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Summary
For moderate to large sample sizes, all tests yielded 
pvalues close to the nominal, except when models 
were misspecified. The signed-rank test generally had 
the lowest power. Within the current context of count 
outcomes, the signed-rank test shows subpar power 
when compared with tests that are contrasted based on 
full data, such as the GEE. Parametric models for count 
outcomes such as the GLMM with a Poisson for marginal 
count outcomes are quite sensitive to departures from 
assumed parametric models. There is some small bias for 
all the asymptotic tests, that is,the signed-ranktest, GLMM 
and GEE, especially for small sample sizes. Resampling 
methods such as permutation can help alleviate this.

Introduction
Although not as popular as continuous and 
binary variables, count outcomes arise quite 
often in clinical research. For example, 
number of hospitalisations, number of 
suicide attempts, number of heavy drinking 
days and number of packs of cigarettes 
smoked per day are all popular count 
outcomes in mental health research. Studies 
yielding paired outcomes are also popular. 
For example, to evaluate new eye-drops, we 
can treat one eye of a subject with the new 
eye-drops and the other eye with a placebo 
drop. To evaluate skin cancer for truck 
drivers, we can compare skin cancer on the 
left arm with the right arm, since the left arm 
is more exposed to sunlight. To evaluate the 
stress of combat on Veterans’ health, we may 
use twins in which one is exposed to combat 
and the other is not, as differences observed 
with respect to health are likely attributable 
to combat experience. In a pre-post study, 
the effect of an intervention is evaluated by 
comparing a subject’s outcomes before (pre) 
and after (post) receiving the intervention. In 
all these studies, each unit of analysis has two 
outcomes arising from two different condi-
tions. Interest is centred on the difference 
between the means of the two outcomes.

For continuous outcomes, the paired 
t-test is the standard statistical method for 
evaluating differences between the means. 
However, the paired t-test does not apply to 
non-continuous variables such as binary and 
count (frequency) outcomes. For binary 

outcomes, McNemar’s test is the standard. 
For count or frequency outcomes, there is 
not much discussion in the literature. Many 
use Wilcoxon’s signed-rank test because this 
method is applicable to paired non-contin-
uous outcomes such as count responses. One 
major weakness of the signed-rank test is its 
limited power. As observations are converted 
to ranks and only ranks are used in the test 
statistic, the signed-rank test does not use all 
available information in the original data, 
leading to lower power when compared 
with tests that use all data. This is why t-tests 
are preferred and widely used to compare 
two independent groups for continuous 
outcomes.

With recent advances in statistical method-
ology, there are more options for comparing 
paired count responses. In this paper, we 
discuss some alternative procedures that 
use all information in the original data and 
thus generally provide more power than the 
signed-rank test. In the second section, we 
first provide a brief review of paired outcomes 
and methods for comparing continuous and 
binary paired outcomes. We then discuss the 
classic signed-rank test and modern alterna-
tives for comparing paired count outcomes. 
In the third section, we compare different 
methods for comparing paired count 
outcomes using simulation studies. In the 
fourth section, we present our concluding 
remarks.

Methods for paired count outcomes
Paired continuous and binary outcomes
Consider a sample of ﻿‍n‍ subjects indexed by ‍i‍ 
and let ‍yi1‍ and ‍yi2‍ denote the paired outcomes 
from the ‍i‍th subject. The subject may be an 
individual or a pair of twins, depending on 
applications. For example, in a pre-post 
study, the paired outcomes correspond to the 
pretreatment and post-treatment assessment 
and the subject is an individual. In studies 
involving twins, the paired outcomes come 
from each pair of twins. Because the two 
outcomes are correlated, statistical methods 
for comparing independent samples such as 
the t-test cannot be applied.
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Table 1  A 2×2 contingency table displaying joint 
distributions of paired binary outcomes, with a, b, c and d 
denoting cell count

‍yi2‍
0 1

‍yi1‍ 0 a b

1 c d

For a continuous outcome, the paired t-test is gener-
ally applied to evaluating differences in the means of 
the paired outcomes. If we assume that ‍yi1‍ and ‍yi2‍ follow 
a bivariate normal distribution, then the difference 
between the two outcomes, ‍di = yi2 − yi1‍, is also normally 
distributed. Under the null of no difference between the 
means of the two outcomes, ‍di‍ has a normal distribution 
with mean ‍0‍ and variance ‍σ2d ‍. Thus, we can apply the t-test 
to the differences ‍di‍ to test the null:

	﻿‍
td = d̄·

sd√
n
∼ tn−1,

‍�
(1)

where ‍tk‍ denotes the ‍t‍ distribution with ﻿‍k‍ df, and ‍̄d·‍ and 
‍sd‍ denote the sample mean and SD. We can also use this 
sampling distribution to construct CIs.

In practice, the bivariate normal distribution assump-
tion for the paired outcomes ‍yi1‍ and ‍yi2‍ is quite strong and 
may not be met in real study data. If the assumption fails, 
the differences ‍di = yi2 − yi1‍ generally do not follow the 
normal distribution and thus the ‍td‍ statistic in Equation 
(1) may not follow the ‍t‍ distribution. For large samples 
such as ‍n > 200‍, ‍td‍ follows approximately a standard 
normal distribution. Thus, one may replace ‍tn−1‍ with the 
‘asymptotic’ standard normal, ‍N

(
0, 1

)
‍, to test the null as 

well as construct CIs, even if the outcomes ‍yi1‍ and ‍yi2‍ are 
not bivariate normal.

In what follows, we assume large samples, since all the 
tests to be discussed next are asymptotic tests, that is, they 
approximately follow a mathematical distribution such as 
the normal distribution only for large samples. For small 
to moderate samples, all these tests have unknown distri-
butions and asymptotic mathematical distributions such 
as the standard normal for large samples for the paired 
t-test may not work well. We discuss alternatives for small 
to moderate samples in the discussion section.

If the paired outcomes are binary, the above hypothesis 
becomes the comparison of the proportions of ‍yi1‍ and ‍yi2‍. 
McNemar’s test is the standard for comparing the paired 
outcomes. Let ‍p1‍ and ‍p2‍ denote the proportions associ-
ated with ‍yi1‍ and ‍yi2‍, that is,

	﻿‍ p1 = Pr
(
yi1 = 1

)
and p2 = Pr

(
yi2 = 1

)
.‍�

Then the hypothesis to be tested is given by:

	﻿‍ H0 : p1 = p2, vs. Ha : p1 ̸= p2.‍� (2)
McNemar’s test is premised on the idea of comparing 

concordant and discordant pairs in the sample.
Shown in table 1 is a ‍2× 2‍ cross-tabulation for the two 

levels of the binary outcomes. Let ‍pa‍, ‍pb‍, ‍pc‍ and ‍pd‍ denote 

the cell probabilities (or proportions) for the four cells in 
the table, that is,

	﻿‍
pa = Pr(yi1 = 0, yi2 = 0), pb = Pr(yi1 = 0, yi2 = 1),

pc = Pr(yi1 = 1, yi2 = 0), pd = Pr(yi1 = 1, yi2 = 1).‍�
Then, ‍p1‍ can be expressed in terms of the cell probabil-

ities as follows:

	﻿‍ p1 = Pr(yi1 = 1) = Pr(yi1 = 1, yi2 = 0 or yi2 = 1) = pc + pd.‍�
Similarly, ‍p1‍ can be expressed as:

	﻿‍ p2 = pb + pd.‍�
Thus, ‍p1 = p2‍ implies ‍pb = pc‍ and vice versa. The hypoth-

esis of interest in Equation (2) involving ‍p1‍ and ‍p2‍ can be 
expressed in terms of ‍pb‍ and ‍pc‍:

	﻿‍ H0 : pb = pc, vs. Ha : pb ̸= pc.‍�

McNemar’s test evaluates the difference between the 
concordant and discordant pairs, ‍b‍ and ‍c‍, that is,

	﻿‍
zm =

|b − c| − 1√
b + c

.
‍�

A large difference leads to rejection of the null. By 
normalising this difference, the statistic ‍zm‍ above follows 
approximately the standard normal for large sample size.

Paired count outcomes
For count outcomes, McNemar’s test clearly does not 
apply. The paired t-test is also inappropriate for such 
outcomes. First, the difference ‍di = yi2 − yi1‍ does not 
follow a normal distribution. Second, even if both ‍yi1‍ and 
‍yi2‍ follow a Poisson distribution, the difference ‍di‍ is not a 
Poisson variable; ‍di‍ in general is not even guaranteed to 
have non-negative values.

One approach that has been used to compare paired 
count outcomes is the Wilcoxon signed-rank test. Within 
our context, let ‍Ri‍ denote the rank of ‍di‍ based on its 
absolute value ‍|di|‍. The ranks are integers that indicate 
the position of ‍|di|‍ after rearranging them in ascending 
order.1 The signed-rank test has the following statistic:

	﻿‍
Wilcoxon signed rank test : W +

n =
n∑

i=1
I{di>0

}Ri,
‍�

where ‍I{di>0
}‍ denotes an indicator with the value 1 (0) if 

the logic ‍di‍>0 is true (otherwise). Thus, ‍W
+
n ‍ only adds up 

the ranks for the positive ‍di‍’s.
The statistic ‍W

+
n ‍ ranges from 0 to ‍

n(n+1)
2 ‍. Under ‍H0‍, 

about one-half of the ‍di‍'s are positive. Thus, any pair (‍di‍, 
‍dj‍) has 50% chance that ‍di + dj > 0‍. In terms of ranks, this 
means that the sum of ‍Ri‍ for positive ‍di‍ is about half of the 

range ‍
n
(
n+1

)
2 ‍. Thus, we can specify the null as:

	﻿‍
H0 : θ =

1
2

, vs. H0 : θ ̸= 1
2

,
‍�

where ‍θ = Pr
(
di + dj > 0

)
‍. Under the null ‍H0‍, ‍W

+
n ‍ has 

mean ‍
n
(
n+1

)
4 ‍, half of the range ‍

n
(
n+1

)
2 ‍. The normalised ‍W

+
n ‍:

	﻿‍
Un =

(
n
2

)−1
W +

n
‍� (3)
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has approximately a normal distribution with mean ‍
1
2‍ 

and SE ‍
1√
3n‍ for large samples, which is readily applied to 

calculate p values and/or confidence bands.
Since paired outcomes are a special case of general 

longitudinal outcomes, longitudinal methods can be 
applied to test the null. For example, both the generalised 
linear mixed-effects model (GLMM) and generalised esti-
mating equations (GEE), two most popular longitudinal 
models, can be specialised to the current setting. When 
applying GLMM, we specify the following model:

	﻿‍

yi1 ∼ Poisson
(
µ1

)
, yi2 ∼ Poisson

(
µ2

)
,

log
(
µ1

)
= β0 + z, log

(
µ2

)
= β0 + β1 + z, z ∼ N

(
0, σ2

)
,‍�

(4)

where ‍z‍ denotes a random effect to account for corre-
lation between the paired outcomes, ‍Poisson

(
µ
)
‍ denotes 

a Poisson distribution with mean ‍µ‍, ‍exp(·)‍ denotes the 
exponential and ‍log(·)‍ denotes the log function. The null 
of same mean between ‍y1‍ and ‍y2‍ can be expressed as:

	﻿‍ H0 : β1 = 0, vs. H0 : β1 ̸= 0.‍�
Note that since the random effect ‍z‍ may be positive or 

negative and the random of the normal distribution is 
unbounded, the log transformation of the Poisson mean 
in Equation (4) is necessary to ensure that ‍µ1‍ and ‍µ2‍ stay 
positive.

For applying GEE, we only need to specify the mean 
of each paired outcome. This is because unlike GLMM, 
GEE is a ‘semi-parametric’ model and imposes no mathe-
matical distribution on the outcomes. Thus, under GEE, 
both the Poisson distribution for each outcome and the 
random effect ‍z‍ for linking the paired outcomes are 
removed. The corresponding GEE is given by:

	﻿‍ log
[
E
(
yi1

)]
= β0, log

[
E
(
yi2

)]
= β0 + β1, 1 ≤ i ≤ n.‍� (5)

Since there is no random effect in Equation (5), the log 
transformation is also not necessary and thus the GEE can 
be specified simply as:

	﻿‍ E
(
yi1

)
= γ0, E

(
yi2

)
= γ0 + γ1, 1 ≤ i ≤ n.‍� (6)

Compared with the GLMM in Equation (4), the GEE 
above imposes no mathematical distribution either jointly 
or marginally, allowing for valid inference for a broad class 
of data distributions. The GLMM in Equation (4) may 
yield biased inference if: (1) at least one of the outcomes 
does not follow the Poisson; (2) the random effect ‍z‍ 
follows a non-normal distribution; and (3) ‍y1‍ and ‍y2‍ are 
not correlated according to the specified random-effect 
structure. In contrast, the GEE in Equation (5) forgoes 
all such constraints and yields valid inference regardless 
of the marginal distribution and correlation structure of 
the outcomes ‍y1‍ and ‍y2‍.

Simulation study
In this section, we evaluate and compare the perfor-
mances of the different methods discussed above by 
simulation. All simulations are performed with a Monte 
Carlo (MC) sample of ‍M = 2000‍ under a significance 
level of ‍α = 0.05‍. Performance of a test is characterised 

by: (1) bias and (2) power. We consider both aspects 
when comparing the different methods.

Bias
If a test performs correctly, it should yield type I error 
rates at the specified nominal level ‍α = 0.05‍. Several 
factors can affect the performance of the test. First, if 
data do not follow the assumed mathematical distribu-
tions, the test in general is biased. For example, if the 
paired t-test is applied to paired outcomes that are not 
bivariate normal, it will generally be biased. Second, 
with the exception of the paired t-test, all tests discussed 
above rely on large samples to provide valid results. 
When applied to small or moderate samples, such tests 
may have bias. For example, the normal distribution 
may not provide a good approximation to the sampling 
distribution of the statistic ‍Un‍ of the Wilcoxon signed-
rank test ‍W

+
n ‍ when applied to a sample size of, say, ‍n = 20

‍. Thus, to compare the performance of each different 
method, we consider sample sizes ranging from ﻿‍ n‍= 10 
to 200.

To evaluate the effects of model assumptions on test 
performance, we simulate correlated count responses ‍yi1‍ 
and ‍yi2‍ using a copula approach,2 where each outcome 
marginally follows a negative binomial (NB) distribution:

	﻿‍

yi1 ∼ NB
(
µ1, τ

)
, yi2 ∼ NB

(
µ2, τ

)
,

µ1 = exp
(
β0 + z

)
, µ2 = exp

(
β0 + β1 + z

)
.‍�

(7)

The above model deviates from the GLMM in Equa-
tion (4) in two ways. First, ‍yi1‍ (‍yi2‍) follows an NB, rather 
a Poisson. Second, correlation between ‍yi1‍ and ‍yi2‍ does 
not follow the normal distribution based on random 
effect. Unlike Poisson, NB has an extra parameter ﻿‍ τ ‍ 
controlling for dispersion (variability). Thus, although 
Poisson and NB have the same mean, NB has a different 
(larger) variance than Poisson.1 Since ‍NB

(
µ, τ

)
‍ converges 

to ‍Poisson
(
µ
)
‍ as ﻿‍τ ‍ increases, selecting a relatively small ﻿‍τ ‍ 

allows us to examine the impact of the Poisson assump-
tion on inference when the GLMM in Equation (4) is 
applied to count outcomes that are not compliant with 
the Poisson model.

For the simulation study, we set ‍µ1 = µ2 = 5, τ = 1‍  and 
5, and correlation between ‍yi1‍ and ‍yi2‍ to 0.5. To evaluate 
bias using MC simulation, we simulate paired outcomes 
‍yi1‍ and ‍yi1‍ from the model in Equation (7), apply each 
of the tests discussed in the third section and compute 
p values for testing the null hypothesis. This process is 
repeated ‍M = 2000‍ times. A test has little or no bias if the 
proportion of nulls rejected over the ‍M = 2000‍ times is 
close to the nominal value ‍α = 0.05‍.

Shown in table 2 are averaged p values for the different 
tests from their applications to the ‍M = 2000‍ simulated 
paired outcomes, where GLMM (Poisson) denotes the 
GLMM for Poisson in Equation (4), GLMM (NB) denotes 
the GLMM for NB distribution (by replacing the Poisson 
in the GLMM in Equation (4) with NB), GEE denotes the 
GEE without log transformation in Equation (6) and GEE 
(log-link) denotes the GEE with log transformation in 
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Table 3  Power estimates from testing the null of no difference between paired outcomes by different methods over M=2000 
MC replicates

Sample size Paired t-test Signed-rank test GLMM (Poisson) GLMM (NB) GEE GEE (log-link)

Dispersion parameter﻿‍τ = 1‍
n=10 0.057 0.060 0.406 0.194 0.120 0.178

n=25 0.102 0.100 0.495 0.151 0.132 0.159

n=50 0.190 0.188 0.555 0.214 0.209 0.227

n=100 0.344 0.310 0.718 0.344 0.360 0.373

n=200 0.599 0.555 0.897 0.583 0.607 0.611

Dispersion parameter‍τ = 5‍

n=10 0.119 0.104 0.172 0.161 0.205 0.222

n=25 0.266 0.260 0.333 0.320 0.321 0.331

n=50 0.506 0.490 0.559 0.546 0.535 0.539

n=100 0.834 0.818 0.861 0.858 0.842 0.842

n=200 0.981 0.980 0.988 0.987 0.983 0.983

GEE, generalised estimating equation; GLMM, generalised linear mixed-effects model; MC, Monte Carlo; NB, negative 
binomial.

Table 2  Averaged p values from testing the null of no difference between paired outcomes by different methods over M=2000 
MC replicates

Sample size Paired t-test Signed-rank test GLMM (Poisson) GLMM (NB) GEE GEE (log-link)

Dispersion parameter﻿‍τ = 1‍
n=10 0.042 0.042 0.380 0.154 0.089 0.136

n=25 0.043 0.050 0.371 0.092 0.064 0.076

n=50 0.045 0.050 0.295 0.069 0.056 0.065

n=100 0.049 0.050 0.268 0.058 0.052 0.056

n=200 0.052 0.060 0.284 0.059 0.054 0.057

Dispersion parameter‍τ = 5‍

n=10 0.046 0.035 0.068 0.054 0.094 0.101

n=25 0.051 0.050 0.054 0.051 0.065 0.070

n=50 0.051 0.046 0.059 0.058 0.059 0.062

n=100 0.046 0.040 0.054 0.05 0.051 0.052

n=200 0.046 0.049 0.050 0.049 0.047 0.049

GEE, generalised estimating equation; GLMM, generalised linear mixed-effects model; MC, Monte Carlo; NB, negative 
binomial.

Equation (5). For moderate to large sample sizes, n=100, 
200, all tests yielded p values close to the nominal ‍α = 0.05
‍, except for GLMM (Poisson), which had highly inflated 
type I errors for ﻿‍ τ = 1‍. As indicated earlier, with a small 
dispersion parameter such as ﻿‍τ = 1‍, NB has much more 
variability than its Poisson counterpart, leading to poor 
fit when fitting simulated data with the GLMM assuming 
the Poisson. Thus, the high bias in the type I error reflects 
model mis specification.

Although the paired t-test is not a valid test, it performed 
well for all sample sizes considered, although showing 
small downward bias, especially for small sample sizes. 
For extremely small sample sizes such as n=10, all three 
asymptotically valid methods, signed-rank test, GLMM 
(NB) and GEE, showed small upward bias, especially 

when ﻿‍τ = 1‍. As the sample size increased, the bias dimin-
ished, as expected.

Power
If a group of tests all provide good type I error rates, 
we can further compare them for power. It is common 
that two unbiased tests may provide different power, 
because they may use a different amount of informa-
tion from study data or use the same information 
differently. For example, within the current study, the 
signed-rank test may provide less power than the GEE, 
because the former only uses the ranks of the original 
count outcomes, completely ignoring magnitudes of ‍di

‍’s. Thus, it is of interest to compare power across the 
different tests.
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Figure 1  Power for each method under different alternative 
hypotheses. Data are generated with larger dispersion 
(ie, ﻿‍τ = 1‍). GEE, generalised estimating equation; GLMM, 
generalised linear mixed-effects model; NB, negative 
binomial.

Figure 2  Power for each method under different alternative 
hypotheses. Data are generated with smaller dispersion 
(ie, ‍τ = 5‍), more similar to a Poisson distribution. GEE, 
generalised estimating equation; GLMM, generalised linear 
mixed-effects model; NB, negative binomial.

We again use the MC approach to compare power 
across the different methods. However, unlike the evalua-
tion of bias, we must also be specific about the difference 
in the means of paired outcomes so that we can simulate 

the outcomes under the alternative hypothesis. For this 
study, we specify the null and alternative as follows:

	﻿‍ H0 : µ1 = µ2 = 5, Ha : µ1 = 5, µ2 = 6.‍� (8)

We simulate correlated outcomes ‍
(
yi1, yi2

)
‍ again using 

the copula from the GLMM in Equation (7), but with 
‍µ2 = 5‍ and ‍µ2 = 6‍ as specfied under ‍Ha‍ in Equation (8).

For each simulated outcome ‍
(
yi1, yi2

)
‍, we apply the 

different methods and test the null hypothesis under 
‍α = 0.05‍. This process is repeated ‍M = 2000‍ times and the 
power for each method is estimated by the per cent of 
times the null is rejected.

Shown in table 3 are power estimates from testing the 
null hypothesis in Equation (8) by the different methods 
from their applications to the ‍M = 2000‍ paired count 
outcomes simulated under the alternative hypothesis in 
Equation (8). As type I error rates for GLMM (Poisson) 
were highly biased, power estimates from this method 
are not meaningful. Among the remaining four tests, the 
signed-rank test has the lowest power. The paired t-tests, 
GLMM (NB) and both GEE methods yield comparable 
power estimates, though both GEE methods and GLMM 
(NB) appear to perform best with a sample size of at 
least 25. When ‍τ = 5‍ and the sample size is high (more 
than, say, 50 subjects) all tests have comparable power 
and correct nominal significance level. Figures  1 and 2 
show the power estimates under additional alternative 
hypotheses. The GLMM (NB) method appears to be less 
efficient for larger differences in means with sample sizes 
around 50 when ﻿‍τ = 1‍.

Discussion
In this report, we discussed several methods for 
testing differences in paired count outcomes. Unlike 
paired continuous and binary outcomes, analysis of 
paired count outcomes has received less attention in 
the literature. Although the signed-rank test is often 
used, it is not an optimal test. This is because it uses 
ranks, rather than original count outcomes (differ-
ences between paired count outcomes), resulting in 
loss of information and leading to reduced power. 
Thus, unless study data depart severely from the 
normal distribution, the signed-rank test is not used 
for comparing paired continuous outcomes, as the 
paired t-test is a more powerful test. Within the 
current context of count outcomes, the signed-rank 
test again shows subpar power when compared with 
tests that are contrasted based on full data, such as 
the GEE.

The simulation study in this report also shows that para-
metric models for count outcomes such as the GLMM 
with a Poisson for marginal count outcomes are quite 
sensitive to departures from assumed parametric models. 
As expected, semiparametric models like the GEE 
provide better performance. Also, the paired t-test seems 
to perform quite well. This is not really surprising, since 
within the current context the GEE and paired t-test are 
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essentially the same, except that the former relies on the 
asymptotic normal distribution for inference, while the 
latter uses the t distribution for inference. As the sample 
size grows, the t becomes closer to the standard normal 
distribution. Thus, p values and power estimates are only 
slightly different between the two for small to moderate 
samples.

The simulation results also show some small bias  
for all the asymptotic tests, that is, the signed-rank 
test, GLMM and GEE, especially for small sample 
sizes. In most clinical studies, sample sizes are rela-
tively large and this limitation has no significant 
impact. For studies with small samples, such as those 
in bench sciences, bias in type I error rates may be 
high and require attention. One popular statis-
tical approach is to use resampling methods such as 
permutation.3 Within the current context of paired 
count responses, the permutation technique is readily 
implemented. For example, we first decide whether 
to switch the order of the paired outcomes ‍

(
yi1, yi2

)
‍ 

in a random fashion and then apply any of the tests 
considered above, such as the GEE, and compute the 
statistic based on the ‘permuted’ sample. We repeat 
this process M times (such as M=1000) and obtain 
a sampling distribution of the test statistic. If the 
statistic based on the original data falls either below 
the 2.5th or above the 97.5th percentile, we reject the 
null. Under permutation, model assumptions such as 

the Poisson in the GLMM have no impact on infer-
ence and all the tests provide valid inference.
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