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A Cu(II) complex [Cu(bipy)(H2O)2(SO4)]n (bipy� 2,2′-bipyridine) was synthesized by hydrothermal method and characterized
structurally by elemental analyses, single crystal X-ray diffraction, infrared spectra, and thermogravimetry and differential
scanning calorimetry. -e Cu(II) was hexacoordinated by two N atoms from bipy, two O atoms from different sulfate radical
anions, and two O atoms from two water molecules, forming a slightly distorted octahedral geometry, and bridged by sulfato
groups into polymeric chains. Under the condition of physiological pH, the interaction mechanism between the complex and
hsDNA was explored with acridine orange as a fluorescence probe by spectroscopic methods. -e binding modes between the
complex and hsDNA were the electrostatic and embedded modes.

1. Introduction

Design and synthesis of organometallic complexes have
become an active research area because of their novel to-
pologies, fascinating functionalities, special properties, and
potential applications, such as biomedical utilization, mul-
tifunctional materials, molecular adsorption, gas storage,
catalysis, magnetism, and so on [1–6]. Chemists have syn-
thesized many organic-inorganic hybrid materials with ni-
trogen heterocyclic compounds as organic building blocks
[7–10]. Trace element copper plays an important role in
endogenous oxidative DNA damage associated with aging
and cancer [11, 12]. Cu(II) complexes have many bio-
activities such as antitumor [13, 14], antimicrobial [15–17],
and oxidation of ascorbic acid in the presence of oxygen [18].
In addition, Cu(II) complexes can bind to DNA through
noncovalent and covalent interactions [19]. Many re-
searchers found that Cu(II) complexes had potential in the
treatment of cancers and other diseases [20]. 2,2′-Bipyridine
is a potential antitumor agent and often acts as ancillary
ligand to strengthen the binding ability of a complex through
enhancing the molecule planarity [21]. -e complexes of

2,2′-bipyridine and its derivatives have been reported by
a number of authors [22, 23]. -e method of hydrothermal
synthesis has been used to produce various solids, such as
oxide ceramics, microporous crystals, metal complexes,
nanomaterials, and so forth [24–29]. In particular, the
molecular structures obtained by this method are un-
expected compared with those obtained by the common
solution method [30].

-e modes of noncovalent interaction for metal com-
plexes with DNA include intercalation, electrostatic effect,
groove binding, and so on, and the effectiveness mainly
depends on the binding modes and affinities between
complexes and DNA [31–34]. -ere is continuing interest in
some metal complexes that interact with DNA [35]. Fur-
thermore, the studies of interaction of metal coordination
polymers with DNA have been of great interest [36, 37].
However, examples of such metal coordination polymers are
still few. -erefore, it is of great significance to explore the
binding modes of DNA with metal coordination polymers
containing rigid ligands.

We herein report the X-ray single crystal structure, Fourier
transform infrared spectra (FTIR), and thermogravimetry and
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differential scanning calorimetry (TG-DSC) of the Cu(II)
complex containing 2,2′-bipyridine, which is synthesized by
hydrothermal method, and explore its bioactivities with
herring sperm DNA (hsDNA) using acridine orange (AO) as
a fluorescence probe by spectral methods.

2. Materials and Methods

2.1. Materials. All chemicals were of analytical reagents and
used as received without further purification. 2,2′-Bipyridine
and AO were purchased from Alfa Aesar, and copper sulfate
pentahydrate and other reagents were purchased from
Merck. -e hsDNA was purchased from Sigma Biological
Co., its purity was monitored by the ratio of absorbance at
260–280 nm, and the ratio of 1.8–1.9 indicated that the
hsDNA was free from protein. -e hsDNA was dissolved in
double-distilled water with 50mmol·L−1 sodium chloride
and dialyzed at 4°C for 48 h [38]. -e hsDNA concentration
was measured by UV-Vis at 260 nm. Tris-HCl buffer solu-
tion (pH 7.40) was prepared by using triple-distilled water.

2.2. PhysicalMeasurements. -e C, H, and N in the complex
were analyzed with a Vario EL CUBE elemental analyzer,
and the copper was determined by EDTA titration. FTIR
spectra were obtained with KBr pellets on a Perkin-Elmer
Spectrum One-Spectrometer in the range 4000–400 cm−1.
-e thermal analysis was performed by a SDT Q600 ther-
mogravimetric analyzer from 30 to 800°C at a heating rate
of 10°C·min−1 under air flow of 100mL·min−1. UV-Vis
spectra in Tris-HCl buffer solution (pH 7.40) were mea-
sured with a Unico spectrophotometer (UV-2102) in the
range 200–600 nm. Fluorescence spectra were recorded
on a PE LS-55 spectrofluorophotometer. Viscosities were
measured with an Ubbelohde capillary viscometer having
diameters of 0.40–0.50 nm and 0.50–0.60 nm, respectively.
-e viscometers were selected on the basis of the flow time of
the complex, and the flow time was at least 120 s.

2.3. Synthesis of theTitleComplex. 2,2′-Bipyridine (0.2mmol,
31.7mg) and NaOH (0.2mmol, 8.0mg) were dissolved in
a minimum amount of distilled water. Copper sulfate
(0.2mmol, 51.3mg) was added to the above solution, and
the volume of the mixed solution was increased to 18mL
with distilled water. -e mixture was transferred to a 30mL
Teflon-lined stainless steel reactor and heated to 140°C for
72 h, and then, it was cooled at a rate of 10°C·h−1 to room
temperature. Blue stick single crystals suitable for X-ray
diffraction analysis were obtained. -e crystals were washed
by a small amount of distilled water and anhydrous etha-
nol and dried naturally (yield 84%). Anal. Calc. (%) for
CuC10H12N2O6S: C, 34.14; H, 3.44; N, 7.96; Cu, 18.06.
Found (%): C, 34.12; H, 3.30; N, 7.77; Cu 18.14.

2.4. X-Ray Crystallography. A blue crystal with dimensions
0.374mm× 0.199mm× 0.117mm was installed on a Bruker
Apex II CCD diffractometer with graphite monochromated
Mo Kα radiation (λ� 0.71073 Å). Diffraction data were

collected at 296(2) K in the θ range 3.273–27.639°. -e
programs of the SHELXL-97 and SHELXTL-97 were used
for the structure determination and refinement [39, 40]. -e
structure was solved by direct methods, and all nonhydrogen
atoms were obtained from the difference Fourier map and
subjected to anisotropic refinement by full-matrix least
squares on F2. Crystallographic data have been deposited
with the Cambridge Crystallographic Data Centre, CCDC,
UK. Copies of the data can be obtained free of charge on
quoting the depository CCDC-1028718 for the title complex
(deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).

2.5. Procedures of Biological Activity. -e experimental
methods of biological activity were mainly referred to
[38, 41].-e specimens for absorption and fluorescence were
obtained through diluting the stock solutions of the title
complex (abbreviated as Cu-bipy) and hsDNA with Tris-
HCl buffer solution to the required concentrations. Under
the condition of the fixed Cu-bipy concentration and
changing only the hsDNA concentration, the spectra of UV-
Vis and fluorescence were tested with the quartz cuvettes of
1 cm. -e excitation wavelength of the fluorescence mea-
surement was 411.7 nm.

-e samples of viscosity measurement were filled into
the cleaned and dried viscometers. A thermostat was used to
keep the temperature constant with the deviations within
±0.01°C. Double-distilled water was used in the calibration
experiments, and the viscosity of pure water was derived
from Lange’s Handbook of Chemistry [42]. -e time was
recorded on a digital stopwatch with the deviations within
±0.01 s, and the average deviation of the three experimental
results was within ±0.2 s. -e hsDNA of 1.0×10−5mol·L−1
was mixed with different concentrations of Cu-bipy. -e
flow time was recorded at 20± 0.1°C after the reaction
mixture was placed in the darkness for 0.5 h. -e rela-
tive viscosities of hsDNA were measured with molar ratio
(r� c(Cu-bipy)/c(hsDNA)) from 0.0 to 4.0 at atmospheric
pressure and 15°C ambient temperature.

3. Results and Discussion

3.1. Crystal Structure Analysis. -e molecular structure di-
agram of the complex is shown in Figure 1. -e crystallo-
graphic data and structure refinement parameters are given
in Table 1, and the selected bond distances and angles are
shown in Table 2.

-e unit of the complex is composed of one Cu(II), one
2,2′-bipyridine, two water molecules, and one sulfate rad-
ical anion. -e Cu(II) is hexacoordinated by two O atoms
from the coordinated water molecules and two pyridyl N
atoms from bipy which are located at equatorial sites
and two O atoms from different bidentate bridging sulfato
groups which are located at axial positions. -e coordina-
tion configuration is a slightly distorted octahedron, and the
Cu(II) is bridged by sulfato groups into polymeric chains.
-e distances of Cu–O with the aqua ligands and the sulfato
group are 1.9728 and 2.455 Å, respectively, and the distances
of Cu–N are 1.9947 Å. Because of Jahn–Teller effect of Cu(II)
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with d9 electron configuration, the axial distances of Cu
(1)–O(2) and Cu(1)–O(2)#1 are stretched. As shown in
Figure 2, the generated chains extend along (001) plane
direction, and the crossing of the chelate bipy forms the
polymeric chains formulated as [Cu(bipy)(H2O)2(SO4)]n. In
Figure 3, the molecular structure shows the existence of
face-to-face π–π stacking weak interaction. -e interplanar
distances of 3.495–3.627 Å between two adjacent mirror
planes of bipy are normal for weak π–π interaction. -e
hydrogen bond lengths and bond angles are given in Table 3,
and the molecules of the complex are linked together by
intermolecular hydrogen bonds. It is obvious that the

formation of the interchain hydrogen bonds is related to the
layers parallel to the (100) plane. A weak hydrogen bond
with d(C· · ·O)� 3.282 Å is formed between the outer C–H
bonds of one chain and the coordinated sulfato O atoms of
the adjacent chain, and the chains are stabilized by in-
terchain π–π interaction and interchain C–H· · ·O hydrogen
bonds [23]. Each water molecule in the complex nearly
forms a linear intrachain and interchain hydrogen bonds
with the uncoordinated sulfato O atoms.

Table 2: Selected bond lengths (Å) and angles (°) for the title
complex.
Cu(1)–O(1) 1.9728(11)
Cu(1)–O(1)#1 1.9728(11)
Cu(1)–N(1) 1.9947(12)
Cu(1)–N(1)#1 1.9948(13)
Cu(1)–O(2) 2.455
Cu(1)–O(2)#1 2.455
O(1)#1–Cu(1)–O(1) 93.07(7)
O(1)#1–Cu(1)–N(1) 93.11(5)
O(1)–Cu(1)–N(1) 172.31(5)
O(1)#1–Cu(1)–N(1)#1 172.31(5)
O(1)–Cu(1)–N(1)#1 93.11(5)
N(1)–Cu(1)–N(1)#1 81.12(7)
O(2)–Cu(1)–O(1) 85.52
O(2)–Cu(1)–O(1)#1 92.25
O(2)–Cu(1)–N(1) 89.66
O(2)–Cu(1)–N(1)#1 92.79
O(2)–Cu(1)–O(2)#1 176.77
O(2)#1–Cu(1)–O(1) 92.25
O(2)#1–Cu(1)–N(1) 92.97
O(2)#1–Cu(1)–N(1)#1 89.66
O(2)#1–Cu(1)–O(1)#1 85.52
Symmetry transformations used to generate equivalent atoms: #1−x+ 2, y,
−z+ 1/2; #2−x+ 2, y, −z+ 3/2.

Figure 2: Crystal packing diagram of the title complex.

Table 1: Crystal data and structure refinement parameters for the
title complex.
Empirical formula CuC10H12O6N2S
Formula weight (g·mol−1) 351.82
Temperature (K) 296(2)
Wavelength (Å) 0.71073
Crystal system Monoclinic
Space group C2/c
a (Å) 15.1279(7)
b (Å) 12.4488(6)
c (Å) 6.9987(3)
β (°) 105.9576(13)
V (Å3) 1267.23(10)
Z 4
Calculated density (g·cm−3) 1.844
Absorption coefficient (mm−1) 1.916
F(000) 716
Crystal size (mm3) 0.374× 0.199× 0.117
θ range for data collection (°) 3.273–27.639

Index ranges −19≤ h≤ 19, −16≤ k≤ 16,
−9≤ l≤ 8

Reflections collected/unique 9535
Data/restraints/parameters 1473/3/97
Goodness of fit on F2 0.974
Final R indices (I> 2σ (I)) R1 � 0.0226, wR2 � 0.0579
R indices (all data) R1 � 0.0238, wR2 � 0.0589
Largest differential
peak and hole (e·Å−3) 0.356 and −0.442
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Figure 1: Molecular structure of the title complex.
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3.2.FTIRSpectroscopy. -eFTIR spectrum of the complex is
shown in Figure 4. Few number of the absorption bands in
the FTIR spectrum means that the symmetry of the complex
is very good. A wide intense absorption band around
3428 cm−1 is due to stretching vibration of hydroxyl [43, 44].
-is indicates that there are the coordinated water or lattice
water molecules in the complex. -e band corresponding to
the stretching vibration of the cumulative double bond
(C�C–C�C) of pyridine ring is situated at 2328 cm−1. -e
absorption peaks at 1651 and 1444 cm−1 are assigned to
the stretching vibrations of the C�N and C�C bonds,
respectively [45].

As a free anion, sulfate has tetrahedral symmetry,
whereas, if sulfate forms a bidentate binuclear (bridging)
complex, the symmetry is lowered and the band splits into
two bands [46]. As shown in Figure 4, the FTIR spectrum of
the complex makes out peaks at 1169 and 1082 cm−1. -e
absorption peaks around 928 and 775 cm−1 are assigned to
the rocking and wagging vibrations of the hydroxyl, which
indicate the existence of the coordinated water molecules in
the complex [47]. As a result of the formation of the Cu–N

bond, the corresponding C–N bond becomes so weak that
disappeared in the FTIR spectrum [48]. -e absorption
peaks at 553 and 466 cm−1 are assigned to the Cu–N bond
and Cu–O bond, respectively [49], which agrees with the
X-ray crystal structure of the complex.

3.3. 9ermal Analysis. -e TG-DSC curves of the title
complex are shown in Figure 5, and there are one endo-
thermic peak and two exothermic peaks in the DSC curve.
-e endothermic peak at 169°C is accompanied by obvious
mass loss, and the sample loses two H2O molecules. -e
experimental mass loss (10.31%) is close to the calculated one
(10.24%). Due to the high temperature of water loss, the
molecules should be the coordinated water. After the water
molecules are lost, the complex becomes [Cu(C10H8N2)
(SO4)]. -e sequential exothermic peaks at 393 and 423°C in

3.495 Å
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0

3.627 Å

3.568 Å

Figure 3: Weak π–π stacking interactions of the title complex.

Table 3: Hydrogen bond lengths (Å) and bond angles (°) for the
title complex.

D–H· · ·A d(D–H) d(H· · ·A) d(D· · ·A) ∠DHA
O(1)–H(1W)· · ·O(3)#3 0.852(9) 1.843(11) 2.6763(16) 165.4(19)
O(1)–H(1W)· · ·S(1)#3 0.852(9) 2.926(16) 3.6599(12) 145.4(18)
C(5)–H(5)· · ·O(1)#1 0.93 2.50 3.026(2) 115.9
C(2)–H(2)· · ·O(2)#4 0.93 2.43 3.282(2) 152.1
O(1)–H(1)· · ·O(3)#1 0.82 1.81 2.6198(16) 169.5
O(1)–H(1)· · ·S(1)#5 0.82 2.74 3.4143(11) 140.8
Symmetry transformations used to generate equivalent atoms: #1−x+ 2, y,
−z+ 1/2; #2−x+ 2, y, −z+ 3/2; #3−x+ 2, −y+ 1, −z+ 1; #4−x+ 2, −y+ 2, −z+ 1;
#5x, y, z−1.
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Figure 4: FTIR spectrum of the title complex.
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the DSC curve correspond to the oxidation and de-
composition of bipy, the decomposition product of this step
is CuSO4, and the mass loss of 43.89% is in agreement with
the calculated result of 44.39%. -e mass loss remains
constant until ca. 800°C, the final remnant mass is 31.86%,
and the residue is Cu2SO4 (calculated as 31.72%).

3.4. Biological Activity

3.4.1. Binding Ratio. As shown in Figure 6, the UV-Vis
spectra were obtained by determination of the Cu-bipy
solution with an independent variable of hsDNA concen-
tration. -e wavelength which is obtained from Figure 6 and
used in the mole ratio method is 214 nm, and the binding
ratio [n(Cu-bipy) : n(hsDNA)� 3 :1] is shown in Figure 7.

3.4.2. Double Reciprocal Method. -e double reciprocal
equation [50] is listed as follows to express the relationship
between Cu-bipy and hsDNA:

A−A0( 
−1

� A
−1
0 + K

⊝
· A0 · c(hsDNA) 

−1
. (1)

In (1), c(hsDNA) is the hsDNA concentration, A and
A0 are the absorbance of Cu-bipy in the presence and lack
of hsDNA, respectively, and K⊝ is the binding con-
stant of hsDNA-Cu-bipy. In Figure 8, 1/c(hsDNA) is used
as an abscissa and 1/(A−A0) is used as an ordinate.
-e binding constants are, respectively, calculated: K⊝
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Figure 5: TG-DSC curves of the title complex.
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Figure 6: Influence of hsDNA on the UV-Vis spectra of Cu-bipy
(pH 7.40). From curves 0–15, c(Cu-bipy)� 4.0×10−6mol·L−1;
c(hsDNA)� 0.00, 0.17, 0.33, 0.50, 0.67, 0.83, 1.00, 1.17, 1.33, 1.50,
1.67, 1.83, 2.00, 2.17, 2.33, and 2.50×10−6mol·L−1, respectively.
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Figure 7: Mole ratio plots of Cu-bipy with hsDNA (pH� 7.40,
λ� 214 nm), c(Cu-bipy)� 4.0×10−6mol·L−1.
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Figure 8: Double reciprocal plots of hsDNA-Cu-bipy at
295.15 K and 313.15K (pH 7.40). c(Cu-bipy)� 4.0×10−6mol·L−1;
c(hsDNA)� 0.00, 0.60, 1.20, 1.80, 2.40, 3.00, 3.60, 4.20, 4.80, 5.40,
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Table 4: -ermodynamic parameters at two different temperatures.

T (K) K⊝

(L·mol−1)
ΔrG⊝m

(J·mol−1)
ΔrS⊝m

(J·mol−1·K−1)
ΔrH⊝m

(J·mol−1)
295.15 1.97×105 −3.53×104 115.26 −1280
313.15 1.55×104 −2.96×104 90.44 −1280
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(295.15 K) � 1.97 ×105 L·mol−1 and K⊝ (313.15 K) � 1.55 ×

104 L·mol−1. As is known to all, there are some ways in
which macromolecule bind to small molecule, including
hydrogen bond, van der Waals force, hydrophobic force,
electrostatic interaction, and so on. According to the
following equations, we can calculate a series of ther-
modynamic parameters (ΔrH⊝m, ΔrS⊝m, and ΔrG⊝m) to
confirm the interaction forces.

ln
K⊝2
K⊝1

�
ΔrH⊝m 1T1( − 1T2( ( 

R
,

ΔrG⊝m � −RT ln K⊝,

ΔrG⊝m � ΔrH⊝m −TΔrS⊝m,

(2)

where T1 is 295.15K, T2 is 313.15K, and ΔrH⊝m and ΔrG⊝m are
the standard molar reaction enthalpy and the standard
molar reaction Gibbs free energy, respectively. -e calcu-
lated results in Table 4 indicate that the interaction between
Cu-bipy and hsDNA is driven by entropy [51]. -e values of
ΔrH⊝m and ΔrG⊝m indicate that this is an exothermic reaction,
and there is a spontaneous interaction between Cu-bipy and
hsDNA.

3.4.3. Competitive Binding Experiments. AO as a fluores-
cence probe was widely used to study the binding way
between small molecule and DNA [38], and it can embed
between two adjacent base pairs of DNA helix and enhance
the fluorescence intensity. As the concentration of AO (Cu-
bipy) increases, the fluorescence intensity of Cu-bipy-
hsDNA (hsDNA-AO) reduces gradually at the maximum
wavelength of 528 (531) nm in Figures 9 and 10. -e ex-
perimental result indicates that the reaction competition
between Cu-bipy and AO with hsDNA is conspicuous, and
the bonding mode between Cu-bipy and hsDNA mainly
includes insertion binding.

3.4.4. Scatchard Method. -e Scatchard equation (3) can be
used to study the binding mode between hsDNA and AO
with Cu-bipy, whose concentration is gradually changing.

r

c
� K(n− r), (3)

where r is the mole number of AO bound per mole of DNA,
c is the AO concentration, K is the binding constant, and n is
the maximum value of a binding site with AO. Generally, if
the n value in the absence of Cu-bipy is the same with the
presence of Cu-bipy, the binding mode is an insertion mode.
If the K value in the absence of Cu-bipy is the same with the
presence of Cu-bipy, there is noninsertion in the binding
mode. If theK value is different from the n value, the binding
mode between Cu-bipy and hsDNA is a mixed mode of
noninsertion and insertion binding. -e Scatchard plots in
the absence and the presence of sodium chloride are shown
in Figures 11 and 12, and the data of n and K are listed in
Table 5. It can be seen from Table 5 that both values of n and
K vary with the concentrations of Cu-bipy. -e results show
the presence of the mixed interaction. -e n values in the
presence of sodium chloride are lower than that of no so-
dium chloride, and this indicates that there is an electrostatic
interaction between Cu-bipy and hsDNA.

3.4.5. Influence of Phosphate Group. -e above conclusion is
further demonstrated by the phosphate experiment. If Cu-
bipy binds to phosphate radical, then there is an electrostatic
interaction between Cu-bipy and hsDNA by changing the
Na2HPO4 concentration while keeping the Cu-bipy con-
centration fixed. As shown in Figure 13, when the amounts
of Na2HPO4 are increased, UV-Vis spectra of Cu-bipy are
slightly changed. -e result hints that the electrostatic in-
teraction exists between Cu-bipy and hsDNA.
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Figure 9: Emission spectra of hsDNA-Cu-bipy mixture in different
concentrations of AO (pH� 7.40, λex � 411.7 nm). From curves
0–15, c(hsDNA-Cu-bipy)� 1.0×10−5mol·L−1; c(Cu-bipy)� 0.00,
0.33, 0.67, 1.00, 1.33, 1.67, 2.00, 2.33, 2.67, 3.00, 3.33, 3.67, 4.00,
4.33, 4.67, and 5.00×10−6mol·L−1, respectively.
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Figure 10: Emission spectra of hsDNA-AO mixture in different
concentrations of Cu-bipy (pH� 7.40, λex � 411.7 nm). From curves
0–15, c(hsDNA-AO)� 1.0×10−5mol·L−1; c(Cu-bipy)� 0.00, 0.33,
0.67, 1.00, 1.33, 1.67, 2.00, 2.33, 2.67, 3.00, 3.33, 3.67, 4.00, 4.33,
4.67, and 5.00×10−6mol·L−1, respectively.
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3.4.6. Viscosity Measurements. -e viscosity measurements
of complexes at different concentrations can obtain useful
data for identifying binding mode [41, 52]. If a micro-
molecule is inserted in the interspace of base pairs, the DNA
helix will be extended because the separated base pairs can
accommodate the bound ligand. Conversely, the viscosity
will not increase if the binding with DNA is in other ways;
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Figure 11: Scatchard plots of the interaction between Cu-bipy
and hsDNA-AO (pH� 7.40, without NaCl). c(hsDNA)�

1.0×10−5mol·L−1; Rt� c(Cu-bipy)/c(hsDNA); Rt� a, 0.00; b, 0.40;
c, 0.80; d, 1.20.

Table 5: Data from the Scatchard equation of the interaction between Cu-bipy and hsDNA.

Curve c(Cu-bipy)/c(hsDNA) NaCl (mol·L−1) Scatchard K (L·mol−1) n

a 0.00 0 1173.6–2.44×105r 2.44×105 4.81× 10−3

0.50 813.4–2.09×105r 2.09×105 3.89×10−3

b 0.40 0 1176.5–1.81× 105r 1.81× 105 6.50×10−3

0.50 1241.5–2.20×105r 2.20×105 5.64×10−3

c 0.80 0 1441.2–2.25×105r 2.25×105 6.41× 10−3

0.50 1318.6–2.21× 105r 2.21× 105 5.97×10−3

d 1.20 0 1641.4–2.27×105r 2.27×105 7.23×10−3

0.50 1113.9–2.56×105r 2.56×105 4.35×10−3
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Figure 13: Influence of phosphate on the UV-Vis spectra of Cu-
bipy (pH 7.40). c(Cu-bipy)� 1.0×10−5mol·L−1; c(Na2HPO4)�

0.00, 0.33, 0.67, 1.00, 1.33, 1.67, 2.00, 2.33, 2.67, 3.00, 3.33, 3.67,
4.00, 4.33, 4.67, and 5.00×10−5mol·L−1, respectively.
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Figure 14: Effect of increasing amounts of Cu-bipy on the relative
viscosity of hsDNA, c(hsDNA)� 1.00×10−4mol·L−1.
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Figure 12: Scatchard plots of the interaction between Cu-bipy
and hsDNA-AO (pH� 7.40, with NaCl). c(hsDNA)�

1.0×10−5mol·L−1; Rt� c(Cu-bipy)/c(hsDNA); Rt� a, 0.00; b, 0.40;
c, 0.80; d, 1.20.
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the groove binding does not obviously change viscosity,
whereas a partial intercalation of the complex causes a bend
in the DNA helix, reducing its viscosity [53, 54]. -e vis-
cosity was determined by the fixed hsDNA concentration
and changing the Cu-bipy concentration in the experiment.
In Figure 14, the relative viscosity of hsDNA reveals
a consistent decrease during the addition of Cu-bipy, which
may be due to partial inserting of the complex. According to
the result of viscosity measurement, the interaction between
Cu-bipy and hsDNA is in insertion mode.

4. Conclusions

-e complex [Cu(bipy)(H2O)2(SO4)]n was synthesized by
hydrothermal method and characterized by EA, single
crystal X-ray diffraction, FTIR, and TG-DSC. -e complex
crystallizes in the monoclinic system with C2/c space group.
-e Cu(II) was hexacoordinated by two N atoms and four O
atoms, forming a slightly distorted octahedron, and bridged
by sulfato groups into polymeric chains. Under the physi-
ological pH, the interaction between the complex and
hsDNA was studied with AO as a fluorescent probe by
spectral method. -e interaction mechanism of the complex
with hsDNA is electrostatic and intercalative binding. -e
calculated thermodynamic parameters indicate that the
interaction of the complex and hsDNA is driven by entropy.
-e influence of phosphate radical and Scatchard method
reveals that the complex is combined with hsDNA in the
electrostatic and intromittent modes.
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