R2 = (SSA2-

fA6MSE)/SST where SSA indicated the sum of squares between

groups of favorable alleles and others, fA indicated the degrees of

freedom of the group with the favored alleles, MSE indicated the

error mean square, and SST indicated the sum of squares [62,63].

Because modern varieties usually have fewer alleles than the

landraces generally, frequency at most alleles would be increased

in modern varieties [13]. To avoid circular reasoning in data

interpretation, we randomly selected one locus on each arm of the

21 chromosomes, with PIC values higher than the global mean

(0.65), for evaluating changes in major allele frequencies between

the two sub-populations at loci associated significantly with

MTKW and loci probably not removed by selection in

domestication and breeding [64] (Table S2, Table S3). We used

F-tests and t-tests to estimate differences in allelic frequencies

between the landrace and modern variety groups by SPSS15.0.

Supporting Information

Figure S1 Favored allele frequencies (in blue) in
landraces (left) and modern varieties (right) at the
barc56, cfa2234, gwm156 and gwm234 loci.

(TIF)

Table S1 SSR loci associated with MTKW and TKW in 5
environments by Tassel 2.1(P,0.05).
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Table S2 Frequency change of favored alleles at the 22
loci associated with MTKW in landraces and modern
varieties.
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Table S3 Frequency change of major alleles at the 44
loci with higher PIC than the mean (0.54) in landraces
and modern varieties.
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