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The objective of this study was to systematically evaluate the in vitro activity of
cefoselis and other comparators against common bacterial pathogens collected from
18 hospitals across China. Minimum inhibitory concentrations (MICs) were determined
by the broth microdilution method following Clinical and Laboratory Standards
Institute (CLSI) guidelines. Cefoselis showed poor activity against extended-spectrum
β-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, and Proteus
mirabilis, with susceptibility rates of < 10% each, while the susceptibility rates of
this antibiotic against non-ESBL-producing strains of these organisms were 100%,
94.3%, and 97.0%, respectively. Cefoselis exhibited susceptibility rates of 56.7–83.3%
against other tested Enterobacteriaceae isolates. For Acinetobacter baumannii and
Pseudomonas aeruginosa isolates, the susceptibility rates to cefoselis were 18.7%
and 73.3%, respectively. All methicillin-resistant Staphylococcus aureus (MRSA) strains
were resistant to cefoselis, while all methicillin-sensitive S. aureus (MSSA) strains were
susceptible to this antibiotic. In conclusion, cefoselis showed good activity against non-
ESBL-producing E. coli, K. pneumoniae, and P. mirabilis, MSSA, and was also potent
against Enterobacteriaceae, P. aeruginosa, and Streptococcus.
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INTRODUCTION

Multidrug-resistant (MDR) pathogens, especially the ESKAPE
pathogens (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species), are the leading cause of
nosocomial infections throughout the world, which is usually
caused by excessive drug usage or prescription and inappropriate
use of antimicrobials. Understanding the mechanisms,
developing novel antimicrobial agents, and knowing the
latest antimicrobial resistance patterns of bacterial pathogens are
crucial to combat these public health challenges (Santajit and
Indrawattana, 2016; Sheu et al., 2018; Gajdacs, 2019).

Cefoselis is a member of the fourth-generation cephalosporins
which exhibit a wider antibacterial spectrum activity than
the third-generation cephalosporins to both Gram-negative
and Gram-positive bacteria (King et al., 1995). The wide
antibacterial spectrum of cefoselis is attributed to the resistance
to hydrolysis by the chromosomal β-lactamases and the
rapid penetration through the bacterial cell wall (Giamarellos-
Bourboulis et al., 2000). However, few reports have been
published in China on the antimicrobial activity of cefoselis
against common bacterial pathogens. The objective of this
study was to better understand the in vitro activity of cefoselis
against common Gram-positive and Gram-negative bacterial
pathogens in China.

MATERIALS AND METHODS

Ethics
The protocol was approved by the Human Research Ethics
Committee of Peking Union Medical College Hospital (no.
S-K262). Peking Union Medical College Hospital did not require
written informed consent from participants because this was an
in vitro study on bacteria isolates without any private data of the
human participants.

Clinical Isolates
A total of 1188 bacterial isolates derived from 18 hospitals
in China (January 2014–December 2016) were studied. The
bacterial species distribution is shown in Table 1. The isolates
from each of the participating hospitals were re-identified by
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) (Bruker Daltonics GmbH,
Bremen, Germany) at the Central Lab, Peking Union Medical
College Hospital (Beijing), China.

Antimicrobial Susceptibility Test Method
Minimum inhibitory concentrations (MICs) were determined
by the broth microdilution method following Clinical
and Laboratory Standards Institute (CLSI) guidelines.
Thirty-two antimicrobial agents were tested against the
isolates, among which 17 agents were against Gram-
negative organisms, 24 agents against Staphylococcus spp.,
and 19 agents against Streptococcus spp. Cefoselis was
obtained from Hansoh Pharma, and the other agents were

TABLE 1 | Distribution of bacterial species.

Organisms Number Percentage

E. coli (ESBL+) 134 11.3

E. coli (ESBL−) 107 9.0

K. pneumoniae (ESBL+) 118 9.9

K. pneumoniae (ESBL−) 106 8.9

P. mirabilis (ESBL+) 33 2.8

P. mirabilis (ESBL−) 33 2.8

C. freundii 30 2.5

E. aerogenes 30 2.5

E. cloacae 30 2.5

S. marcescens 30 2.5

P. vulgaris 30 2.5

A. baumannii 198 16.7

P. aeruginosa 30 2.5

MRSA 97 8.2

MSSA 100 8.4

PSSP 25 2.1

PRSP 15 1.3

Beta-hemolytic streptococci 27 2.3

Viridans group streptococci 15 1.3

Total 1,188 100.0

ESBL, extended-spectrum β-lactamase; MRSA, methicillin-resistant S. aureus;
MSSA, methicillin-sensitive S. aureus; PSSP, penicillin-susceptible S. pneumoniae;
PRSP, penicillin-resistant S. pneumoniae.

provided by AstraZeneca. Interpretation of the antimicrobial
testing results was based on CLSI M100-S28 (CLSI, 2018).
Escherichia coli ATCC 25922, P. aeruginosa ATCC 27853,
K. pneumoniae ATCC 700603, S. aureus ATCC 29213, and
Streptococcus pneumoniae ATCC 49619 were used as the quality
control strains.

Extended-Spectrum β-Lactamase
Detection
Phenotypic identification of extended-spectrum β-lactamase
(ESBL) production in E. coli, K. pneumoniae, and Proteus
mirabilis, was carried out using CLSI-recommended
methods. If the cefotaxime or ceftazidime MICs
were ≥ 2 µg/ml, the MICs of cefotaxime + clavulanic
acid (4 µg/ml) or ceftazidime + clavulanic acid (4 µg/ml)
were comparatively determined. ESBL production was
defined as an eightfold or greater decrease in MICs
for cefotaxime or ceftazidime tested in combination
with clavulanic acid compared to their MICs without
clavulanic acid.

RESULTS

In vitro Activity of Antimicrobial Agents
Against Enterobacteriaceae
Against ESBL-producing E. coli, K. pneumoniae, and P. mirabilis
isolates, cefoselis, cefepime, cefotaxime, and ceftriaxone
showed relatively low susceptibility rates, with drug resistance
rates of > 87%. Against non-ESBL-producing strains, most
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TABLE 2 | In vitro activity of antimicrobial agents against ESBL-positive and ESBL-negative Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis strains.

Antimicrobial E. coli E. coli K. pneumoniae K. pneumoniae P. mirabilis P. mirabilis

agents (ESBL+) (134) (ESBL−) (107) (ESBL+) (118) (ESBL−) (106) (ESBL+) (33) (ESBL−) (33)

%R %S %R %S %R %S %R %S %R %S %R %S

Piperacillin/tazobactam 12.7 84.3 1.9 97.2 23.7 65.3 2.8 97.2 3.0 93.9 3.0 93.9

Ceftazidime 55.2 30.6 0 100.0 59.3 30.5 1.9 97.2 9.1 90.9 0 100.0

Ceftriaxone 99.3 0.7 0 99.1 94.9 4.2 2.8 94.3 100.0 0.0 0 100.0

Cefotaxime 99.3 0.7 0 100.0 94.9 5.1 3.8 95.3 97.0 0.0 0 100.0

Cefoselis 97.8 2.2 0 100.0 93.2 6.8 0.9 94.3 97.0 3.0 3.0 97.0

Cefepime 91.0 3.7 0 100.0 90.7 6.8 0 100.0 87.9 3.0 0 97.0

Cefoxitin 20.9 58.2 1.9 93.5 18.6 78.0 12.3 84.0 3.0 93.9 0 100.0

Aztreonam 83.6 8.2 0 100.0 81.4 14.4 0.9 99.1 41.4 58.6 21.2 78.8

Ertapenem 0 92.5 0 100.0 0 92.4 0 100.0 0 97.0 0 100.0

Imipenem 0 97.8 0 100.0 0 94.9 0 96.2 15.2 27.3 9.1 45.5

Meropenem 0 100.0 0 100.0 0 100.0 0 100.0 0 100.0 0 100.0

Amikacin 3.0 95.5 0 100.0 7.6 91.5 0.9 99.1 6.1 90.9 0 100.0

Ciprofloxacin 78.4 20.1 29.0 69.2 55.9 40.7 11.3 87.7 90.9 9.1 48.5 48.5

Levofloxacin 72.4 20.9 27.1 71.0 46.6 47.5 10.4 87.7 69.7 27.3 27.3 63.6

Minocycline 47.0 40.3 28.0 54.2 44.1 38.1 21.7 69.8 – – – –

Tetracycline 87.3 12.7 84.1 15.0 66.1 32.2 25.5 67.9 – – – –

Tigecycline 0.7 92.5 0 98.1 3.4 82.2 0.9 90.6 – – – –

ESBL, extended-spectrum β-lactamase; R, resistant; S, sensitive.

TABLE 3 | In vitro activity of antimicrobial agents against Enterobacteriaceae strains.

Antimicrobial agents C. freundii (30) E. aerogenes (30) E. cloacae (30) S. marcescens (30) P. vulgaris (30)

%R %S %R %S %R %S %R %S %R %S

Piperacillin/tazobactam 20.0 73.3 20.0 63.3 26.7 60.0 13.3 83.3 0 93.3

Ceftazidime 30.0 63.3 33.3 60.0 43.3 46.7 3.3 93.3 0 100.0

Ceftriaxone 50.0 43.3 40.0 53.3 60.0 36.7 23.3 73.3 53.3 3.3

Cefotaxime 50.0 43.3 50.0 43.3 60.0 33.3 30.0 60.0 46.7 16.7

Cefoselis 30.0 56.7 10.0 83.3 33.3 56.7 20.0 80.0 3.3 83.3

Cefepime 26.7 70.0 10.0 90.0 13.3 70.0 16.7 80.0 0 100.0

Cefoxitin 63.3 23.3 90.0 3.3 93.3 3.3 80.0 0.0 13.3 73.3

Aztreonam 43.3 56.7 36.7 63.3 56.7 43.3 13.3 86.7 0 96.7

Ertapenem 6.7 90.0 10.0 90.0 16.7 60.0 13.3 86.7 6.7 93.4

Imipenem 6.7 86.7 6.7 50.0 6.7 83.3 16.7 56.7 66.7 6.7

Meropenem 6.7 93.3 3.3 96.7 6.7 93.3 13.3 83.3 3.3 96.7

Amikacin 3.3 90.0 0 100.0 0 100.0 3.3 93.3 3.3 96.7

Ciprofloxacin 26.7 70.0 10.0 83.3 40.0 53.3 23.3 73.3 30.0 66.7

Levofloxacin 26.7 66.7 6.7 90.0 30.0 60.0 13.3 73.3 6.7 80.0

Minocycline 16.7 70.0 10.0 66.7 30.0 63.3 6.7 86.7 – –

Tetracycline 36.7 60.0 43.3 56.7 36.7 63.3 60.0 10.0 – –

Tigecycline 0 100.0 0 96.7 0 93.3 0 93.3 – –

R, resistant; S, sensitive.

antibiotics revealed good activity, of which cefoselis, cefepime,
showed > 94% antimicrobial susceptibility rates. For Citrobacter
freundii, Enterobacter aerogenes, Enterobacter cloacae, Serratia
marcescens, and Proteus vulgaris isolates, the susceptibility rates
for cefoselis ranged from 56.7% to 83.3%, which were slightly
lower than that of cefepime, with susceptibility rates ranging
from 70% to 100%. Meropenem and amikacin exhibited high
activity against all the Enterobacteriaceae strains (Tables 2, 3).

In vitro Activity of Antimicrobial Agents
Against Non-fermentative
Gram-Negative Organisms
The most active agents against A. baumannii were tigecycline
and minocycline, with susceptibility rates of 58.6% and 45.5%,
respectively. The other analyzed agents were less effective, with
susceptibility rates of < 30%. Furthermore, against P. aeruginosa

Frontiers in Microbiology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 180

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00180 February 26, 2020 Time: 18:8 # 4

Cheng et al. In vitro Activity of Cefoselis in China

TABLE 4 | In vitro activity of antimicrobial agents against Acinetobacter baumannii
and Pseudomonas aeruginosa strains.

Antimicrobial agents A. baumannii (198) P. aeruginosa (30)

%R %S %R %S

Piperacillin/tazobactam 75.3 23.2 13.3 80.0

Ceftazidime 76.8 20.7 20.0 73.3

Ceftriaxone 78.8 7.1 96.7 0

Cefotaxime 78.8 14.6 100.0 0

Cefoselis 80.8 18.7 26.7 73.3

Cefepime 75.8 19.7 20.0 73.3

Cefoxitin 96.5 2.5 96.7 0

Aztreonam 84.3 5.1 20 73.3

Ertapenem – – – –

Imipenem 75.3 24.7 20.0 80.0

Meropenem 75.3 24.2 10.0 76.7

Amikacin 69.7 29.8 6.7 93.3

Ciprofloxacin 76.8 21.2 16.7 76.7

Levofloxacin 59.6 23.2 16.7 76.7

Minocycline 28.3 45.5 – –

Tetracycline 81.3 16.2 – –

Tigecycline 22.7 58.6 96.7 3.3

R, resistant; S, sensitive.

isolates, amikacin exhibited the highest in vitro activity, with
a susceptibility rate of 93.3%. The susceptibility rates for
cefoselis, cefepime, and ceftazidime were all 73.3% each for this
organism (Table 4).

In vitro Activity of Antimicrobial Agents
Against MRSA and MSSA
Against methicillin-resistant S. aureus (MRSA) strains, linezolid,
vancomycin, and teicoplanin exhibited a susceptibility
rate of 100% each, followed by tigecycline (97.9%), and
trimethoprim–sulfamethoxazole (TMP-SMX) (94.8%). All
strains were resistant to ceftazidime, ceftriaxone, cefoselis,
and cefepime. Against 100 methicillin-sensitive S. aureus
(MSSA) strains, most antibiotics showed good activity, except
for ampicillin, tetracycline, and erythromycin. All strains
were susceptible to ceftazidime, ceftriaxone, cefoselis, and
cefepime (Table 5).

In vitro Activity of Antimicrobial Agents
Against Streptococcus Strains
For the penicillin-susceptible S. pneumoniae (PSSP), beta-
hemolytic Streptococcus strains, and viridans group Streptococcus
strains, cefoselis and cefepime both showed very high
antimicrobial activities, with susceptibility rates of > 90%.
Against 15 penicillin-resistant S. pneumoniae (PRSP) strains,
the susceptibility rate of cefoselis was higher than that of
cefepime (60.0% vs. 40.0%). Linezolid, vancomycin, and
tigecycline exhibited 100% antimicrobial activity against all the
Streptococcus strains (Table 6).

TABLE 5 | In vitro activity of antimicrobial agents against MRSA and MSSA strains.

Antimicrobial agents MRSA (97) MSSA (100)

%R %S %R %S

Ampicillin 100.0 0 90.0 10

Oxacillin 100.0 0 0 100.0

Amoxicillin/clavulanate 100.0 0 0 100.0

Piperacillin/tazobactam 100.0 0 0 100.0

Ceftaroline 4.1 35.1 0 95.0

Ceftazidime 100.0 0 0 100.0

Ceftriaxone 100.0 0 0 100.0

Cefoselis 100.0 0 0 100.0

Cefepime 100.0 0 0 100.0

Doripenem 100.0 0 0 100.0

Meropenem 100.0 0 0 100.0

Gentamicin 49.5 38.1 18.0 81.0

Levofloxacin 79.4 20.6 23.0 75.0

Moxifloxacin 77.3 19.6 15.0 77.0

Trimethoprim–sulfamethoxazole 5.2 94.8 2.0 98.0

Clindamycin 47.4 50.5 21.0 78.0

Daptomycin 0 99 0 99.0

Erythromycin 82.5 8.2 38.0 60.0

Linezolid 0 100.0 0 100.0

Vancomycin 0 100.0 0 100.0

Teicoplanin 0 100.0 0 100.0

Minocycline 0 88.7 0 100.0

Tetracycline 60.8 36.1 43.0 52.0

Tigecycline 2.1 97.9 0 100.0

MRSA, methicillin-resistant S. aureus; MSSA, methicillin-sensitive S. aureus; R,
resistant; S, sensitive.

Comparison of Cefoselis and Cefepime
Against Common Clinical Pathogens
Cefoselis exhibited a slightly lower antimicrobial activity than
cefepime against Enterobacteriaceae and non-fermentative
Gram-negative organisms, but a little higher activity than
cefepime against MRSA, MSSA, PSSP, beta-hemolytic
Streptococcus, and viridans group Streptococcus strains.
The cumulative percentage MIC distributions of cefoselis
and cefepime against common clinical pathogens are
shown in Table 7.

DISCUSSION

The Enterobacteriaceae family is a major group of pathogens
causing several community- and hospital-acquired infections,
among which the ESBL rates in E. coli and K. pneumoniae
in China have been reported as high as 60–70% and 30–
40%, respectively (Yang et al., 2010, 2013). According to
our previous study, the genotype distribution of ESBL-
producing strains among bacterial species was diverse, and
blaCTX-M was the major ESBL gene, with occurrences
in 99.5% of E. coli, 91.1% of K. pneumoniae, and 97.5%
of P. mirabilis strains (Yang et al., 2015). In the present
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TABLE 6 | In vitro activity of antimicrobial agents against Streptococcus strains.

Antimicrobial agents PSSP (25) PRSP (15) Beta-hemolytic Viridans group
streptococci (27) streptococci (15)

%R %S %R %S %R %S %R %S

Penicillin 0 100.0 100.0 0 0 100.0 0 100.0

Amoxicillin/clavulanate 0 100.0 40.0 40.0 – – – –

Ceftaroline 0 100.0 0 100.0 0 92.6 0 100.0

Ceftazidime 4.0 92.0 86.7 0 7.4 92.6 13.3 86.7

Ceftriaxone 0 96.0 40.0 53.3 0 92.6 6.7 91.7

Cefoselis 4.0 96.0 0 60.0 7.4 92.6 0 100.0

Cefepime 4.0 96.0 20.0 40.0 7.4 92.6 6.7 93.3

Doripenem 0 100.0 0 100.0 0 92.6 0 100.0

Meropenem 4.0 92.0 40.0 6.7 0 92.6 0 100.0

Levofloxacin 4.0 96.0 0 100.0 46.2 53.8 6.7 80.0

Moxifloxacin 32.0 68.0 0 100.0 – – – –

Clindamycin 100.0 0 100.0 0 74.1 22.2 66.7 33.3

Daptomycin – – – – – 92.7 – 93.3

Erythromycin 76.0 24.0 100.0 0 48.1 51.9 80.0 13.3

Linezolid 0 100.0 0 100.0 0 100.0 0 100.0

Vancomycin 0 100.0 0 100.0 0 100.0 0 100.0

Minocycline 12.0 48.0 6.7 73.3 33.3 48.1 6.7 80.0

Tetracycline 88.0 8.0 93.3 6.7 74.1 22.2 66.7 33.3

Tigecycline 0 100.0 0 100.0 0 100.0 0 100.0

PSSP, penicillin-susceptible S. pneumoniae; PRSP, penicillin-resistant S. pneumoniae; R, resistant; S, sensitive.

study, cefoselis and cefepime both showed poor activities
against ESBL-producing E. coli, K. pneumoniae, and
P. mirabilis, which may be attributed to the specific ESBL
genes present in China, albeit further studies are needed
for confirmation.

Against other Enterobacteriaceae strains, cefoselis exhibited
a slightly lower antimicrobial activity than cefepime, but
a higher activity than third-generation cephalosporins. The
relatively high activities of fourth-generation cephalosporins
against Enterobacteriaceae may be attributed to the low affinity
for chromosome-mediated AmpC β-lactamases (D’Angelo et al.,
2016), which are the common β-lactamases in Enterobacteriaceae
isolates from China. A multicenter, double-blind, randomized
clinical trial in China revealed equal clinical efficacy and
safety of intravenous cefoselis and cefepime injection for the
treatment of acute, moderate, and severe bacterial infections
(Liu et al., 2014).

Acinetobacter baumannii was one of the bacteria considered
to be of maximum resistance and is classified as a priority
category according to the bacterial groups classified by priority
categories of need for new antibiotics (Tacconelli and Magrini,
2017). In this study, A. baumannii exhibited low susceptibility
to most of the tested antibiotics, with susceptibility rates ranging
from 5.1 to 58.6%. Against P. aeruginosa, cefoselis and cefepime
showed equal antimicrobial activities for this organism, with
susceptibility rates of 73.3% each, which are slightly higher than
those in a previous study in China; thus, these two antibiotics
could be used to treat infections caused by P. aeruginosa, in
combination with other antibiotics (Zhang et al., 2016).

Although the prevalence of MRSA in China showed a
markedly decreasing trend from 69.0% in 2005 to 35.3% in 2017,
as per the China Antimicrobial Surveillance Network (CHINET)
program, MRSA remains a major pathogen responsible for
nosocomial infections (Hu et al., 2018). No isolates were found
to be resistant to vancomycin, linezolid, and teicoplanin in this
study. Tigecycline and TMP-SMX also showed good activities,
which were similar to previous studies (Zhao et al., 2012;
Zhang et al., 2015). Vancomycin, linezolid, and TMP-SMX were
recommended by the Infectious Diseases Society of America
(IDSA) to treat MRSA infections (Liu et al., 2011).

Teicoplanin can be an effective alternative to vancomycin
for treating patients infected by MRSA as the two therapies
are similar in both efficacy and safety (Peng et al., 2013).
Tigecycline was often recommended as a second- or third-
line agent for MRSA infections when alternative agents cannot
be used (Rodvold and McConeghy, 2014). Ceftaroline fosamil
was the first FDA-approved cephalosporin with any activity
against MRSA, but the low susceptibility among MRSA
isolates in China needs attention (Lodise and Low, 2012;
Zhang et al., 2015).

The bacterial isolates were collected from 2014 to 2016, and
the susceptibility has certainly changed in the last 5 years for most
organisms. More recently collected strains should be involved in
further studies. This is a limitation of the study. In conclusion,
cefoselis exhibited good antimicrobial activity against non-
ESBL[Frame1]-producing E. coli, K. pneumoniae, P. mirabilis,
and MSSA and was also potent against other Enterobacteriaceae,
P. aeruginosa, and Streptococcus.
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TABLE 7 | Cumulative percentage MIC distributions of cefoselis and cefepime against common clinical pathogens collected in China.

Species (n) and drug Cumulative% isolates at or below various MICs (µg/ml)a

≤ 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 > 256

E. coli (ESBL+) (134) Cefoselis 1.5 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3.7 8.2 11.9 20.1 20.9 100

Cefepime 0.7 1.5 2.2 2.2 2.2 3.7 5.2 9.0 18.7 26.9 32.8 36.6 40.3 100

E. coli (ESBL-) (107) Cefoselis 1.9 17.8 71.0 92.5 98.1 98.1 98.1 100

Cefepime 0.9 16.8 66.4 94.4 97.2 100

K. pneumoniae (ESBL+) (118) Cefoselis 0.8 4.2 5.1 5.9 5.9 6.8 6.8 6.8 6.8 6.8 6.8 12.7 16.1 16.9 100

Cefepime 0.8 4.2 5.1 5.1 5.1 6.8 6.8 6.8 9.3 11.9 17.8 21.2 26.3 31.4 100

K. pneumoniae (ESBL-) (106) Cefoselis 1.9 30.2 60.4 81.1 91.5 93.4 93.4 94.3 97.2 99.1 99.1 100

Cefepime 3.8 46.2 67.9 82.1 91.5 92.5 96.2 100

P. mirabilis (ESBL+) (33) Cefoselis 3.0 3.0 3.0 3.0 3.0 6.1 9.1 9.1 9.1 100

Cefepime 3.0 3.0 3.0 3.0 3.0 12.1 12.1 21.2 30.3 30.3 30.3 100

P. mirabilis (ESBL-) (33) Cefoselis 3.0 39.4 48.5 60.6 66.7 75.8 81.8 97.0 97.0 97.0 100

Cefepime 42.4 45.5 51.5 57.6 69.7 87.9 97.0 97.0 100

C. freundii (30) Cefoselis 26.7 43.3 46.7 50.0 53.3 53.3 56.7 56.7 60.0 70.0 70.0 73.3 80.0 83.3 83.3 100

Cefepime 30.0 46.7 53.3 56.7 60.0 63.3 63.3 70.0 73.3 73.3 83.3 83.3 83.3 90.0 93.3 100

E. aerogenes (30) Cefoselis 10.0 33.3 43.3 50.0 63.3 70.0 73.3 83.3 90.0 90.0 90.0 90.0 90.0 90.0 93.3 100

Cefepime 6.7 43.3 46.7 63.3 76.7 86.7 90.0 90.0 90.0 90.0 93.3 96.7 96.7 96.7 96.7 100

E. cloacae (30) Cefoselis 3.3 30.0 36.7 36.7 43.3 46.7 46.7 56.7 60.0 66.7 66.7 83.3 86.7 93.3 93.3 100

Cefepime 10.0 30.0 33.3 43.3 50.0 56.7 63.3 70.0 76.7 86.7 93.3 96.7 96.7 96.7 100

S. marcescens (30) Cefoselis 30.0 70.0 73.3 76.7 76.7 76.7 76.7 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 100

Cefepime 10.0 66.7 73.3 76.7 76.7 76.7 76.7 80.0 80.0 83.3 86.7 86.7 86.7 86.7 86.7 100

P. vulgaris (30) Cefoselis 3.3 30.0 46.7 60.0 70.0 76.7 83.3 93.3 96.7 96.7 96.7 96.7 96.7 96.7 100

Cefepime 10.0 36.7 50.0 76.7 86.7 100

A. baumannii (198) Cefoselis 1.5 2.5 3.5 5.1 6.6 8.6 16.2 18.7 18.7 18.7 19.2 21.2 26.3 40.4 71.2 100

Cefepime 1.0 2.0 3.5 4.5 5.6 6.6 12.1 16.2 18.7 19.7 24.2 36.9 52.0 84.3 93.9 100

P. aeruginosa (30) Cefoselis 3.3 36.7 50.0 63.3 73.3 73.3 73.3 76.7 96.7 96.7 100

Cefepime 3.3 53.3 56.7 70.0 73.3 80.0 80.0 96.7 100

MRSA (97) Cefoselis 2.1 3.1 18.6 27.8 32.0 96.9 100

Cefepime 1.0 2.1 5.2 13.4 18.6 25.8 28.9 28.9 100

MSSA (100) Cefoselis 3.0 3.0 3.0 3.0 3.0 4.0 64.0 82.0 87.0 90.0 92.0 100

Cefepime 3.0 3.0 3.0 3.0 3.0 3.0 5.0 57.0 78.0 83.0 87.0 88.0 89.0 90.0 93.0 100

PSSP (25) Cefoselis 32.0 72.0 80.0 84.0 92.0 92.0 96.0 96.0 96.0 96.0 96.0 100

Cefepime 4.0 72.0 76.0 80.0 88.0 92.0 96.0 96.0 96.0 96.0 96.0 100

PRSP (15) Cefoselis 6.7 40.0 40.0 86.7 100

Cefepime 20.0 60.0 100

Beta-hemolytic streptococci (27) Cefoselis 40.7 85.2 88.9 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 100

Cefepime 37.0 40.7 85.2 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 92.6 100

Viridans group streptococci (15) Cefoselis 26.7 46.7 93.3 100

Cefepime 26.7 33.3 40.0 53.3 93.3 93.3 93.3 93.3 93.3 100

ESBL, extended-spectrum β-lactamase; MRSA, methicillin-resistant S. aureus; MSSA, methicillin-sensitive S. aureus; PSSP, penicillin-susceptible S. pneumoniae; PRSP, penicillin-resistant S. pneumoniae; MIC, minimum
inhibitory concentration. aMIC90 values are in boldface.
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