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Background: We performed a differential analysis, enrichment analysis, and immune-infiltration analysis 
of the thyroid-associated ophthalmopathy (TAO) gene using data from the Gene Expression Omnibus (GEO) 
database to provide a theoretical basis for understanding the immune-related mechanisms of TAO.
Methods: We searched the GEO database for “Graves disease” and selected the genes expressed in the 
lacrimal gland of thyroid-related eye disease patients as the test group and the genes expressed in the lacrimal 
gland of normal subjects as the control group. Immune-related differentially expressed genes (irDEGs), gene 
ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction, 
gene-gene interaction (GGI) network, pivotal gene identification, and immune-infiltration analyses were 
carried out, and finally, risk-prediction models were constructed.
Results: The GSE105149 and GSE58331 data sets contained 200 DEGs, of which 15 were immune-
related. In relation to the GO biological processes (BPs), the main pathways included the interleukin (IL)-
27-mediated signaling pathway, the IL-35-mediated signaling pathway, cytokine activity, T helper 17 cell 
differentiation, the phosphatidylinositol-3-kinase and protein kinase B signaling pathway, cytokine-cytokine 
receptor interaction, the Janus kinase and signal transducer and activator of transcription signaling pathway, 
and other KEGG pathways. Cluster of differentiation (CD)4+ T cells, monocytes, M0 macrophages, and 
Mast cells were significantly elevated in TAO, while M2 macrophages were significantly reduced. In the 
immune cell correlation analysis, CD4+ T cells and naïve B cells were significantly positively correlated with 
activated natural killer (NK) cells, and Mast cells were positively correlated with plasma cells and negatively 
correlated with M2 macrophages. Risk models for a total of 6 genes (i.e., Janus kinase 1, heat shock protein 
90-α, phospholipase A 2 group IIA, fibroblast growth factor 3, glucose-6-phosphate isomerase, and protein 
disulfide isomerase family A, member 2), were constructed, and over 100 potential targeted therapeutic 
agents were obtained.
Conclusions: In TAO, various types of immune cells infiltrate to different degrees, and the immune 
response and inflammatory response are throughout the disease. Our constructed risk-prediction models 
provide a reference for predicting TAO.
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Introduction

Thyroid-associated ophthalmopathy (TAO), also known 
as Graves’ disease (GD), is an autoimmune disease that is 
rarely seen in patients with chronic autoimmune thyroiditis 
with normal or hypothyroidism, and is characterized by 
infiltrative lesions in the posterior and periorbital tissues 
of the eye (1). TAO most commonly occurs in women 
aged 40–60 years, and it has an overall prevalence of 
approximately 0.0422 per 1,000 people; however, studies 
have reported a wide variation in the prevalence of TAO in 
patients with different types of GD (2-4). Further, 20–50% 
of patients with GD have ocular involvement, and some 
patients disease progression, leading to dysthyroid optic 
neuropathy (DON), exposed corneal ulcers, etc. (5,6). 
The pathogenesis of TAO is complex, and it is currently 
believed that it is mainly related to environmental, genetic, 
and immune factors (7). Notably, immune factors are often 
considered the core factors involved in the occurrence and 
progression of TAO, and the pathogenesis of TAO can be 
studied from the perspective of immunity.

Many of the signs and symptoms of TAO are caused 
by an increase in pressure within the bony volume of 
the orbit due to the expansion of soft tissues within the 
orbit, pathomechanism mainly involving adipogenesis, 
glycosaminoglycan accumulation and inflammation (8). 
Previous studies have shown that orbital fibroblasts are the 
main effector cells of the TAO autoimmune response (9),  
and have a heterogeneous phenotype and function (8). 
Activated fibroblasts secrete a variety of cytokines that lead to 
uncontrolled immune responses (7,10). Several pathogenetic 
mechanisms of TAO have been proposed; however, a clear 
pathogenesis has not yet been fully elucidated.

Ribonucleic acid–sequencing (RNA-seq) is a 2nd-
generation high-throughput sequencing technology 
that sequences RNAs from specific tissues or cells 
into complementary deoxyribonucleic acid (DNA) for 
quantitative and qualitative studies of gene expression, 
which can be used to explore the molecular mechanisms 
of disease and provide a scientific basis for the prevention 
and treatment of human diseases. This study sought to 
analyze the transcriptome information of TAO to further 
elucidate the immune mechanisms associated with TAO and 
to explore potential biomarkers to provide a scientific basis 
for the prevention and treatment of TAO. We present the 
following article in accordance with the STREGA reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-3470/rc).

Methods

Data collection

The Gene Expression Omnibus (GEO; http://www.
ncbi.nlm.nih.gov/geo/) is a public genomics database. 
We searched the database using “thyroid-associated 
ophthalmopathy” as the keyword and included data 
sets with sample sizes ≥10. GSE105149 and GSE58331 
were ultimately included in this analysis. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Immune-related genes

We downloaded the immune-related genes from the 
Immunology Database and Analysis Portal (ImmPort) 
(https://www.immport.org/home) database, which contains 
a total of 2,498 immune-related genes from 17 immune 
classifications.

Differential expression analysis

We extracted 2 data sets (i.e., GSE105149 and GSE58331) 
comprising the data of TAO and normal patients. The data 
were normalized using the limma package in R language, 
the differentially expressed genes (DEGs) were analyzed 
using the limma package, and the threshold of significance 
was set as follows: fold of variation >0.5 and a P value <0.5. 
The results were analyzed, the pheatmap package was used 
to construct a heat map to visualize the results, and the 
ggplot2 package was used to construct a volcano map to 
visualize the distribution of the DEGs.

Establishing core genes 

Venny version 2.1 was used to obtain the core key genes of 
immune-related thyroid eye disease by inputting the DEGs 
and immune-related genes in two datasets GSE105149 and 
GSE58331, and the results were visualized by Veen plots.

GO and KEGG analysis

To determine the function of the target genes, we performed 
a gene ontology (GO) annotation and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analyses using the R package clusterProfiler (Papaemmanuil 
et al., 2016). The GO terminology comprised the following 
3 components: biological processes (BPs), cell components 

https://atm.amegroups.com/article/view/10.21037/atm-22-3470/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3470/rc
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(CCs), and molecular functions (MFs). A q value <0.05 was 
considered statistically significant.

Protein-protein interaction (PPI) and GGI

We used the immune-related key genes of TAO in 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) database (https://string-db.org/) to construct a 
functional PPI network. Interactions with a composite score 
>0.4 were considered statistically significant. The immune-
related TAO key genes were then entered into the online 
tool GeneMinia (http://genemania.org/), to construct the 
gene-gene interaction (GGI) network.

MiRNA target gene network prediction

In disease states, microRNAs (miRNAs) affect gene 
expression through post-transcriptional control. This study 
used the miRWalk database (http://miRWalk.umm.uni-
heidelberg.de/) to search for the miRNAs associated with 
the DEGs. miRWalk is a publicly available comprehensive 
database of miRNA target genes that includes predicted and 
experimentally validated miRNA-target interaction pairs 
from humans, mice, rats, dogs, and bovine. We imported 
immune-related TAO key genes into the miRWalk database, 
set the score as 1, and validated with the miRTarBase 
database (http://mirtarbase.mbc.nctu.edu.tw/php/index.
php) as a screening condition, and imported the results into 
Cytoscape (version 3.9.0) to construct a regulatory network 
structure for the immune-related key genes in TAO.

Immune infiltration

We used the CIBERSORT online website (http://
CIBERSORT.stanford.edu/) to predict the proportion 
of 22 immune cells in all the sample data sets. We set 
500 replicates, and samples with a P value <0.05 were 
considered statistically significant. We visualized the results 
using the ggplot2 package in R. The bar plot and heatmap 
reflect the relative content of the 22 immune cells in each 
sample. The correlation heatmap analyzed and visualized 
the correlation between the immune cells. The violin map 
revealed the differences in the content of the immune cells 
in different groups.

Immune correlation analysis

The matrix results for immune infiltration were combined 

with the normalized data set of the immune-related key 
genes of TAO and analyzed to determine the correlations. 
The results were visualized and analyzed using the 
ggcorrplot package in R language to construct bar plots to 
assess the correlations between the immune-related genes 
and the immune cells. Correlation coefficients of 0.4–0.7 
were considered moderate, and correlation coefficients >0.7 
were considered high.

Drug sensitivity analysis

Using the genecard database (https://www.genecards.org/), 
the TED therapeutic target genes were searched using the 
keyword, “thyroid-associated ophthalmopathy,” and then 
intersected with the immune-related TAO key genes to 
identify additional immune-related genes. The key genes 
of TAO were crossed with immune-related genes. Finally, 
using the Drug-Gene Interaction Database (DGIdb; 
https://www.dgidb.org/), potential drugs targeting the 
intersecting genes were predicted and visualized as 
network modules using Cytoscape, and the genes that 
could be used as therapeutic targets were identified as the 
immune-related key genes for TAO.

Receiver operator characteristic (ROC) curves and 
diagnostic model

ROC curves for the immune-related therapeutic genes 
in TAO were constructed using the “rms” package in R 
language to assess the diagnostic efficacy of the genes in 
both data sets, and the areas under the curve (AUCs) were 
used to assess the diagnostic efficacy of the genes; AUCs of 
0.6–0.7 indicated low efficacy, AUCs of 0.7–0.8 indicated 
moderate efficacy, AUCs >0.8 indicated high efficacy. 
Subsequently, the diagnostic model for the diagnosis of 
TAO was constructed by the survminer package and the 
rms package, and the diagnostic efficacy of the model 
was assessed by the concordance index (C index), and the 
accuracy of the model was assessed by the correction curve.

Results

TAO immune-related differentially expressed genes 
(irDEGs)

DEGs were identified for the GSE105149 and GSE58331 
data sets, respectively, and the results showed that the DEGs 
were significantly more upregulated and downregulated 
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http://miRWalk.umm.uni-heidelberg.de/
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in the GSE58331 data set than the GSE105149 data 
set (see Figure 1). There was a total of 200 DEGs in the 
GSE105149 and GSE58331 data sets, of which 15 genes 
were immune-related (see Figure 2A).

GO and KEGG enrichment analysis of irDEGs

Using R software, biological function and pathway 
enrichment analyses were performed based on the TAO 
irDEGs. The top 10 BPs, CCs, MFs, and 10 KEGG 
pathways were selected according to the number and 
significance of gene enrichment, and the bar and bubble 
plots were drawn separately. In relation to the GO BPs, the 

main pathways included the interleukin (IL)-27-mediated 
signaling pathway, IL-35-mediated signaling pathway, 
secretory granule lumen, cytoplasmic vesicle lumen, receptor 
ligand activity, cytokine activity, T helper 17 (Th17) cell 
differentiation, phosphatidylinositol-3-kinase and protein 
kinase B (PI3K-Akt) signaling pathway, cytokine-cytokine 
receptor interaction, Janus kinase and signal transducer and 
activator of transcription (JAK-STAT) signaling pathway, and 
other KEGG pathways (see Figure 2B,2C).

PPI and GGI network construction

The PPI and GGI analyses of the DEGs were performed 

Figure 1 Differential expression analysis of the GEO data set. (A,B) Volcano plot and heat map of differential expression analysis of the 
GSE105149 data set. (C,D) Volcano plot and heat map of differential expression analysis of the GSE58331 data set. GEO, Gene Expression 
Omnibus; FC, fold change.
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Figure 2 Functional analysis of irDEGs. (A) Wayne diagram of irDEGs for the GSE105149 and GSE58331 data sets. (B) GO analysis of 
irDEGs. (C) KEGG analysis of irDEGs. (D) PPI network of irDEGs. (E) GGI network of irDEGs. irDEGs, immune-related differentially 
expressed genes; GO, gene ontology; KEGG, Kyoto Gene and Genome Encyclopedia; PPI, protein-protein interaction; GGI, gene-gene 
interaction.

using the STRING database and GeneMinia tool. In the 
PPI network, there were 5 nodes and 4 edges composed of 
Janus kinase 1 (JAK1), heat shock protein 90-α (HSP90AA1), 
colony stimulating factor 3 receptor (CSF3R), cytokine 
receptor-like factor 1 (CRLF1), and Epstein-Barr virus 
induced 3 (EBI3), and in the GGI analysis, 29 interacting 
genes were enriched (see Figure 2D,2E).

MicroRNA target gene network analysis

To further explore the potential miRNAs of these DEGs, 
we constructed an immune-related TAO regulatory 
network, which showed miRNAs for a total of 6 key 
genes [i.e., HSP90AA1, glucose-6-phosphate isomerase 
(GPI), NCK adaptor protein 2 (NCK2), JAK1, DDC17, 
and S100 calcium binding protein A11 (S100A11)] (see 
Figure 3).

Immune-infiltration analysis

To further explore the role of immune cells in TAO, we 
analyzed the GEO data sets separately. The results showed 
that cluster of differentiation (CD)4+ T cells, monocytes, 
M0 macrophages, and Mast cells were significantly elevated 
in TAO, while M2 macrophages were significantly reduced 
in TAO. In the immune cell correlation analysis, the 
CD4+ T cells and naïve B cells were significantly positively 
correlated and significantly negatively correlated with 
activated natural killer (NK) cells, respectively, while 
Mast cells were positively correlated with plasma cells and 
negatively correlated with M2 macrophages (see Figures 4,5).

Immunological correlation analysis

A correlation analysis was performed between the irDEGs 
and the immune-infiltration results. In the GSE105149 data 
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Figure 3 Prediction of irDEGs’ miRNAs. irDEGs, immune-related differentially expressed genes.

set, HSP90AA1, S100A11, and phospholipase A 2 group IIA 
(PLA2G2A) were positively correlated with plasma cells, 
Gastrokine 1 (GKN1) was positively correlated with CD8 
T cells, and GPI was positively correlated with CD4 naïve 
T cells. Conversely, in the GSE58331 data set, CSF3R 
and GKN1 were positively correlated with monocytes, 
HSP90AA1, NCK2 and JAK1 were positively correlated 
with resting memory CD4 T cells (see Figure 6).

Drug sensitivity analysis

To explore the potential therapeutic targets of irDEGs, we 
performed a drug sensitivity prediction analysis. The results 
showed that there were 10 intersecting genes, among which 
JAK1, HSP90AA1, PLA2G2A, FGF3, GPI, and PDIA2 are 
six key genes, and more than 100 potential targeted drugs 
have been predicted (see Figure 7).

Construction of ROC curves and diagnostic models

To develop risk-prediction models, we first performed a 

diagnostic efficacy analysis of immune-related differential 
expression memory cells and finally included a total of 6 
genes (i.e., JAK1, HSP90AA1, PLA2G2A, FGF3, GPI, and 
PDIA2) in the models (see Figure 8). The models were 
constructed for the 2 GEO datasets separately, and the 
results showed that the models all had good predictive 
efficacy (see Figure 9).

Discussion

TAO is an autoimmune disease with a complex etiology 
and poor treatment outcomes. The genetic and immune 
factors of TAO and anti-immune therapy are receiving 
increasing clinical attention and are being studied more and 
more. Previous studies on the mechanisms of TAO have 
focused on orbital adipose tissue and extraocular muscles, 
but little research has been conducted on the lacrimal gland 
(11-13). In this study, 15 irDEGs, represented by JAK1, 
HSP90AA1, PLA2G2A, FGF3, GPI, and PDIA2, were 
screened by a differential analysis of TAO genes and normal 
human lacrimal gland expressed genes, and the intersecting 
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Figure 4 GSE58331 data set immune-infiltration analysis. (A) Histogram. (B) Heat map. (C) Immune cell correlation analysis. (D) Violin 
plot of immune cell infiltration levels in healthy individuals and TAO patients. TAO, thyroid-associated ophthalmopathy.

immune genes were identified.
JAK1 is a large, widely expressed membrane-associated 

phosphoprotein that activates IL-6 and subsequently 
induces epithelial  mesenchymal transition, which 
promotes proliferative vitreoretinopathy (14). HSP90AA1 
is a ubiquitously expressed molecular chaperone that is 
efficiently expressed in response to stimuli, such as infection, 
trauma, and tumors, is involved in tumor development, 

and plays important roles in cell cycle regulation, gene 
expression, DNA damage, and carcinogenesis (15). Due to 
the lack of reports on TAO, HSP90AA1 may be a priority 
for future research. Secretory PLA2G2A is a phospholipase 
that plays a role in atherogenesis, inflammation, and host 
defense by increasing the metabolic rate and increasing 
glucose use in response to thyroid hormones (16). GPI is a 
member of the glucose phosphate isomerase protein family 
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Figure 5 GSE105149 data set immune-infiltration analysis. (A) Bar graph. (B) Heat map. (C) Immune cell correlation analysis. (D) Violin 
plot of immune cell infiltration levels in healthy individuals and TAO patients. TAO, thyroid-associated ophthalmopathy.

that plays an important role in glucose metabolism and can 
be secreted extracellularly to function as a growth factor 
or cytokine (17,18). PDIA2 belongs to the larger redox 
thioredoxin gene family of PDI, and the PDIA2 protein is 
a glycoprotein located in the endoplasmic reticulum with a 
high affinity for estrogen, which can act as an intracellular 
estrogen regulator in vitro and in vivo and may play a 

role in regulating immunity and redox reaction (19-22). 
Furthermore, our findings suggest that these key genes are 
closely positively or negatively associated with immune 
cell enrichment and are involved in regulating the immune 
microenvironment of TAO. The PPI core genes screened 
in this study are involved in several biologically important 
behaviors that are consistent with the complex mechanisms 
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Figure 6 Immune correlation analysis of irDEGs. (A) GSE58331 dataset. (B) GSE105149 dataset. irDEGs, immune-related differentially 
expressed genes; corr, correlation.

Figure 7 Drug sensitivity analysis. (A) Venn diagram of target genes. (B) Potential target drug analysis for a total of 6 genes (i.e., JAK1, 
HSP90AA1, PLA2G2A, FGF3, GPI, and PDIA2).

of TAO, further indicating the reliability of the prediction.
Our enrichment functional analysis of the screened 

irDEGs suggest that the BPs of TAO are closely related 
to immune regulation. Among them, the GO enrichment 

analysis suggested that the immune genes were mainly 
involved in BPs, such as T cells, lymphocytes and 
leukocytes, and IL, which further indicates that TAO is 
an immune process involving multiple inflammatory cells 
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Figure 8 ROC analysis of core irDEGs. (A) GSE58331 data set. (B) GSE105149 data set. AUC, areas under the curve; ROC, receiver 
operator characteristic; irDEGs, immune-related differentially expressed genes.

Figure 9 Risk-prediction models. (A) GSE58331 data set. (B) GSE105149 data set.

and factors. Inflammatory cytokines are synthesized and 
secreted by immune and non-immune cells in response 
to stimulation and can regulate the immune response 
and cell growth and differentiation by binding to the 
corresponding receptors. Previous studies have confirmed 
that inflammatory cells and cytokines are closely associated 

to TAO and are informative in the diagnosis of TAO (23-25).
The KEGG analysis showed that DEGs are closely 

associated with Th17 cell differentiation, the PI3K-
Akt signaling pathway, the cytokine-cytokine receptor 
interaction, and the JAK-STAT signaling pathway. Studies 
have shown that the IL-17 signaling pathway is associated 
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with the severity of TAO, and IL-17 may be an indicator 
of TAO disease activity evaluation (26-28). The PI3K/
AKT pathway is not only closely related to the degradation 
of the extracellular matrix, but also to the malignant 
transformation of cells, and its key role in the development 
and progression of thyroid cancer has been confirmed both 
in vitro and in vivo (29-31). The above multiple pathways 
suggest that the development of TAO disease and immunity 
are closely related, and the continuous activation of the 
immune system may promote the progression of TAO.

Currently, researches indicate that T cell-mediated 
immunity promotes  the development of  TAO by 
mechanisms mainly related to B cell activation, the 
promotion of adhesion molecule expression, and the 
production of inflammatory cytokines (32,33). CD4+ T cells 
can be divided into subsets of T helper cells, T follicular 
helper (Tfh) cells, and regulatory T cells (Tregs). In the 
peripheral blood of TAO and GD patients, the proportion 
of Th1 in TAO patients was significantly higher than that 
of GD patients, and the ratio of Th1/Th2 was positively 
correlated with the TAO disease activity score (32). In vitro 
cultures of orbital muscle and adipocytes in TAO showed 
that Th1 was the main cytokine secreted by these 2 cells (34). 
Previous studies have shown that the number of Tregs in the 
peripheral blood increases after rituximab treatment of TAO 
and that absolute Treg values may be a clinical predictor 
of TAO (35,36). Hu et al. found that the percentage of 
peripheral CD3+CD4−CD8− T cells was significantly lower 
in active TAO patients than inactive TAO patients and 
was negatively correlated with the activity of the disease 
course; thus, these may be potential markers (37). These 
studies focused on orbital tissue and peripheral blood and 
did not analyze lacrimal gland tissue. In our study, T cells, 
macrophages and mast cells were found to be significantly 
elevated in patients with TAO, and a positive correlation 
was found between T cells and B cells, and T cells negative 
correlation with NK cells. These relationships reflect the 
synergistic or antagonistic effects between different immune 
cells in the progression of TAO. The consistent elevation of 
T cells in extraocular muscles, peripheral blood and lacrimal 
glands strongly suggests that they are predictors of TAO and 
that targeting of T cells may be considered.

Glucocorticoids (GCs) have long been used in the 
treatment of various ocular diseases due to their powerful 
anti-inflammatory, anti-edema, and anti-neoangiogenic 
properties (38-40). In patients with TAO, a GC is the 
main treatment option, and the European group for GD 
orbitopathy recommends intravenous GC therapy as the 

1st-line option for patients with moderately severe active 
TAO (41,42). According to the prognostic model we 
constructed, we can predict the prognosis of TAO patients, 
and for patients with JAK1, HSP90AA1, PLA2G2A, FGF3, 
GPI and PDIA2 mutations, we can combine the clinical 
experience of drug use and the predicted targets to select 
therapeutic drugs. However, the heavy use of GCs may be 
associated with a range of adverse events and may not be 
appropriate for patients with comorbidities. 

In this study, we performed a drug sensitivity analysis 
of key genes for constructing the model and mining 
>100 potential target drugs to provide a basis for clinical 
treatment. However, this study had some limitations. The 
data in this study were obtained from RNA-seq results in 
the GEO database, and in-vivo and in-vitro experiments 
were not conducted. Thus, the prognostic assessment 
model still needs to be validated with a large number of 
multicenter samples. Our group will continue to work on 
this model in the future.

Conclusions

In summary, TAO is a thyroid organ-specific autoimmune 
disease, and the immunologic pathogenesis plays the most 
important role in its development. The inflammatory 
response also plays an important role in its pathogenesis. In 
this study, bioinformatics was used to analyze the BPs and 
immune infiltration of TAO lacrimal gland expression gene 
microarrays. Our findings can be used as a reference for 
subsequent research work.
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