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Abstract: A diverse range of normal flora populates the human skin and numbers are relatively
different between individuals and parts of the skin. Humans and normal flora have formed a
symbiotic relationship over a period of time. With numerous disease processes, the interaction
between the host and normal flora can be interrupted. Unlike normal wound healing, which is
complex and crucial to sustaining the skin’s physical barrier, chronic wounds, especially in diabetes,
are wounds that fail to heal in a timely manner. The conditions become favorable for microbes
to colonize and establish infections within the skin. These include secretions of various kinds of
molecules, substances or even trigger the immune system to attack other cells required for wound
healing. Additionally, the healing process can be slowed down by prolonging the inflammatory phase
and delaying the wound repair process, which causes further destruction to the tissue. Antibiotics
and wound dressings become the targeted therapy to treat chronic wounds. Though healing rates are
improved, prolonged usage of these treatments could become ineffective or microbes may become
resistant to the treatments. Considering all these factors, more studies are needed to comprehensively
elucidate the role of human skin normal flora at the cellular and molecular level in a chronic injury.
This article will review wound healing physiology and discuss the role of normal flora in the skin
and chronic wounds.

Keywords: normal flora; microbes; wound healing; chronic wound; wound infection

1. Introduction

Skin wound healing is a highly complex and dynamic mechanism involving various
regulatory cells and molecules integrating to complete the wound re-epithelialization
cascade [1]. Once the cutaneous layer is broken, the embedded cellular and molecular
substances within the skin layers will synchronize at the designated phases to initiate the
healing mechanism. Even though cutaneous wound healing is a systematic process, the
phases are overlapping; therefore, it is known as one of the most complicated biological
processes in the human body [2]. A chronic wound can be described as a stalled wound
or wound that cannot heal in the expected time frame (of less than 3 months) [3]. It is
characterized by an abnormal phenotype of epidermis and dermis cells that originates
from the wound bed. A chronic wound is caused by a local factor (infection), systemic
factor (diabetes), or both. The local factor affects the wound healing recovery of a particular
wounded area of the skin, while systemic factors refer to the progression of the wound
healing altered by the medical condition or history [4]. Generally, the chronic wound is a
healthcare and socioeconomic burden. Approximately 2% of the population in developed
countries has the potential to develop chronic wounds, especially leg ulcers, once in a
lifetime [5]. Chronic wounds affected around 5.7 million people in the USA alone, at the
cost of $20 billion for treatment and management yearly. The incidence is predicted to
rise significantly in the elderly due to diabetes [6]. Besides skin lesion and diabetes, there
are various underlying diseases such as sickle cell anemia, calciphylaxis, systemic lupus
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erythematosus (SLE), skin disease, or impaired physiological states that include paralysis,
malnourishment (lack of nutrients), aging, and poor mobility that can affect the sequence
of healing events, resulting in non-healing or chronic wounds [7].

In diabetes, for instance, several complications can lead to chronic wounds that are
microvascular or macrovascular. However, diabetic foot ulcer (DFU) is considered more
alarming than any other complications as it has become the primary cause of morbidity
and increased hospital care for diabetic patients [8]. In addition, poor vascular flow and life-
threatening infections are the major causative factors in diabetic chronic wounds impairing
the wound healing process [9]. According to Armstrong and his team (2017), the cost of
treatment for diabetic foot care has exceeded the cost for common cancers, as the diabetic
wound is responsible for more admissions than any other diabetic complication. The
researchers further stated that diabetic patients who developed foot ulcerations are at
two times higher risk of death within 5 years upon diagnosis than patients who are not
diagnosed with foot ulcers [10]. Based on the 2015 prevalence data, the International
Diabetes Federation (IDF) reported that approximately 463 million adults are living with
diabetes in 2019 [11], and diabetic foot with lower extremity complications affects about
40 to 60 million people globally (International Diabetes Federation-Complications 2020). In
addition, the World Health Organization (WHO) has estimated that diabetes will be the
seventh foremost death cause in 2030 [12]. Recently, it has been reported that every 30 s,
one leg is being amputated due to DFU in some part of the world [13]. For the past 10 years
in Malaysia, there has been an increase in diabetic cases, mainly affecting individuals of
30 years or older [14] in which 15% of the diabetic patients developed DFU [15]. Meanwhile,
a statistic showed that 17% of patients admitted to the General Hospital of Kuala Lumpur
are mainly due to DFU [16].

2. Anatomy and Physiology of Skin

The skin is the largest organ of the body and is divided into three layers; epidermis,
dermis, and hypodermis, also commonly known as subcutaneous tissue [17] (Figure 1).
The function of the epidermis is to protect the skin from microbial infections, chemical
hazards, and mechanical as well as thermal hazards [18]. The epidermis also helps to
maintain body temperature and prevent water loss through homeostasis [19].
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The epidermis layer is composed of five stratum layers, keratinocytes, melanocytes,
Langerhans cells, and Merkel cells. Beneath the epidermal layer lies the dermis or dermal
layer that is rich with blood supply, extracellular matrix (ECM), nutrients, mast cells, nerve
endings, lymphatic, fibroblasts, and epidermal appendages. The dermis provides structural
integrity for the skin and modulates all cellular activities, including thermoregulation and
cell restoration. The hypodermis acts as an insulator by trapping heat, providing shock
absorption, and structural support to the skin [20,21].

3. Skin Wound Healing

Normal skin wounds take around one to two months to heal [22]. It is a natural, bio-
logical, and sophisticated process that occurs after an injury in tissue, which involves blood
cells, connective tissue, parenchymal cells, ECM, and soluble mediators such as cytokines
and growth factors interacting with each other during the wound healing mechanism.
Classically, there are four major phases in wound healing; hemostasis, inflammation, tissue
proliferation, and tissue maturation or remodeling [23,24]. The underlying connective
tissue is exposed upon injury to the skin, and the collagens attract platelets to the injury
site. This triggers platelet aggregation to deliver clotting factors such as prothrombin
and fibrinogen, which initiates platelet clotting, coagulation, and a complement cascade
through extrinsic and intrinsic pathways. During the coagulation phase, the platelets
release chemicals from their granules into the plasma, including cytokines, growth fac-
tors, and pro-inflammatory mediators such as ADP, serotonin, Von Willebrand factor, and
prostaglandin. These further assist the platelets in adhering to the injury site, forming a
platelet plug, activating clotting chemicals, and maintaining vasoconstriction. Thrombin
is a coagulation factor II that converts fibrinogen into fibrin, an insoluble protein, as a
final product at the end of the complement cascade, thus arresting the blood flow at the
wounded site. After clot formation, the coagulation process is switched off to prevent
thrombosis. Fibrinolysis removes the fibrin and maintains vascular patency in balance with
blood coagulation and fibrin formation [25–28].

In the inflammation phase, aggregated platelets secrete chemoattractant to activate
the inflamed cells. These aggregated platelets release growth factors and pro-inflammatory
chemokines to recruit neutrophils and macrophages to phagocyte the debris and fight
against infection. Meanwhile, the endothelial cells from the wounded site are being
stimulated to produce growth factors such as epidermal growth factor (EGF), transforming
growth factor-beta (TGF-β), and platelet-derived growth factor (PDGF) to synthesize
fibroblasts. After neutrophils have cleared out debris from the injury site, they undergo
cell death or return back into circulation. Macrophages predominate the inflammation
phase by clearing the apoptotic neutrophils, unwanted necrotic tissue, dead cells, and
toxic production from the site. Macrophages transform into M1 (pro-inflammatory) and
M2 (anti-inflammatory); M1 macrophages modulate cytokines such as interleukin (IL)-1β,
TNFα, IL-6, IL-12, and matrix metalloproteinase (MMPs) while M2 macrophages produce
arginase, TGF-β, CCL18, PGE2, and IL-10. These macrophages have their distinct lineages
respective to their specific functions. For example, M1 macrophages are responsible
for wound clearance of microorganisms and inflammation effects on the wounded bed,
while M2 macrophages stimulate an anti-inflammatory effect, modulation, and encourage
wound adhesion. On top of that, M2 macrophages also help in reducing inflammation
and promoting angiogenesis and tissue regeneration in the healing process [29,30]. This
is followed by the proliferation phase in which fibroblasts, keratinocytes, and endothelial
cells migrate, proliferate, and re-epithelialize through the denuded wound to form new
blood vessels [31,32].

During this time, new ECM are produced and some of its constituents such as collagen,
elastin, proteoglycans, and hyaluronic acid aid in the construction of the granulation layer
to restore platelet clot formation and contracting the wound size [33,34]. In a normal wound,
keratinocytes relocate to the wounded area as a cell sheet over the granulation tissue and
differentiate to re-epithelize the skin via integrin-mediated binding interactions with ECM
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molecules. However, these cells become dysfunctional and fail to regenerate the damaged
tissue in the chronic wound [35]. While it undergoes a remodeling or maturation phase,
the wound typically swells, reddens, and becomes itchy. The newly formed granulation
tissue contains collagen fibers, becomes more vascular, and decreases the number of cells
or changes in cell size. Additionally, the epidermal layer is also constructed, whereby this
layer is subjacent to the basal lamina through the external and internal layers of the wound.
At the same time, all unused proteins are degraded [36]. The collagen is remodeled from
collagen type III to collagen type I, regulated by MMPs, while myofibroblasts produce
collagen fibers for wound contraction [37]. In addition, myofibroblast highly expresses
cytoskeleton α-actin, a type of smooth muscle protein that is essential for the contraction
of the blood vessel [38]. At the final stage of wound healing, the myofibroblasts will be
destroyed while cross-linked collagen fibers are rearranged and regulated by growth factors
to give the newly formed scar a better tensile strength [39]. Table 1 shows the difference
between acute and chronic wounds.

Table 1. Differences between acute and chronic wound healing.

Items Acute Wound Healing Chronic Wound Healing

Growth factors Normal degradation [40] High degradation [40]

Neutrophils
Normal activation of neutrophils to phagocyte

the pathogens or foreign particles during
inflammation [41]

High activation of neutrophils with excessive
secretion of reactive oxygen species and ECM

degradation [41]

Macrophage
During inflammation, ability to transform from

pro-inflammatory macrophage, M1 to
anti-inflammatory macrophage, M2 [30]

During inflammation, poor transformation of
macrophage from M1 to M2 [30]

Anti-inflammatory
cytokines Decrease production [42] Increase production [42]

MMPs and inflammatory
cytokines

Decrease secretion of MMPs and inflammatory
cytokines [42]

High secretion of MMPs and inflammatory
cytokines [42]

Wound healing contaction/
contracture and Types of

wound

Wound contraction Types of wound-normal
scar wound [42]

Wound Contracture Types of wound; (a) chronic
non-healing wound-ulcer, (b) dehiscence-scanty
of wound healing, (c) fibrosis (hypertropic scars
and keloids)—uncontrollable wound healing [42]

Pathological condition of
epidermal skin Epidermal skin still present as normal skin [27] Hyperkeratotic (thick keratin layer or

parakeraotic (anucleated keratinocytes) [27]

Duration of wound healing 3 months [43] More than 3 months and up to 7 months (for
active ulcer) [3]

Phases of wound Normal four phases-hemostasis, inflammation,
proliferation and remodeling [23]

Not normal phases—Prolonged inflammation,
impaired proliferative and remodeling phase [23]

Cell mitosis Takes place [41] No cell mitosis [41]

Granulation tissue Normal production [40]
Neoangiogeneis, less fibroblasts, low oxygen→
tissue hypoxia Tissue hypoxia—low production

of granulation tissue [40]

4. Pathophysiology of Chronic Wounds and Diabetic Foot Ulcers

Healthy skin is essential for wound recovery when a minor injury is inflicted on the
skin layer. This could be only possible with the association of molecules and cells residing
within the skin. In chronic wounds, the cells are unhealthy or in abnormal conditions that
cause prolong wound healing or showed no improvement. Generally, fibroblasts play a
critical role in wound healing by synthesizing ECM (fibronectins, hyaluronan, and proteo-
glycans) and collagen [44]. Unlike acute wounds, fibroblasts in chronic wounds become
senescent, decrease in proliferation, and migration to the wounded area is inhibited thus,
hampering collagen production and deposition [45], as shown in Figure 2. Consequently,
fibroblasts are unable to remodel the ECM, causing elevations of enzymes such as MMPs,
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collagenase, serine protease, and elastase. MMP is a type of zinc endopeptidase that can
deteriorate the ECM components. There are 23 types of MMP classifications, however, only
collagenase (MMP-1, MMP-8) and gelatinase (MMP-2 and MMP-9) actively participate in
the wound healing stages. Under normal conditions, the secretions ratio between MMPs
and tissue inhibitors of metalloproteinases (TIMPs) are equal. However, the imbalance
expressions of MMPs and TIMPs can cause degradation and inhibition of growth factors
and ECM components thus, delaying the wound healing process [46–48]. Keratinocytes
are the building blocks for the epidermis, which trigger the release of cytokines when in
contact with an injury or wound [49]. They also involve in the initiation, maintenance,
and completion of the wound healing process to restore the epidermal barrier [50]. Ker-
atinocytes at the wound edge become stalled in proliferation or hyperproliferative and
show poor migratory activity to re-epithelialize, suggesting no improvement in wound
recovery. However, the malfunction of keratinocytes during wound restoration in the
molecular aspects is not clearly defined [51]. For example, the role of transforming growth
factors (TGF-β) in wound healing is still elusive from the molecular aspects due to the
paradoxical roles during the inflammatory phase. TGF-β either supports persistent inflam-
mation by activating several pro-inflammatory cytokines (IL-1β, Tumour Necrosis Factor
Alpha (TNF-α), and IL-6) or inhibits the activation of T cells to become effector T cells
and encourage wound regeneration. In chronic wounds, some studies reported that high
levels of TGF-β1 and β3 were observed in chronic ulcers, especially in the hyperkeratotic
epidermis, while some studies observed low secretion levels of TGF-β in chronic wounds,
which could be a possible reason for failure in wound closure. Overall, more evidence
and in-depth understanding are needed to rule out the exact role of TGF-β in chronic
wounds [51]. Cytokines such as TNF-α exhibit a negative effect on the healing process [52].
The increased production of TNF-α signifies prolonged inflammation, and once the dermis
fibroblasts are destroyed, collagen and ECM production will stop [53].
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Figure 2. Diagram (A) shows the normal morphological structure of fibroblasts in an acute wound. In
Diagram (B), the fibroblasts become senescent, reduce in numbers, inhibit migration to the wounded
site, and alter collagen synthesis.

Diabetic skin ulcers present as a painful sore with the disintegration of skin layers
including the subcutaneous tissue. The ulcerations are usually found on the lower limbs,
especially on the foot, and are known as DFU [54]. In most cases, DFU causes severe
destructions to the joints, bones, and soft tissues of the ankle and foot [55]. DFU can be
categorized based on the depth of the wound, ranking from 1–5, starting with superficial
ulcer right up to foot gangrene following the Wagner grade system [56]. In most DFU cases,
chronic wound healing impairment leads to bacterial infection that can result in tissue
destruction and, if untreated, could cause lower limb amputation [57]. Similar to normal
wounds, ulcerated skin appears red and swollen, except that it is warm, and produces
pus or excessive exudate followed by an unpleasant odor [58]. Additionally, the ulcerated
foot can be seen with systemic infection, extensive cellulitis (more than 2 cm distant from
the ulceration), bone necrosis, or gangrene, with reduced oxygen to the limb [59]. Apart
from this, high glucose content in the blood produces substances known as advanced
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glycation end products (AGEs), which trigger the release of TNF-α and IL-1β that interrupt
the synthesis of collagen and diminishes proliferation to re-epithelialize the wound [60].
High sugar levels also cause factors like thromboxane, Von Willebrand factor, factor VIII
fibrinogen, and plasminogen activator inhibitor levels to be elevated in DFU patients.
These factors not only contribute to poor platelet adhesion and thrombosis but also impede
fibrinolysis [61]. The pathophysiology of DFU is multifactorial and the ulcerations can be
generated not only by one but several factors, which include immunopathy, neuropathy,
neuroarthropathy, vasculopathy, and mechanical stress [62]. Figure 3 summarises the
pathophysiology of DFU.
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5. The Role of Normal Flora as a Protective Agent towards Skin

The skin’s normal flora plays a vital role in the maturation and homeostasis of cu-
taneous immunity. The human skin harbors around 1000 types of bacterial normal flora.
Theoretically, normal flora is referred to as the bacterial normal flora since bacteria typically
populates the human skin without causing any harm to healthy individuals [63]. Most of
these bacteria live in the superficial layers of the stratum corneum and the upper parts
of the hair follicles [64]. Some bacteria, however, reside in the deeper areas of the hair
follicles that are beyond the reach of ordinary disinfection procedures. These bacteria
are the reservoir for re-colonization after the removal of the surface bacteria [65]. Other
common types of bacterial normal flora that can be found on the skin are Actino-bacteria,
Firmicutes, Proteobacteria, and Bacteroidetes. However, the most abundant type of bacteria
that take up the huge space of the skin are Staphylococcus epidermidis [66] and Staphylococ-



Pharmaceutics 2021, 13, 981 7 of 22

cus aureus [67] followed by Staphylococcus haemolyticus, Staphylococcus hominis [68], and
Micrococci species [69].

A varying range of microbial flora inhabits the skin immediately after a person is born.
Most of them are either mutualistic or show commensalism, and once they have established
settlement, the skin microbial communities remain constant and stable on the skin over
time [70]. The interactions between these microbe—host can be interrupted if some factors
cause alterations to the skin structure, whether internally or externally [71]. These factors
could include gender, age, medications (antibiotics), disease, different geographical regions,
and lifestyle [72]. Haro et al.’s (2016) study on age and gender factors postulated that the
microbes could change into different cell morphologies on the skin at the early and late
years of a person’s life [73]. In addition, the difference of skin surfaces based on gender due
to inconsistent secretions of hormones, skin pH, oil, and sweat could lead to favouritism
for some microbes to populate the skin more than the others [74]. In relation to females,
males have a greater abundance of lipophilic bacteria, especially Propionibacterium and
Corynebacterium, because their skins are highly acidic, the enormous micro-colony size
of bacteria, high production of sweat, and inadequate hygiene [72]. However, Shami et al.
(2019) argued that gender did not influence the number or diversity of microbes on the
cutaneous layer [69]. In addition, antibiotics are antimicrobial substances to inhibit prolif-
eration or destroy microorganisms. In some skin conditions, these antibiotics profoundly
obstruct the growth of normal flora and provide entry to opportunistic pathogens for
disease exacerbation [75]. For example, patients with rosacea indicated that Cutibacterium
acne protected the skin against harmful microbes by converting the oil into fatty acid, which
could acidify the skin surface and inhibit colonization of pathogens [76,77]. However,
in a different case with acne, antibiotic minocycline suppresses Cutibacterium acne thus,
increasing the growth of Streptococcus species and Pseudomonas species while destroying
other microbial flora that inhabit the skin [78]. A study was conducted to observe the
behavior of skin normal flora among children and teenagers in rural and urban areas. The
findings revealed that the type of outdoor activities and some physiological changes that
occur due to different age range could diversify the dynamics of the normal flora on the
skin [79]. Lifestyle, particularly hygiene and cosmetics, also influence the dynamics of the
normal flora [80]. Even though soaps, cosmetics, and other body shower products help
clean the skin, they can eradicate the healthy normal flora already residing on the skin,
which could lead to the growth of foreign microbes [81].

The bacterial survival and the extent of colonization partially depends on (1) exposure
of the skin to a particular environment, (2) innate and species-specific bactericidal activity
on the skin, and (3) a high degree of specificity involved in the adherence of bacteria to the
skin epithelial surfaces. Most bacteria do not attach to the skin. Staphylococci are mostly
found as nasal flora, and this species outnumbered the viridan streptococci in conquering
the nasal mucosa site. On the contrary, viridan streptococci can be seen dominating the oral
canal but not the skin or nose [82,83]. The colonization of normal flora depends on the part
of the body that is suitable for their growth, which includes oily (face), moist (armpit), or
some dry environments (forearm and buttock). Staphylococcus species and Propionibacterium
are commonly found in the oily part of the body, while Corynebacteria and b-Proteobacteria
inhabit the moist areas of the body. The dry environments are occupied mainly by bacteria
such as b-Proteobacteria, Corynebacteria, and Flavobacteriales [84,85]. The skin normal flora
harmonizes with various innate factors, including complement, IL-1α, and antimicrobial
peptides (AMPs) [86]. Normal flora release substances called phenol soluble modulins
(PSMs) and bacteriocins, particularly from S. epidermidis and acnecin from P. acnes (or also
known as Cutibacterium acne), to maintain the skin barrier from harmful microbes [87].
On top of that, S. epidermidis synthesizes secretome to reduce skin inflammation caused
by S. aureus during an allergic reaction. This will be achieved by omitting several factors
such as peptidoglycan, lipopeptide LP01, lipoteichoic acid (LTA) acid, and activation of
IL-10 through modulation with innate and adaptive immunity [88]. S. epidermidis also
induces the secretion of AMP (human beta defensin, HBd-2 and cathelicidins, and LL-37)
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produced by epidermal keratinocytes and skin commensal organisms. Then, it activates
the toll-like receptor (TLR)-2 signaling pathway through the innate immune system. This
response is important to promote the eradication of pathogenic bacteria and encourage
wound healing [89,90].

S. epidermidis is able to increase the frequency of CD8 T cells along with IL-17A or
IFN-γ to enhance the epidermal barrier and limit pathogen invasions [91]. Besides this, a
reduced number of skin resident microbes with an increase of Staphylococcus species and
Corynebacterium bovis were detected in a mice model of atopic dermatitis (AD). The findings
showed that lack of skin normal flora, dysbiosis, and overgrowth of both S. aureus and
C. bovis are responsible for acute atopic flares in patients diagnosed with AD [92]. Despite
this, there is another mechanism utilized by skin normal flora, known as pattern recognition
receptors (PRRs), which secrete nucleotide-binding oligomerization domain containing 2
(NOD2) that bind to peptidoglycans of Gram-positive and Gram-negative bacteria [93]. The
mechanism is equally important because it helps the skin commensals recognize potential
pathogens and initiate the innate immune system for further elimination. NOD2 with TLR2
and TLR6 are more specific to protect the skin from S. aureus, and likewise, TLR 2, 3, 7,
8, and 9 act as a defender against infections with herpesviruses, papillomaviruses, and
poxviruses [94].

Besides bacteria, other types of microbes reside on the skin, such as fungi, viruses,
and parasites considered normal flora of a healthy skin [95]. Examination of 14 different
body locations such as foot, heel, toenail, and toe web of 10 healthy adult participants
showed that Malassezia fungi accountable for most fungi colonization on healthy skin [96].
These fungi species are found in large numbers on oily skin containing lipid secreted
by the sebaceous gland [97]. Although the benefits of Malassezia species to the skin host
are still unclear, a study showed that this fungi species might enhance the activity of the
epithelial cells by synthesizing aryl hydrocarbon receptor (Ahr) ligands that act as a shield
against UV light [98]. Aspergillus and Penicillium are also commensal fungi, however, they
are expressed in a lower numbers. Meanwhile, Candida and Dermatophytes can be either
commensal or parasitic depending on the skin condition of the host [99]. For example,
Candida albicans increases the activation of antigen-specific Th17 cells and destroys any non-
commensal fungi that inhabit the local tissue by binding to their respective epitopes [100].
The bacterial–fungi interactions possess more virulence and resistance properties than with
a single organism. The biofilms of both, containing Staphylococcus epidermidis and Candida
albicans, exhibit resistance towards antibiotics compared to their single biofilms [101]. An
in vivo study on mice was conducted to investigate the effects of the papilloma virus
on carcinogenic skin cancer by introducing the strains into the immunocompetent mice.
The investigation revealed that the commensal papilloma virus could trigger T cells to
reduce the virulence of the virus, hence suppressing the growth of cancerous cells in the
immunocompetent mice [102–104].

6. The Role of Microbes in Wound Healing
6.1. Acute Wound Healing

Normal skin aims to maintain its integrity by controlling the skin inhabitants from
becoming harmful to the skin or preventing any penetration into the underlying tissue [105].
A slight alteration on the skin barrier may cause clinical changes to the skin, such as skin
inflammation, allergic reaction, skin infections, formation of tumors in the superficial layer
of the skin, and impaired skin healing [106]. Like other living organisms, microorganisms
need essential requirements such as suitable temperature, pH, and nutrients for them to
survive and multiply [107]. This can be achieved through the open cutaneous wound,
however, the total population and the type of microorganisms depend on the severity of
the wound and the immune level of the host [108]. The normal pH of healthy skin for both
males and females is between 4 to 5, which is acidic to significant fractions of the human
body [109]. The acidic condition is one of the ways to protect the skin from exogenous
microorganisms [110]. The acidic pH of the skin is a desirable condition for S. epidermidis
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to preserve and attach to the skin, whereby this condition is unfavorable or could inhibit
the growth of some skin pathogens such as S. aureus and P. acne. Most skin pathogens
prefer an alkaline environment [111]. The pH of the wound either facilitates the growth or
suppresses the colonization of pathogenic bacteria into the skin [112]. Under acute wound
healing, when the wound becomes acidic, the amount of lactic acid and oxygen will reduce
the pH of the skin. Acidic condition of the wound is needed for macrophages response,
multiplication of fibroblasts, angiogenesis, collagen synthesis, and DNA formation to
facilitate wound closure. In contrast, a wound that develops infection appears to increase
in an alkalinity environment [113,114]. Temperature influences the wound healing rate.
Any temperature that falls below the average body temperature will delay the wound
healing process. In normal wound healing, the temperature will be elevated in the first
few days before returning to the normal temperature due to the activities of the immune
system and other physiological responses related to the healing process [115,116].

Recently, a study showed that exposure to UV radiation elicited an immune response
through the synthesis of AMPs; however, concurrently, it caused immune suppression of
specific cytokines and other reactions such as skin cancer, photoallergic, and phototoxic.
Therefore, normal flora plays an important role in protecting the skin caused by ultra-
radiation, thus preventing immune suppression [117]. Besides, skin normal flora can also
elicit some other diseases such as impetigo, cellulitis, and systemic diseases, including
endocarditis and sepsis [118]. When bacteria propagate inside the wound, they produce
small chemicals used as signals to communicate with each other, as well as affecting the
host’s immune cells and blood vessels. Upon detection, immune cells respond to these
signals to kill the bacteria and limit the spread of the infections. One example is when
epidermal keratinocytes contact pathogenic microbes, they will release a range of cytokines
and chemokines to initiate a defensive response. This, in turn, will activate the production
of human beta-defensin, cathelicidin, RNase-family antimicrobial peptides, and reactive
oxygen species to protect the skin layer from further invasion by these pathogenic mi-
crobes [118]. A study conducted by Yang et al. (2017) postulated that re-epithelialization
of epithelial cells is important for a wound to recover due to the capability of the cells to
proliferate, differentiate, and protect from microbe infections. This can be achieved through
IL-27, which is known to have a functional role in regulating wound re-epithelialization.
The study also hypothesized that IL-27 secreted by dendritic cells and macrophages exhib-
ited antiviral response through JAK/STAT3 signaling pathway. In addition, the expression
of IL-27 is elevated in an in vitro model of mice skin after wound closure [119].

Recent studies also found that S. epidermidis plays an active role in skin immunity by
activating cytotoxic CD8 T cells (CTLs) that belong to major histocompatibility complex Ib
(MHC1b), and conferred N-formyl methione peptides on antigen-presenting molecules
with the help of dendritic cells to CTLs for further actions. The studies also included
that RNA gene sequencing on CD8 T lymphocytes was stimulated by S. epidermidis. The
analysis results showed that immune regulation and genes associated with tissue repair
were up-regulated. Through this pathway, both the bacteria and T cells prevent any foreign
particle invasion and help hasten skin wound healing [106,120]. Moreover, a similar find-
ing has been proven in skin biopsy samples whereby induced wound injury exposed to
S. epidermidis drastically improved re-epithelialization and tissue granulation [106]. When
an infection occurs, macrophages at the wounded site get in contact with pathogens and
secrete cytokines such as TNF-α and IL-1β to regulate the endothelial cells to synthesis
leucocytes’ adhesion molecules and chemokines. These will regulate the activity of leuco-
cytes and help them to relocate to the infected area. Basically, leucocytes only move to the
injury site after macrophages detect pathogen-associated molecular patterns (PAMPs) of
the microorganisms through toll-like receptors and activation of the immune system [121].
An adopter molecule in the TLR signaling pathway known as MyD88 also accelerates the
wound healing process since the MyD88 pathway assists in the production of granulation
tissue, wound closure, and angiogenesis [122], as shown in Figure 4.
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as protective shields against pathogen invasions.

Bay et al. (2018) conducted a clinical study to observe bacterial infections that occurred
in the wound at the superficial layer of the epidermis. The group concluded that bacteria
are always looking for any opportunity to reproduce and multiply, especially when there is
a region that contains all the necessary conditions for them to survive. Such a situation
happens when there is an entry into the skin and favorable conditions for the bacteria to
colonize and multiply excessively. Examples are keratin residues from the broken layer
of stratum corneum and fibrin accumulation at the borderline of the wound bed. This
finding assumes that bacterial aggregation happens because the immune cells cannot
prevent bacterial entry or immune cells are not allowed to enter the particular region
colonized by bacteria (Figure 5). They also concluded that bacterial accumulation is present
in all types of wounds except in chronic cases, which is more notable [123]. During acute
wound healing, fibroblasts synthesized keratinocytes growth factor I to produce more
keratinocytes and move to the wounded site. A recent study used a porcine model to
evaluate the effects of the uninfected and infected wound with single species, followed by
the wound co-infected with both P. aeruginosa and methicillin-resistant S. aureus (MRSA).
The findings demonstrated that epithelialization could not occur due to low regulation
of keratinocyte growth factor 1, as shown by decreased synthesis of fibroblasts in the
co-infected wound. This could explain that mixed-species directly influence fibroblasts’
production, thus impairing the wound healing process [124]. An investigation conducted
on pro-inflammatory interleukin IL-17A by using knockout mice (KO) demonstrated
that wounds gradually healed and control activity of neutrophils against skin pathogens
was observed in normal wounds compared to the wild mice with recombinant IL-17A.
However, Vγ4 T-derived IL-17A is the main compound that converts IL-17 to inflammatory
cytokine, impeding the function of dendritic epidermal T cells (DETCs) from producing
keratinocytes and halts the migration of damaged tissue. This indicates that IL-17A could
be another cytokine responsible for poor wound healing if secreted excessively [125]. In
most acute wound cases, Gram-positive bacteria outnumbered Gram-negative bacteria.
This can be seen in acute wounds whereby Staphylococcus species populations are greater
than Pseudomonas species alongside skin undergoing wound healing [126].
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6.2. Chronic Wound Healing

There are few classifications of microorganisms that are accountable for infection in a
chronic wound. Such microorganisms are Gram-positive bacteria, including Staphylococcus
aureus and Staphylococcus epidermidis. The Gram-negative bacteria are Escherichia coli, Proteus
mirabilis, Pseudomonas aeruginosa, Enterobacter species, and Morganella species. Compared
to the rest of the microbes, S. aureus is mostly resistant to antibiotics and contains high
virulence, contributing to the pathogenicity of the host [127]. Furthermore, the infectious
bacteria present in the wound bed tend to degrade the ECM and growth factors. The
bacteria that already conquered the wound sheet generally produce biofilms acting as a
barrier to allow them to grow, multiply, and protect from immune cells or become resis-
tant to the antibiotic. The biofilm architecture comprises a fraction of bacteria implanted
in the extracellular polysaccharide matrix or extracellular polymeric substances (EPS).
Additionally, this biofilm is toxic to the other skin cells, explaining the delay in wound heal-
ing [46,128,129]. The EPS is water-based, containing a matrix with some protein substances
that help channel nutrients, movement, and communication between the bacterial com-
munities in a biofilm. In brief, EPS is the main component of most bacterial biofilms that
support colonization or recolonization, by adhering to the wounded surface area [125,130].
Most bacteria exhibit some type of chemotaxis for movement, colonization and cause
disease in a host. Chemotaxis can be defined as receptor-mediated, directed cell movement
in a soluble chemical attractant concentration gradient known as a chemoattractant. Skin
pathogens, especially S. aureus and S. pneumoniae, are incapable of being chemoattractant
use various adhesion methods to attach themselves onto the surface of host tissue or cells
and utilize the available nutrients while dispersing the virulence contents into the host.
The adhesions include pili, fimbriae, and lipoproteins [131].

Bacterial biofilm formation is one of the indicators for its presence in a chronic wound.
More than 50% of the biofilms are detectable via microscopic observation compared to
only 6% in an acute wound. The bacteria species and the relative number varied from one
wound to another [132,133]. Some anaerobic bacteria can survive and multiply deeper in a
biofilm even though the oxygen level is depleted. Therefore, it is vital to investigate the type
of bacterial strains and their relationship within the wound since it is insufficient to kill the
biofilms cells by looking into the bacterial colonies alone [133]. In another study, Iwase and
colleagues (2010) showed that S. epidermidis can block biofilm formation by S. aureus [134].
Similarly, S. epidermidis can form biofilm in chronic wound infection through implanted
devices and host tissue, which can lead to septicemia [135]. The biofilm of S. epidermidis
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contains a protein known as polysaccharide intercellular adhesion (PIA), encoded by the
ica operon gene, which helps in the formation of biofilm and adhesion by the Staphylococcus
species [136]. PIA or polymeric-N-acetyl-glucosamine (PNAG) is a complement activator
produced by C3 and C5. On most occasions, S. epidermidis can produce PNAG-dependent
biofilms as a shield to protect itself from IgG and C3 factor, inhibit phagocytosis and
destruction by neutrophils and prevent the antibody from reaching the surface of the
biofilm. Through this, neutrophils’ reactions could be diverted and become ineffective in
destroying Staphylococcus species [137]. Unlike methicillin-resistant S. aureus commonly
found in other anaerobic bacterial colonies or mainly joined with Gram-positive bacteria,
Pseudomonas aeruginosa independently (planktonic state) can produce biofilm resembling
archetypal mushroom with enclosed ECM [138].

Several pathways are involved in the production of Pseudomonas aeruginosa biofilm.
One of the pathways is cyclic diguanosine-5′-monophosphate (c-di-GMP), which will en-
hance bacterial cell attachment, cell clumping, and EPS release to the surrounding wound
that causes severe infections [139]. Complement cascade activation in the skin wound
has shown some conversions in wound healing [140]. It is considered that complement
activation helps protect against infection and inhibits wound healing if the activation is
dysregulated, especially CD59. Dysregulation of CD59 increases cytokine release, cell
multiplication, and inflammation that can cause damage to the tissue [141]. During Staphy-
lococcus species invasion, the complement cascade is stimulated by three separate routes
that activate the C5a and C5b factors. C5a captivates neutrophils for bacterial engulf-
ment, whereas C5b produces a toxic vent to target the bacterial membrane and destroy
gram-negative bacteria [142]. On the contrary, Gram-positive bacteria are impenetrable
by membrane attack complex due to their thick peptidoglycan membrane [143]. PTX3 is a
substance produced by antibody-mediated immunity that works with plasminogen and
fibrin in the coagulation phase. In a chronic wound, PTX3 acts as a mediator between
antibody-mediated immunity and cellular pathways to activate phagocytosis when in
contact with any infectious microbes [144]. In a chronic wound, due to some catabolic
reactions, the oxygen level will reduce the skin′s pH, hence altering the wound healing
phases such as collagen production, blood vessel formation, and immune system [113].
Chronic wounds are characterized by high numbers of Langerhans cells, neutrophils, pro-
inflammatory macrophages [42], pro-inflammatory cytokines, reactive oxygen species [145],
and protease [146]. Similar to normal wound healing, these immune cells received signals
from innate cellular immunity and propagated the signal to the infected wound bed for
further actions. However, the immune cells are unable to perform their regular duty as they
become defective to function. The dysregulation of neutrophils and macrophages becomes
less effective in inflammatory effect and phagocyte the bacteria, contributing to the delay
in wound healing [27,42]. Neutrophils utilize neutrophil extracellular traps (NETs) to kill
infectious microbes or biofilms by releasing chromatins and granular protein contents. It is
also known as NETosis. NETs accomplished their tasks using two strategies. The first is to
destroy or stop the proliferation of pathogens, and the second is to disable the migration
of the pathogens. Despite its role against microbe infection, accumulated evidence has
shown that microbes can surpass NETs antibacterial activity and become resistant to it
by degrading NETs by enzyme nucleases and inhibiting NETs synthesis [29]. In addition,
S. aureus is able to induce extracellular trap formation by releasing leucocidin from the
biofilm to escape the antimicrobial activity of NETs. This encourages the multiplication
of bacterial colonies to disperse to a new place for new biofilm formation; thus, helps
the bacteria to sustain and survive in the chronic wound for a longer time [147]. As the
focus has been mainly on the diverse bacterial pathogens in chronic wounds, the fungi’s
role in the wound is considered significant. The imbalance number of commensals and
pathogenic fungi residing at the skin barrier also contributes to the delay of wound healing.
Candida species and Trichosporon species could hinder wound healing either via its spores or
biofilms disposition to exacerbate the inflammation and consume oxygen contents resulting
in necrosis [138,148]. A study has illustrated that Candida albicans could defect the role of
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macrophage and cell apoptosis in cutaneous wound healing [149]. IL-27 produced from
CD301b+ immune cells could exhibit antiviral properties suggesting its vital role in skin
regeneration [119,150]. It is thought that IL-27 could be able to quell the infection caused
by the Zika virus through the activation of STAT 1 signal transducer and activators of
transcription 1 (dependent) to STAT 2 (independent) [151]. A different virus has different
ways to seize the host for replication. For example, in a cutaneous wound, Herpes simplex
virus (HSV) replicates in the epidermis by forming glycoprotein, fused, and attaches to
the keratinocytes before disseminating its viral particles to initiate infection. Many studies
have investigated the skin normal flora or microbiome related to protection and thermoreg-
ulation, however, studies on the role of fungi and virus as cutaneous residents are still
scarce [152].

The severity of DFU corresponds to the amount of Staphylococcus species present in
the wound. The time taken for ulcer formation depends on the diversity and level of
Proteobacteria in the wound [126]. Chronic ulceration of diabetes could be caused by more
than one type of skin commensals, producing a synergetic effect that converts non-virulent
bacterial species to virulent and causing damage to the host. This has been proved based
on the high throughput of 16S rRNA gene sequencing [153]. Recently, endotoxin secretion
from Gram-negative bacteria has been observed in diabetes patients and it is likely to
induce insulin inefficiency through the elevation of pro-inflammatory cytokines in the
adipocytes such as TNF-α [154]. During the pathogenesis of chronic wounds, an infection
caused by S. aureus increases glucose resistance by blocking the insulin to its target site
hence elevating the glucose level in the blood [155]. Besides that, biofilms’ continuous
presence could delay wound healing in the DFU by releasing the inflammatory cytokines,
free radicals, nitric oxide, and complement initiation through the activation of immune
cells [156] as shown in Figure 5. In diabetic conditions, neutrophils become hyperactive
and secrete high amounts of TNF-α, which will increase the process of NETs formation to
destroy neutrophils, hence impairing wound healing [157]. In contrast, some skin bacteria,
either Gram-positive or Gram-negative, can regulate the NETs formation by releasing the
exotoxins to suppress the activity of skin pathogens, thereby boosting the defense system
and mediating phagocytosis [29]. The chronic skins of diabetic patients have shown a
higher number of mast cells and macrophages [158,159], while T cell receptors and CD4
T cell numbers are reduced [160]. The presence of these cells in chronic wounds could
explain the prevention of wound recovery, promoting skin infection, and jeopardizing the
wound healing system [159].

A study to examine the effects of the Circoviridae virus on two different groups of
children with Type I diabetes and a control group revealed that Circoviridae species is
more pervasive in the control group than in diabetic children. However, most children
did not exhibit any signs and symptoms after being infected with this virus and showed
no significant difference in both groups [161]. Although some studies reported that the
virus could protect from developing type 1 diabetes, some studies revealed a contradictory
report. It seems that virus infection in murine models induced with type I diabetes shows
impairment in the function of pancreatic Langerhans β-cells and autoimmunity activation,
which could eventually lead to cell destruction and apoptosis [162]. In diabetic wound
healing, the increased level of TLR especially TLR2 signaling pathway proteins (MyD88,
pIRAK, and TRIF) and their inflammatory cytokines (IL-1β and TNF-α) were high in
induced mice compared to non-induced mice. The significant increase of these levels in
diabetic mice did not show any improvement in wound healing, however, it extended
the duration of the inflammation phase [122]. Germ-free mice (without commensals)
showed increased wound epithelialization, wound closure, and angiogenesis with lesser
scar formation than non-germ-free mice (with commensals). These mice showed persistent
inflammation, cytokine release, and wound cessation, concluding that the presence of
skin normal flora decreases the efficiency in wound healing [163]. On the contrary, mice
that have been induced with different types of antibiotics before wound incision showed
decelerated wound healing than mice without antibiotics [126].
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7. Treatment for Chronic Wounds and Diabetic Foot Ulcers

The use of antibiotics in treating chronic wounds is challenging since the microor-
ganisms, especially bacteria, tend to become resistant to the prolonged treatments with
no improvement in wound healing besides causing kidney failure and oral tract infection.
The antibiotic treatments can be administered to the patients either by parenteral, oral, or
topical [164]. Since some antibiotics can reduce a type of pathogen while increasing the
growth of other pathogens, an empirical antibiotic choice should be carefully selected based
on the clinical examinations, the severity of the infection, antimicrobial sensitivity pattern,
and the aetiological agent. A broad spectrum of parenteral antibiotics is administered
for severe infections, while narrow-spectrum oral antibiotics are administered for mild
infections [165].

Besides drugs, there are different types of wound dressings applied for wound treat-
ments, including passive dressings (such as gauze), interactive dressings (such as foam or
sponge), advanced dressings (such as alginate or hydrocolloid), bioactive dressings (such
as Alloderm and Apligraf), and antimicrobial dressings (such as a topical antibiotic). The
goal of a good dressing is to retain moisture for wound closure, prevent infections, reduce
pain or irritation, and scar formation. Additionally, a selection of dressing also depends on
the application and type of wound. For example, a gauze dressing is used in a shallow flat
wound for less exudate production, while foam, sponge, and alginate are suitable for minor
burn or deep wounds to absorb excessive exudate from the wound. Bioactive or tissue-
engineered dressings accelerate wound healing by mimicking the natural function of ECM
and mediating the physiology of healing phases through angiogenesis, cell proliferation,
and new tissue formation. Antimicrobial dressings are mainly applied topically to chronic
wounds that are infected with bacteria [6]. Traditional wound dressings are mainly used to
maintain the dryness of the wounds and prevent infections but cannot absorb a large num-
ber of exudates. Different strains of normal flora and pathogens show different interactions
and impacts on the usage of the wound dressing. Another study reported that besides
improving the physicochemical properties of the dressing materials, loading additional
substances into the dressing materials could also prevent microbial infections [166]. Jack
and colleagues (2017) have used wood nanocellulose hydrogel suspension to observe the
activity of P. aeruginosa from a wound. They found that reduced virulence factor and biofilm
formation by P. aeruginosa is due to the material surface and porosity, which did not support
the growth of this bacteria species. This study suggested that dressing made of wood
nanocellulose could be a novel finding to prevent microbe’s growth and promote a moist
environment for wound acceleration [166]. In a similar study, wood nanocellulose hydrogel
crosslinked with ion (copper or calcium) showed inhibition growth of S. epidermidis and
retarded P.aeruginosa biofilm formation [167]. In a different study, chitosan exhibited good
antibacterial and antifungal effects towards bacteria (Gram-positive and Gram-negative)
and fungi while maintaining its physical properties suggesting it is a good material for
wound dressing [168]. Another study using thymol from natural monoterpenoid phenol
integrated into wound dressing has demonstrated antibacterial properties and can destroy
the biofilm formed by methicillin-sensitive S. aureus [169].

Total contact cast (TCC) is tagged as an alternative treatment approach for DFU.
Although the healing rate significantly improved with TCC, yet countless side effects can
be life-threatening, such as iatrogenic infections, ulcers, blisters, or skin abrasions [170].
Besides TCC, some other treatments for DFU are maggot debridement therapy (MDT),
negative pressure wound therapy (NPWT), and dermaspace systems (DS) [171]. DFU
patients who have severe wound infections or osteomyelitis need to undergo antibiotic
therapy for at least a month without surgical intervention to resolve the infections as
recommended by the Infectious Disease Society of America (IDSA) and the International
Working Group on the Diabetic Foot (IWGDF) [58]. Wound dressings are also another
choice of treatment for DFU. Some of the available dressings are hydrogel, foam, films,
hydrofibers, hydrocolloids, acrylics, and calcium alginates. Cellulose/collagen-based
dressing has shown some improvements in diabetic non-wound healing by accelerating the
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wound healing rate and improvement in wound closure [171]. In addition, the integration
of antibacterial properties such as silver nanoparticles into the collagen wound dressing
has the potency to reduce the risk of microbial invasions through the broken wound in
DFU [172]. Generally, topical antibiotics are not the best choice to treat DFU due to the
imbalance of moist production and contact dermatitis [173]. However, a recent finding
proved that topical probiotics such as Kefir (cultured probiotic beverage) exhibit potent
antimicrobial effects against S. aureus and E.coli. Probiotics help in reducing the possibility
of skin infections and improve tissue regeneration by regulating skin microflora through
various mechanisms in the skin [174]. Some other examples are tabulated in Table 2.
The use of wound dressings alone does not help eliminate pathogens but, together with
additional substances that exhibit some antibacterial/antimicrobial properties, could shed
some light on treating chronic wounds, especially in DFU.

Table 2. Types of antibiotic/antimicrobial therapy, route of therapy, targeted pathogens, and impact to wound.

Types of Antibiotic/
Antimicrobial Therapy

Methods of Application/
Route of Therapy Targeted Pathogens Impact of Therapy References

Gentamicin-collagen sponge
with systemic antibiotic

therapy (levofloxacin with
clindamycin or

amoxicillin-clavulanate

Gentamicin collagen
sponge–topical

Antibiotic—oral or
intravenous

S. aureus, Streptococci,
E. coli and P. aeruginosa

Overall no significant
improvement in healing
No side effects caused by

antibiotics

[175]

Cephalosporin agent
(ceftaroline fosamil) Intravenous Gram-positive bacteria,

MRSA

Effective in treatment
Potential substitute for
glycopeptide therapy

[58]

Amoxicillin—clavulonate or
cefotaxime Oral or parenteral Anaerobic bacteria Sensitive to the antibiotic

treatment [176]

Tobramycin Oral or parenteral Gram-negative bacilli Effective in treatment [177]

Linezolid Oral or parenteral

Staphylococcus sp.,
methicillin-resistant

staphylococcus (MRS),
Enterococcus sp.

Effective in treatment [177]

Pexiganan and nisin (dual
Antimicrobial peptide-biogel)

Topical on collagen DFU
3-D model

S.aureus and
P.aeruginosa

Eradication of S.aureus
isolates in infected area

Inhibitory activity of
P.aeruginosa against the

AMP

[178]

Collagen with gentimycin
sulphate, doxycycline and

vancomycine

Apply topically on
patient’s infected wound Enterococcus sp.

Wound healed with
tissue formation and

granulation
[179]

Metronidazole Apply topically on
patient’s infected wound

S. aureus and anaerobic
bacteria

Wound healed and
formation of scab over

the large wound
[180]

Clindamycin Intravenous

S. aureus, S. pyrogenes,
polymicrobial

(P. aeruginosa, Klebsiella
and Proteus)

Effective in treatment
(clearance of infection)

from the wound
[181]

8. Conclusions and Future Perspectives

Collectively, the conclusions of these research papers has attributed to our knowledge
of chronic wounds, the pathophysiology of wound healing, and interactions of normal
flora-host depending on the multifaceted conditions of the host. Studies revealed that in
healthy individuals, when cells are normal, the overall wound healing phases are well-
orchestrated which last only a few days, but in chronic wounds, the majority of cells become
debilitated, lost skin integrity, dysfunctional or adverse effects by immune cells to the skin
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and pathological changes that are difficult to be irreversible. Many underlying factors
hamper the wound healing process; one is infection. Current technologies have portrayed
a better characterization of normal flora and the potential of these commensals to become
pathogen in any opportunistic niches in all stages of wound. The microbial adaptations to
the microenvironment of the skin lead to virulence and impaired wound healing. Therefore,
it is important to investigate further the role of microbes at the cellular and molecular levels
and not only focus on bacteria but also other normal flora such as viruses and fungi to rectify
new treatments for chronic wounds. The most challenging part of treating chronic wounds
is polymicrobial infections and a high tendency to become resistant to prolonged antibiotic
treatments. Loading additional antibacterial substances into the wound dressings, selecting
suitable empirical antibiotics based on microbial profile and antimicrobial resistance pattern
could reduce the infections and improve wound healing in chronic wounds. However, a
deeper understanding of normal and pathological healing will illuminate the interaction
between skin cells, normal flora, and their microenvironment. This information might help
investigators develop better treatments or methods to eliminate the microbes present in
chronic wounds completely.
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