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A G protein-coupled receptor (GPCR) functions not only as a monomer or homodimer
but also as a heterodimer with another GPCR. GPCR heterodimerization results in the
modulation of the molecular functions of the GPCR protomer, including ligand binding
affinity, signal transduction, and internalization. There has been a growing body of reports
on heterodimerization of multiple GPCRs expressed in the reproductive system and the
resultant functional modulation, suggesting that GPCR heterodimerization is closely asso-
ciated with reproduction including the secretion of hormones and the growth and matura-
tion of follicles and oocytes. Moreover, studies on heterodimerization among paralogs of
gonadotropin-releasing hormone (GnRH) receptors of a protochordate, Ciona intestinalis,
verified the species-specific regulation of the functions of GPCRs via multiple GnRH recep-
tor pairs. These findings indicate that GPCR heterodimerization is also involved in creating
biodiversity. In this review, we provide basic and current knowledge regarding GPCR het-
erodimers and their functional modulation, and explore the biological significance of GPCR
heterodimerization.
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INTRODUCTION
The development of “omics” technologies and ensuring construc-
tion of a variety of databases provide vast information regarding
primary sequences and functional domains of genes and proteins
in diverse organisms, leading to annotation or prediction of bio-
chemical and pharmacological propensities of novel genes and
proteins. Even in this post-genomic era, several functions of pro-
teins have yet to be fully elucidated or predicted. One of the most
unpredictable and confounding post-translational protein func-
tions is the heterodimerization of G protein-coupled receptors
(GPCRs).

Currently, a wide range of GPCRs have been proved to func-
tion not only as monomers or homodimers but also as het-
erodimers formed after translation. It has been shown that GPCR
heterodimerization alters or fine-tunes ligand binding, signal-
ing, and internalization of GPCR protomers (1–9). The greatest
difficulty in studies on GPCR heterodimers lies in the lack of pro-
cedures for the prediction of either GPCR protomer pairs for het-
erodimerization or the resultant functional alteration of GPCRs.
Consequently, high-throughput analysis of GPCR heterodimers
(e.g., “GPCR heterodimerome”) has not yet been accomplished.
Despite this shortcoming, there have been increasing findings
regarding the biological and pathological significance of GPCR
heterodimerization.

Reproduction is regulated by diverse neuropeptides and hor-
mones, with the receptors belonging to the GPCR family,
e.g., melatonin, kisspeptin, neurokinin B (NKB), gonadotropin-
inhibitory hormone (GnIH), gonadotropin-releasing hormone
(GnRH), luteinizing hormone (LH), follicle-stimulating hormone
(FSH), and prostanoids (10–13). In vertebrates, these hormones

and neuropeptides play crucial roles in the hypothalamus-
pituitary-gonad (HPG) axis (Figure 1). Furthermore, various
species-specific GPCRs for highly conserved cognate hormones
or neuropeptides have been identified (14–18, Kawada et al.,
forthcoming). Collectively, these findings suggest that GPCR het-
erodimerization participates in the fine-tuning and diversification
of reproductive functions. In this article, we provide an overview
of GPCR heterodimerization and discuss the implication of GPCR
heterodimers in reproductive functions and their diversification.

GPCR PROTOMERS AS ALLOSTERIC MODULATORS
It is widely accepted that GPCRs can assume various active
conformations which enable coupling with distinct G pro-
teins and other associated proteins followed by particular sig-
nal transduction cascades (3, 8, 19, 20). Moreover, allosteric
effectors interact with GPCRs at binding sites different from
those for agonists or antagonists and modulate the confor-
mations of GPCRs, leading to alterations in agonist/antagonist
binding affinity or signal transduction (3, 8, 19, 20). Also of
significance is that each of the active conformations responsi-
ble for individual signaling pathways is not interconvertible (3,
8, 19–21). Combined with experimental evidence that ligand
binding and signaling of GPCR protomers are altered via het-
erodimerization, GPCR heterodimerization is believed to induce
protomer-specific modulation (i.e., stabilization or instabiliza-
tion) of active conformations as an endogenous allosteric mod-
ulator. This view is compatible with the fact that a single
GPCR protomer acquires diverse biochemical and/or pharma-
cological properties via heterodimerization with different GPCR
partners.
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Satake et al. GPCR heterodimers in the reproductive system

FIGURE 1 | Major GPCRs for neuropeptides or hormones in the
hypothalamus-pituitary-gonad (HPG) axis.

TYPICAL FUNCTIONAL CONSEQUENCES OF GPCR
HETERODIMERIZATION
Obviously, colocalization of GPCR protomers in a cell is a prereq-
uisite for the formation of the corresponding GPCR heterodimer
in native tissues. However, many early studies demonstrated func-
tional alteration of GPCRs only after co-transfection of cultured
cells with two GPCRs but not at the level of endogenous co-
expression in the same cells in a particular native tissue. Con-
sequently, the biological and physiological significance of such
“in vitro-only” GPCR heterodimers is highly questionable. Con-
sistent with this, the International Union of Basic and Clinical
Pharmacology (IUPHAR) release the paradigm for GPCR het-
erodimer studies in 2007 (2). First, interaction between GPCR
protomers in native tissues should be proved by at least two differ-
ent experimental procedures including co-immunoprecipitation,
fluorescence resonance energy transfer (FRET), or biolumines-
cence resonance energy transfer (BRET). Second, alteration of
biochemical or pharmacological functions of GPCRs should be
observed in native tissues or co-transfected cells. Third, biolog-
ical roles of GPCR heterodimers should be verified using gene-
knockout or gene-silenced procedures. At present, meeting all
of these criteria is too difficult. Thus, IUPHAR proposed that
researchers fulfill at least two of the three criteria. In the following,
we focus on GPCR heterodimers which were detected in native
tissues (Table 1).

G protein-coupled receptor heterodimers are classified into
two groups in light of their functions: obligatory and non-
obligatory GPCR heterodimers. Obligatory GPCR heterodimers
require heterodimerization of GPCR protomers to serve as func-
tional receptors, such as gamma amino butyric acid (GABA) type
B receptor and taste receptors. GABARB1 alone is sequestered
in the endoplasmic reticulum (ER) due to the presence of an
ER retention signal, which is masked by heterodimerization with

Table 1 |Typical functional alteration of GPCRs via heterodimerization.

Heterodimer Effect

GABARB1–GABARB2 Transition from ER to plasma membrane and

function

T1R1–T1R3 Recognition of umami substances

T1R2–T1R3 Recognition of sweet substances

AT1–B2 Increase of IP3 accumulation induced by

angiotensin II or bradykinin

MOR–DOR Reduction in binding affinity of Met-enkephalin

Increase in binding affinity of endomorphin-1 and

Leu-enkephalin

Shift of coupling of Gz to Gi

KOR–DOR Enhancement of signaling induced by synthetic

KOR agonists

OR1–CB1 Suppression of OR-triggered ERK phosphorylation

by a CB1 antagonist

Suppression of CB-triggered ERK phosphorylation

by a OR1 antagonist

MC3R–GHSR Increase in cAMP production induced by

melanocortin

Decrease in ghrelin-induced signaling

D1–D2 Shift of coupling of Gs to Gq/11

MT1–GPR50 Decrease of melatonin-binding,

Gi-coupling/signaling, and internalization

NK1–MOR Alternation of internalization and resensitization

profile

R1–R4 Upregulation of ERK phosphorylation via

Ca2+-dependent PKCα activation and

Ca2+-independent PKCζ activation

R2–R4 Reduction in cAMP production via shift of coupling

of Gs to Gi

EP1–β2AR Dissociation of Gs from bA2R induced by EP1

agonists

GABAR, GABA receptor; T1R, taste receptor; AT1, angiotensin receptor 1; B2

bradykinin receptor 2; MOR, µ-opioid receptor; DOR, δ-opioid receptor; KOR,

κ-opioid receptor; OR1, orexin receptor 1; CB1, cannabinoid receptor 1; MC3R,

melanocortin receptor 3; GHSR, ghrelin receptor; D1, dopamine receptor 1; MT1,

melatonin receptor 1, NK1, tachykinin receptor 1; Ci-GnRHR, Ciona intestinalis

GnRH receptor; EP1, prostaglandin E2 receptor 1.

GABARB2 (22–24). Moreover, the GABARB1 protomer harbors a
ligand-binding site, whereas the GABARB2 protomer merely cou-
ples to G proteins (22–24). Therefore, the GABARB1 -GABARB2

heterodimer serves as an authentic GABA receptor. Taste recep-
tors also exhibit heterodimerization-dependent pharmacological
profiles. The heterodimer between T1R1 and T1R3 is exclusively
responsive to umami taste, while the T1R2–T1R3 heterodimer is
a specific receptor for sweet taste-inducing molecules (25–27).
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In contrast, non-obligatory GPCR heterodimers are com-
posed of the functional GPCR protomers and modulate the
biochemical or pharmacological activities of the protomers
(Table 1). Non-obligatory GPCR heterodimers account for the
major population and exhibit diverse modulatory functions.
In human embryonic kidney (HEK) 293 cells expressing the
angiotensin II receptor (AT1)-bradykinin receptor (B2) het-
erodimer, angiotensin II triggered inositol triphosphate (IP3)
accumulation much more potently and effectively than it did
in the cells expressing AT1 alone, whereas IP3 accumulation by
bradykinin was slightly weaker in cells expressing the AT1–B2 het-
erodimer than in the cells expressing only B2 (28). This enhance-
ment was also detected in vivo, where AT1 and B2 were shown
to form a heterodimer in smooth muscle, omental vessel, and
platelets (28, 29).

The opioid receptor family is composed of three subtypes,
namely, µ-, δ-, and κ-opioid receptors (MOR, DOR, and KOR),
all of which mediate inhibition of cAMP production with differ-
ent ligand-selectivity (30). Co-expression of MOR and DOR in
HEK293 cells resulted in a 10-fold reduction in binding affinity
of a synthetic MOR-selective agonist, DAMGO (31). Moreover,
the MOR-DOR heterodimer differs in rank order of affinities
for endogenous peptide ligands; Met-enkephalin, possessing the
highest affinity for MOR among endogenous opioid peptides,
exhibited twofold lower affinity to the MOR-DOR heterodimer,
while the affinity of endomorphin-1 and Leu-enkephalin to the
heterodimer was increased two to threefold, compared to MOR
(31). Moreover, heterodimerization of MOR and DOR predom-
inantly induced activation of a pertussis toxin-insensitive G pro-
tein, Gz in COS-7 cells, while monomeric or homodimeric MOR
and DOR were coupled to a pertussis toxin-sensitive G pro-
tein, Gi (32). This is consistent with findings that the binding
of ligands to the MOR–DOR heterodimer followed by signal
transduction is resistant to pertussis toxin (32). A KOR-selective
agonist, U69593, exhibited as potent and efficacious activities at
the heterodimer as at KOR, whereas 6′-GNTI was a sixfold more
potent agonist for the KOR–DOR heterodimer than for the KOR
homodimer (33). More recently, N -naphthoyl-β-naltrex-amine
(NNTA), a potent antagonist for MOR, was shown to mani-
fest a prominent agonistic activity at MOR–DOR (34). In the
mouse tail-flick assay, intrathecal NNTA elicited 100-fold greater
antinociception, compared to intracerebroventricular administra-
tion (34). These heterodimerization-based pharmacological alter-
ations are expected to provide crucial clues to understand why
various in vivo pharmacological profiles are inconsistent with
those from in vitro studies using cells expressing each opioid recep-
tor alone and to develop more specific clinical agents for opioid
receptors.

When an orexin receptor OR1 was co-expressed with a cannabi-
noid receptor CB1 in HEK293 cells, addition of a CB1-specific
antagonist, SR-141716A, resulted in the suppression of orexin-
triggered phosphorylation of ERK1/2 (35). Likewise, an OR1-
specific antagonist, SB-674042, attenuated the ERK phosphory-
lation activated by a CB1 agonist, WIN55212-2 (35). These data
verify the regulatory mechanism by which one GPCR protomer
bound to an antagonist modulates the pharmacological profile of
another GPCR protomer through heterodimerization.

Melanocortin receptor 3 (MC3R) and ghrelin receptor (GHSR)
were found to be co-expressed in a number of neurons in the
arcuate nucleus (36, 37). Co-transfection of MC3R and GHSR
into COS-7 cells enhanced melanocortin-induced intracellular
cAMP accumulation, compared with activation of MC3R in the
absence of GHSR, whereas both agonist-independent basal and
ghrelin-induced signaling of GHSR were diminished (36). These
findings reveal mutual opposite signal modulation by each pro-
tomer and suggest that the molecular mechanism underlying a
certain agonist-independent active conformation of a protomer is
also involved in the regulation of the signaling functionalities of its
partner GPCR in a heterodimer. Since MC3R and GHSR play piv-
otal roles in the orexigenic system, the MC3R–GHSR heterodimer
is involved in hypothalamic body weight regulation.

There is increasing evidence for a pathological relevance
of GPCR heterodimer. AT1–B2 heterodimer is highly likely to
be functionally correlated with preeclampsia. The AT1–B2 het-
erodimer was more abundant on platelets of preeclamptic women
than on platelets of normotensive pregnant women (29). Such
increase in the number of heterodimers is due to enhanced expres-
sion of B2, as the expression level of B2 was elevated four to
fivefold on platelets of preeclamptic women compared to platelets
of normotensive pregnant women, whereas expression of AT1 was
unchanged (29). Moreover, mobilization of intracellular calcium
ions induced by angiotensin II was up-regulated 1.7- to 1.9-fold
in platelets of preeclamptic women, compared to normotensive
pregnant women (28, 29).

Heterodimerization between dopamine receptor subtypes, D1
and D2, has shown to be implicated in depression. The D1–D2
heterodimer was detected at higher levels in the post-mortem
striatum of the patients compared to in normal subjects using
co-immunoprecipitation and D1–D2 heteromer-selective anti-
bodies (38). Moreover, dissociation of the D1–D2 heterodimer
by an interfering peptide that disrupts the heteromer resulted in
substantially reduced immobility in the forced swim test with-
out affecting locomotor activity, and decreased escape failures in
learned helplessness tests in rats (38). It should be noted that the
heterodimerization between D1 and D2 leads to a drastic shift of G
protein coupling; D1 and D2 monomer/homomer are coupled to
Gs and Gi, respectively, while Gq/11 is a major G protein-coupled
to the D1–D2 heterodimer (39).

More recently, MOR–DOR heterodimer was found to play piv-
otal roles in the opioid system. An interaction-disrupting peptide
fragment for the MOR–DOR heterodimer enhanced morphine
analgesia and reduced anti-nociceptive tolerance to morphine in
mice (40).

HETERODIMERS AMONG REPRODUCTION – ASSOCIATED
GPCRs
MELATONIN RECEPTOR
Melatonin participates in reproductive functions via upregulation
of the synthesis and secretion of GnIH in the hypothalamus of
mammals and birds (10, 11). Moreover, melatonin receptors were
also shown to be expressed in gonads (41), and melatonin signif-
icantly decreases testosterone secretion from LH/FSH-stimulated
testes of European starlings before breeding (42). Two class A
(rhodopsin-like) GPCRs for melatonin, MT1 and MT2, have been
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identified in mammals (1, 43). A human orphan GPCR, GPR50,
sharing the highest sequence homology with MT1 and MT2, was
shown to form a heterodimer with both receptors in HEK293
cells (1, 43). Moreover, heterodimerization of GPR50 with MT1
resulted in a marked reduction of the ability of MT1 to bind to
ligands and to couple to G proteins, resulting in decreased in Gi
protein-coupled intracellular signaling and β-arrestin – assisted
internalization in HEK293 cells, whereas functions of MT2 were
not affected (1, 43). These data indicate that GPR50 antagonizes
MT1 but not MT2 via heterodimerization. In addition, this is
the first report on the functional role of an orphan receptor as a
protomer of a GPCR heterodimer.

TACHYKININ RECEPTOR
Tachykinins (TKs) are vertebrate and ascidian multifunctional
brain/gut peptides involved in smooth muscle contraction, vasodi-
lation, nociception, inflammation, neurodegeneration, and neu-
roprotection in a neuropeptidergic endocrine, paracrine fash-
ion (44–48). The mammalian TK family consists of four major
peptides: Substance P (SP), Neurokinin A (NKA), NKB, and
Hemokinin-1/Endokinins (HK-1/EKs) (EK is a human homolog
of mouse and rat HK-1). TK receptors belong to the class A
GPCR family. Three subtypes of TK receptors, namely NK1,
NK2, and NK3, have been identified in mammals, and sev-
eral submammalian orthologs have been cloned or suggested
by genomic database search. In the ascidian, Ciona intestinalis,
authentic TK, and its cognate receptor, Ci-TK-I and Ci-TK-R
were identified (49, 50). Recently, there are accumulating reports
on reproductive roles of TKs as well as the expression of TKs
and TK receptors in genital organs of mammals (46, 48, 49,
51–54). In C. intestinalis, Ci-TK-I enhances oocyte growth from
the vitellogenic stage to the post-vitellogenic stage via upreg-
ulation of gene expression and enzymatic activity of several
proteases such as cathepsin D, carboxypeptidase B1, and chy-
motrypsin (55–57). Over the past few years, there has been
increasing evidence that NKB plays a central role in the direct
enhancement of GnRH synthesis and release in the hypothal-
amus of mammals, eventually leading to the recognition of
novel regulatory function in sexual maturation and reproduction
[(58–65)].

Only one tachykinin receptor-relevant heterodimer has thus
far been identified. NK1 and an opioid receptor subtype, MOR,
were shown to co-exist in pain-processing brain regions, includ-
ing trigeminal dorsal horn neurons, and to heterodimerize in
co-transfected HEK293 cells (66). NK1–MOR heterodimeriza-
tion altered their internalization and resensitization profile, while
ligand binding and signaling intensities of the protomers were
not affected. In cells expressing NK1–MOR heterodimer, both
DAMGO and SP induced the recruitment of β-arrestin to
the plasma membrane and internalization of NK1–MOR het-
erodimers with β-arrestin into the same endosomal compartment
(66). Recent studies also verified that other tachykinin recep-
tors, such as NK3, are co-localized with various GPCRs includ-
ing kisspeptin receptors and opioid receptors (59). Consequently,
tachykinin receptors are expected to form heterodimers with a
wide variety of GPCRs, which, in turn, are potentially involved
in the molecular mechanisms underlying novel reproductive
functions.

GnRH RECEPTOR
Gonadotropin-releasing hormones are hypothalamic decapep-
tides that regulate the HPG axis to control reproduction by
releasing gonadotropins, FSH, and LH from the pituitary in ver-
tebrates (Figure 1). The endogenous receptors, GnRHRs, which
belong to the Class A GPCR family, have also been shown to pos-
sess species-specific paralogs forms in vertebrates. Type I GnRHRs,
which completely lack a C-terminal tail region, are restricted to
humans, rodents, and cows (14–16, 67, 68). Type II GnRHRs,
which bear a C-terminal tail, are widely distributed throughout
almost all vertebrates, whereas the type II gnrhr gene is silenced
due to a deletion of functional domains or interruption of full-
length translation by the presence of a stop codon in humans,
chimpanzees, cows, and sheep (14–16, 67, 68). To date, no convinc-
ing evidence for heterodimerization of GnRHRs in native tissues
has been provided.

Gonadotropin-releasing hormones have also been identified in
a wide range of invertebrates that lack a pituitary (Kawada et al.,
forthcoming). To date, seven GnRH peptides (tGnRH-3 to -8 and
Ci-GnRH-X) and four GnRH receptor subtypes (Ci-GnRHR-1 to
-4) have been identified in C. intestinalis (69–71). Molecular phy-
logenetic analysis indicates that Ci-GnRHR2 (R2), R3, and R4 are
Ciona-specific paralogs of R1 generated via gene duplication (70,
72). Only R1 activated IP3 generation followed by intracellular
Ca2+ mobilization in response to tGnRH-6, whereas R2 and R3
exclusively stimulate cAMP production in response to multiple
tGnRHs; tGnRH-6, -7, and -8 exhibited near-equipotent cAMP
production via R2, which was 100-fold more potent than tGnRH-
3, -4, and -5. tGnRH-3 and -5 specifically triggered R3-mediated
cAMP production (70, 73–75). R4 is devoid of binding to any
tGnRHs or of activating any signaling pathways (70). Recently, we
have shown that the orphan paralog, R4, is responsible for the fine-
tuning of the GnRHergic signaling via heterodimerization with R1.
The R1–R4 heterodimer elicited a 10-fold more potent Ca2+ mobi-
lization than R1 monomer/homodimer in a tGnRH-6-selective
manner, while cAMP production by R1 was not modulated via
heterodimerization with R4 (73). The R1–R4 heterodimer poten-
tiated translocation of both Ca2+-dependent PKCα by tGnRH-6
and Ca2+-independent PKCζ by tGnRH-5 and -6, eventually lead-
ing to upregulation of ERK phosphorylation, compared with R1
alone (73). These results provide evidence that the species-specific
GnRHR orphan paralog, R4, serves as an endogenous modula-
tor for the fine-tuning of the activation of PKC subtype-selective
signal transduction via heterodimerization with R1. R4 was also
shown to heterodimerize with R2 specifically in test cells of vitel-
logenic oocytes (74). Of particular interest is that the R2–R4
heterodimer in HEK293 cells decreased cAMP production in a
non-ligand selective manner via a shift from activation of Gs pro-
tein to Gi protein by R2, compared with R2 monomer/homodimer
(74). Considering that R1–R4 elicited a 10-fold more potent Ca2+

mobilization than R1 monomer/homodimer in a ligand selective
manner but did not affect cAMP production, these results indi-
cate that R4 regulates differential GnRH signaling cascades via
heterodimerization with R1 and R2 as an endogenous allosteric
modulator. Collectively, these studies suggest that heterodimer-
ization among GnRHR paralogs, including the species-specific
orphan receptor subtype, is involved in rigorous and diversified
GnRHergic signaling in a protochordate lacking an HPG axis.
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LH RECEPTOR
Luteinizing hormone is a central pituitary peptide hormone
responsible for gonadal maturation (Figure 1). A single GPCR for
LH has been identified in mammals. Although no LH receptor-
containing GPCR heterodimer has been detected, studies on LH
homodimers suggests that LH can also serve as a multifunc-
tional protomer in various GPCR heterodimers. Co-expression
of a ligand-binding-deficient LH receptor mutant and a signaling-
deficient LH receptor mutant resulted in the restoration of normal
gonadal and genital function in transgenic mice, indicating that
LH receptor functions as a dimer in vivo (76).

PROSTAGLANDIN RECEPTOR
Prostanoids consist of prostaglandin (PG) D, PGE2, PGF2α, PGI2,
and thromboxane A2 and are responsible for a variety of actions in
various tissues including the relaxation and contraction of various
types of smooth muscles, pain transmission, fever generation, and
sleep induction (77). Numerous studies have also proved that ovu-
lation, corpus luteum development and regression are mediated
by PGs (78–80). To date, eight GPCRs for PGs have been identified
in mammals. Heterodimerization of a PGE2 receptor, EP1, with
β2 adrenergic receptor (β2AR) caused considerable reduction in
cAMP production by β2AR via enhancement of the dissociation
of Gs protein from β2AR in the presence of endogenous or syn-
thetic EP1 agonists in primary cultures of airway smooth muscle
or COS-7 cells (81). Of importance in the functional regulation by
the GPCR heterodimer is that EP1 have a direct inhibitory effects
on bronchodilatory signaling but rather modulates the function
of the β2AR. These findings strongly suggest that the heterodimer-
ization of β2AR with EP1 causes the β2-agonist resistance found
in asthma (81).

EFFECTS OF GPCR HETERODIMERIZATION ON
DIVERSIFICATION OF ANIMAL SPECIES AND BIOLOGICAL
FUNCTION
G protein-coupled receptors are largely categorized into two
groups. The first group consists of GPCRs conserved as authen-
tic “homologs” in various species, and the second one includes
species-specific GPCRs. The latter is further classified into GPCRs
for species-specific ligands and subtypes of GPCRs for highly
conserved ligands in various species. For instance, C. intestinalis
GnRH receptors consists of four GPCRs as stated above: R1, R2,
R3, and R4. Phylogenetic tree and biochemical analyses proved
that R1 is structurally and functionally homologous to vertebrate
GnRH receptors, whereas R2, R3, and R4 are C. intestinalis-specific
paralogs that occurred via gene duplication in the Ciona evolu-
tionary lineage (70, Kawada et al., forthcoming). Likewise, species-
specific GnRHR-III has been identified in teleost species (14, 15),
and lamprey has also three GnRHRs which are genetically inde-
pendent of teleost GnRHR subtypes (16). Such species-specific
GPCR paralogs are thought to determine the functional diversity
and physiological regulatory systems, because GPCR paralogs can
form species-specific GPCR heterodimers, which, if expressed in
the same cells, control the unique expansion and fine-tuning of
GPCR-mediated signaling pathways (Figure 2), as shown for C.
intestinalis GnRHRs (73, 74). In other words, heterodimerization
involving species-specific GPCRs is highly likely to contribute to
the evolution and diversification of organisms to a large extent.

FIGURE 2 | Hypothetical scheme of the emergence of functional
diversity via species-specific GPCR heterodimerization. All the species
conserve the authentic orthologous GPCR (red), whereas species B and C
possess one or two additional species-specific paralogs, respectively (blue,
yellow, and green). While no heterodimer involving the orthologous GPCR is
formed, species-specific GPCR heterodimers occur in species B and C.
such species-specific heterodimers are highly likely to be closely related
functional diversity of a certain GPCR family, ultimately leading to the
evolution and diversification of organisms to a large extent.

CONCLUSION AND PERSPECTIVES
To date, GPCR heterodimerization has attracted keen attentions
in light of biochemical and pharmacological features of GPCRs
and the development of drugs with high selectivity, given that
GPCR heterodimerization has been explored almost exclusively
in mammals, except for C. intestinalis GnRHRs. Nevertheless,
recent studies in various fields suggest that GPCR heterodimer-
ization plays crucial roles in the regulation of the HPG axis and
the evolution and diversification of reproductive functions. In
this regard, of special interest is whether kisspeptin receptors
or GnIH receptors heterodimerize with any GPCRs. Moreover,
heterodimerization involving species-specific GPCR paralogs is
expected to be responsible for the emergence of unique physio-
logical functions in the respective organisms. Accordingly, com-
bined with the fact that GPCRs form corresponding heterodimers
after translation, investigation of GPCR heterodimerization in
non-mammalian organisms will provide novel insight into the
generation of biodiversity directed by a post-translational protein
interaction.

In keeping with this issue, of particular interest is the clar-
ification of the in vivo functional correlation between GPCR
heterodimerization and biological events. Real-time imaging of
GPCR heterodimerization could enable the visualization of bio-
logical functions of GPCR heterodimers of interest. Although this
experimental strategy is unlikely to be applied to mammals, organ-
isms equipped with transparent or semi-transparent skins, includ-
ing ascidian, medaka, or zebrafish, are useful for live-imaging of
GPCR heterodimers (50). Such studies are currently in progress in
our laboratory.

ACKNOWLEDGMENTS
This study was in part financially supported by JSPS (to Honoo
Satake, Masato Aoyama, and Tsuyoshi Kawada).

www.frontiersin.org August 2013 | Volume 4 | Article 100 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Satake et al. GPCR heterodimers in the reproductive system

REFERENCES
1. Levoye A, Dam J, Ayoub MA, Guil-

laume JL, Couturier C, Delagrange
P, et al. The orphan GPR50 receptor
specifically inhibits MT1 melatonin
receptor function through het-
erodimerization. EMBO J (2006)
25:3012–23. doi:10.1038/sj.emboj.
7601193

2. Pin JP, Neubig R, Bouvier M, Devi
L, Filizola M, Javitch JA, et al. Inter-
national Union of Basic and Clin-
ical Pharmacology. LXVII. Recom-
mendations for the recognition and
nomenclature of G protein-coupled
receptor heteromultimers. Pharma-
col Rev (2007) 59:5–13. doi:10.1124/
pr.59.1.5

3. Satake H, Sakai T. Recent advances
and perceptions in studies of het-
erodimerization between G protein-
coupled receptors. Protein Pept
Lett (2008) 15:300–8. doi:10.2174/
092986608783744207

4. Milligan G. G protein-coupled
receptor hetero-dimerization: con-
tribution to pharmacology and
function. Br J Pharmacol (2009)
158:5–14. doi:10.1111/j.1476-5381.
2009.00169.x

5. Del Burgo LS, Milligan G. Het-
erodimerisation of G protein-
coupled receptors: implica-
tions for drug design and lig-
and screening. Expert Opin
Drug Discov (2010) 5:461–74.
doi:10.1517/17460441003720467

6. Kamal M, Jockers R. Biological sig-
nificance of GPCR heteromeriza-
tion in the neuro-endocrine system.
Front Endocrinol (Lausanne) (2011)
2:2. doi:10.3389/fendo.2011.00002

7. Tadagaki K, Jockers R, Kamal M.
History and biological significance
of GPCR heteromerization in the
neuroendocrine system. Neuroen-
docrinology (2012) 95:223–31. doi:
10.1159/000330000

8. Goupil E, Laporte SA, Hébert
TE. Functional selectivity in
GPCR signaling: understanding
the full spectrum of recep-
tor conformations. Mini Rev
Med Chem (2012) 12:817–30.
doi:10.2174/138955712800959143

9. Borroto-Escuela DO, Romero-
Fernandez W, Garriga P, Ciruela
F, Narvaez M, Tarakanov AO,
et al. G protein-coupled recep-
tor heterodimerization in the
brain. Methods Enzymol (2013)
521:281–94. doi:10.1016/B978-0-
12-391862-8.00015-6

10. Tsutsui K, Ubuka T, Bentley
GE, Kriegsfeld LJ. Gonadotropin-
inhibitory hormone (GnIH): dis-
covery, progress and prospect.
Gen Comp Endocrinol (2012) 177:

305–14. doi:10.1016/j.ygcen.2012.
02.013

11. Ubuka T, Son YL, Tobari Y, Tsutsui
K. Gonadotropin-inhibitory hor-
mone action in the brain and
pituitary. Front Endocrinol (Lau-
sanne) (2012) 3:148. doi:10.3389/
fendo.2012.00148

12. Christensen A, Bentley GE, Cabr-
era R, Ortega HH, Perfito N, Wu
TJ, et al. Hormonal regulation of
female reproduction. Horm Metab
Res (2012) 44:587–91. doi:10.1055/
s-0032-1306301

13. Franceschini I, Desroziers E. Devel-
opment and aging of the kisspeptin-
GPR54 system in the mammalian
brain: what are the impacts on
female reproductive function? Front
Endocrinol (Lausanne) (2013) 4:22.
doi:10.3389/fendo.2013.00022

14. Okubo K, Nagahama Y. Struc-
tural and functional evolution of
gonadotropin-releasing hormone
in vertebrates. Acta Physiol (Oxf)
(2008) 193:3–15. doi:10.1111/j.
1748-1716.2008.01832.x

15. Lindemans M, Janssen T, Beets
I, Temmerman L, Meelkop E,
Schoofs L. Gonadotropin-releasing
hormone and adipokinetic hor-
mone signaling systems share a
common evolutionary origin. Front
Endocrinol (Lausanne) (2011) 2:16.
doi:10.3389/fendo.2011.00016

16. Sower SA, Decatur WA, Joseph
NT, Freamat M. Evolution of
vertebrate GnRH receptors from
the perspective of a basal verte-
brate. Front Endocrinol (Lausanne)
(2012) 3:140. doi:10.3389/fendo.
2012.00140

17. Kanda S, Oka Y. Structure, synthesis,
and phylogeny of kisspeptin and its
receptor. Adv Exp Med Biol (2013)
784:9–26. doi:10.1007/978-1-4614-
6199-9_2

18. Gopurappilly R, Ogawa S, Parhar IS.
Functional significance of GnRH
and kisspeptin, and their cognate
receptors in teleost reproduc-
tion. Front Endocrinol (Lausanne)
(2013) 4:24. doi:10.3389/fendo.
2013.00024

19. Fanelli F, De Benedetti PG. Update
1 of: computational modeling
approaches to structure-function
analysis of G protein-coupled recep-
tors. Chem Rev (2011) 111:R438–
535. doi:10.1021/cr100437t

20. Fuxe K, Borroto-Escuela DO,
Marcellino D, Romero-Fernandez
W, Frankowska M, Guidolin
D, et al. GPCR heteromers
and their allosteric receptor-
receptor interactions. Curr
Med Chem (2012) 19:356–63.
doi:10.2174/092986712803414259

21. Milligan G, Smith NJ.
Allosteric modulation of
heterodimeric G-protein-coupled
receptors. Trends Pharma-
col Sci (2007) 12:615–20.
doi:10.1016/j.tips.2007.11.001

22. Kaupmann K, Malitschek B, Schuler
V, Heid J, Froestl W, Beck P, et al.
GABA(B)-receptor subtypes assem-
ble into functional heteromeric
complexes. Nature (1998) 396:683–
7. doi:10.1038/25360

23. Duthey B, Caudron S, Perroy J, Bet-
tler B, Fagni L, Pin JP, et al. A sin-
gle subunit (GB2) is required for
G-protein activation by the het-
erodimeric GABA(B) receptor. J
Biol Chem (2002) 277:3236–41. doi:
10.1074/jbc.M108900200

24. Pin JP, Kniazeff J, Liu J, Binet
V, Goudet C, Rondard P, et al.
Allosteric functioning of dimeric
class C G-protein-coupled recep-
tors. FEBS J (2005) 272:2947–
55. doi:10.1111/j.1742-4658.2005.
04728.x

25. Nelson G, Hoon MA, Chan-
drashekar J, ZhangY, Ryba NJ, Zuker
CS. Mammalian sweet taste recep-
tors. Cell (2001) 106:381–90. doi:10.
1016/S0092-8674(01)00451-2

26. Nelson G, Chandrashekar J, Hoon
MA, Feng L, Zhao G, Ryba NJ, et
al. An amino-acid taste receptor.
Nature (2002) 416:199–202. doi:10.
1038/nature726

27. Xu H, Staszewski L, Tang H, Adler
E, Zoller M, Li X. Human receptors
for sweet and umami taste. Proc Natl
Acad Sci USA (2004) 101:14258–63.
doi:10.1073/pnas.0404384101

28. AbdAlla S, Lother H, Quitterer U.
AT1-receptor heterodimers show
enhanced G-protein activation
and altered receptor sequestra-
tion. Nature (2000) 407:94–8.
doi:10.1038/35024095

29. AbdAlla S, Lother H, el Massiery
A, Quitterer U. Increased
AT(1) receptor heterodimers
in preeclampsia mediate enhanced
angiotensin II responsiveness.
Nat Med (2001) 7:1003–9.
doi:10.1038/nm0901-1003

30. Kieffer BL. Opioids: first lessons
from knockout mice. Trends Phar-
macol Sci (1999) 20:19–26. doi:10.
1016/S0165-6147(98)01279-6

31. Gomes I, Jordan BA, Gupta A, Tra-
paidze N, Nagy V, Devi LA. Het-
erodimerization of mu and delta
opioid receptors: a role in opi-
ate synergy. J Neurosci (2000)
20:RC110.

32. Fan T, Varghese G, Nguyen T,
Tse R, O’Dowd BF, George SR. A
role for the distal carboxyl tails in
generating the novel pharmacology

and G protein activation profile
of mu and delta opioid recep-
tor hetero-oligomers. J Biol Chem
(2005) 280:38478–88. doi:10.1074/
jbc.M505644200

33. Waldhoer M, Fong J, Jones RM,
Lunzer MM, Sharma SK, Koste-
nis E, et al. A heterodimer-
selective agonist shows in vivo rel-
evance of G protein-coupled recep-
tor dimers. Proc Natl Acad Sci
USA (2005) 102:9050–5. doi:10.
1073/pnas.0501112102

34. Yekkirala AS, Lunzer MM, McCurdy
CR, Powers MD, Kalyuzhny AE,
Roerig SC, et al. N-naphthoyl-beta-
naltrexamine (NNTA), a highly
selective and potent activator of
µ/kappa-opioid heteromers. Proc
Natl Acad Sci USA (2011) 108:5098–
103. doi:10.1073/pnas.1016277108

35. Ellis J, Pediani JD, Canals M,
Milasta S, Milligan G. Orexin-
1receptor-cannabinoid CB1
receptor heterodimerization
results in both ligand-dependent
and -independent coordinated
alterations of receptor local-
ization and function. J Biol
Chem (2006) 281:38812–24.
doi:10.1074/jbc.M602494200

36. Rediger A, Piechowski CL, Yi CX,
Tarnow P, Strotmann R, Grüters
A, et al. Mutually opposite sig-
nal modulation by hypothalamic
heterodimerization of ghrelin and
melanocortin-3 receptors. J Biol
Chem (2011) 286:39623–31. doi:10.
1074/jbc.M111.287607

37. Rediger A, Piechowski CL, Habeg-
ger K, Grüters A, Krude H,
Tschöp MH, et al. MC4R dimeriza-
tion in the paraventricular nucleus
and GHSR/MC3R heterodimeriza-
tion in the arcuate nucleus: is there
relevance for body weight regu-
lation? Neuroendocrinology (2012)
9:277–88. doi:10.1159/000334903

38. Pei L, Li S, Wang M, Diwan M, Anis-
man H, Fletcher PJ, et al. Uncou-
pling the dopamine D1-D2 receptor
complex exerts antidepressant-like
effects. Nat Med (2010) 16:1393–5.
doi:10.1038/nm.2263

39. Rashid AJ, So CH, Kong MM,
Furtak T, El-Ghundi M, Cheng
R, et al. D1-D2 dopamine recep-
tor heterooligomers with unique
pharmacology are coupled to
rapid activation of Gq/11 in the
striatum. Proc Natl Acad Sci USA
(2007) 104:654–9. doi:10.1073/
pnas.0604049104

40. He SQ, Zhang ZN, Guan JS, Liu
HR, Zhao B, Wang HB, et al. Facil-
itation of µ-opioid receptor activ-
ity by preventing δ-opioid receptor-
mediated codegradation. Neuron

Frontiers in Endocrinology | Experimental Endocrinology August 2013 | Volume 4 | Article 100 | 6

http://dx.doi.org/10.1038/sj.emboj.7601193
http://dx.doi.org/10.1038/sj.emboj.7601193
http://dx.doi.org/10.1124/pr.59.1.5
http://dx.doi.org/10.1124/pr.59.1.5
http://dx.doi.org/10.2174/092986608783744207
http://dx.doi.org/10.2174/092986608783744207
http://dx.doi.org/10.1111/j.1476-5381.2009.00169.x
http://dx.doi.org/10.1111/j.1476-5381.2009.00169.x
http://dx.doi.org/10.1517/17460441003720467
http://dx.doi.org/10.3389/fendo.2011.00002
http://dx.doi.org/10.1159/000330000
http://dx.doi.org/10.2174/138955712800959143
http://dx.doi.org/10.1016/B978-0-12-391862-8.00015-6
http://dx.doi.org/10.1016/B978-0-12-391862-8.00015-6
http://dx.doi.org/10.1016/j.ygcen.2012.02.013
http://dx.doi.org/10.1016/j.ygcen.2012.02.013
http://dx.doi.org/10.3389/fendo.2012.00148
http://dx.doi.org/10.3389/fendo.2012.00148
http://dx.doi.org/10.1055/s-0032-1306301
http://dx.doi.org/10.1055/s-0032-1306301
http://dx.doi.org/10.3389/fendo.2013.00022
http://dx.doi.org/10.1111/j.1748-1716.2008.01832.x
http://dx.doi.org/10.1111/j.1748-1716.2008.01832.x
http://dx.doi.org/10.3389/fendo.2011.00016
http://dx.doi.org/10.3389/fendo.2012.00140
http://dx.doi.org/10.3389/fendo.2012.00140
http://dx.doi.org/10.1007/978-1-4614-6199-9_2
http://dx.doi.org/10.1007/978-1-4614-6199-9_2
http://dx.doi.org/10.3389/fendo.2013.00024
http://dx.doi.org/10.3389/fendo.2013.00024
http://dx.doi.org/10.1021/cr100437t
http://dx.doi.org/10.2174/092986712803414259
http://dx.doi.org/10.1016/j.tips.2007.11.001
http://dx.doi.org/10.1038/25360
http://dx.doi.org/10.1074/jbc.M108900200
http://dx.doi.org/10.1111/j.1742-4658.2005.04728.x
http://dx.doi.org/10.1111/j.1742-4658.2005.04728.x
http://dx.doi.org/10.1016/S0092-8674(01)00451-2
http://dx.doi.org/10.1016/S0092-8674(01)00451-2
http://dx.doi.org/10.1038/nature726
http://dx.doi.org/10.1038/nature726
http://dx.doi.org/10.1073/pnas.0404384101
http://dx.doi.org/10.1038/35024095
http://dx.doi.org/10.1038/nm0901-1003
http://dx.doi.org/10.1016/S0165-6147(98)01279-6
http://dx.doi.org/10.1016/S0165-6147(98)01279-6
http://dx.doi.org/10.1074/jbc.M505644200
http://dx.doi.org/10.1074/jbc.M505644200
http://dx.doi.org/10.1073/pnas.0501112102
http://dx.doi.org/10.1073/pnas.0501112102
http://dx.doi.org/10.1073/pnas.1016277108
http://dx.doi.org/10.1074/jbc.M602494200
http://dx.doi.org/10.1074/jbc.M111.287607
http://dx.doi.org/10.1074/jbc.M111.287607
http://dx.doi.org/10.1159/000334903
http://dx.doi.org/10.1038/nm.2263
http://dx.doi.org/10.1073/pnas.0604049104
http://dx.doi.org/10.1073/pnas.0604049104
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Satake et al. GPCR heterodimers in the reproductive system

(2011) 69:120–31. doi:10.1016/j.
neuron.2010.12.001

41. McGuire NL, Bentley GE. Neu-
ropeptides in the gonads: from evo-
lution to pharmacology. Front Phar-
macol (2010) 1:114. doi:10.3389/
fphar.2010.00114

42. McGuire NL, Kangas K, Bentley GE.
Effects of melatonin on peripheral
reproductive function: regulation of
testicular GnIH and testosterone.
Endocrinology (2011) 152:3461–70.
doi:10.1210/en.2011-1053

43. Levoye A, Dam J, Ayoub MA,
Guillaume JL, Jockers R. Do
orphan G-protein-coupled recep-
tors have ligand-independent
functions? New insights
from receptor heterodimers.
EMBO Rep (2006) 7:1094–8.
doi:10.1038/sj.embor.7400838

44. Severini C, Improta G, Falconieri-
Erspamer G, Salvadori S, Erspamer
V. The tachykinin peptide family.
Pharmacol Rev (2002) 54:285–322.

45. Almeida TA, Rojo J, Nieto PM,
Pinto FM, Hernandez M, Mar-
tin JD, et al. Tachykinins and
tachykinin receptors: structure and
activity relationships. Curr Med
Chem (2005) 11:2045–81. doi:10.
2174/0929867043364748

46. Satake H, Kawada T. Overview
of the primary structure, tissue-
distribution, and functions of
tachykinins and their recep-
tors. Curr Drug Targets (2006)
7:963–74. doi:10.2174/
138945006778019273

47. Page NM. Characterization of
the gene structures, precursor
processing and pharmacology of
the endokinin peptides. Vascul
Pharmacol (2006) 45:200–8.
doi:10.1016/j.vph.2005.08.028

48. Satake H, Aoyama M, Sekiguchi
T, Kawada T. Insight into mole-
cular and functional diversity of
tachykinins and their receptors. Pro-
tein Pept Lett (2013) 20:615–27. doi:
10.2174/0929866511320060002

49. Satake H, Ogasawara M, Kawada T,
Masuda K, Aoyama M, Minakata
H, et al. Tachykinin and tachykinin
receptor of an ascidian, Ciona
intestinalis: evolutionary origin of
the vertebrate tachykinin family. J
Biol Chem (2004) 279:53798–805.
doi:10.1074/jbc.M408161200

50. Satake H, Kawada T, Aoyama M,
Sekiguchi T, Sakai T. Ascidians: new
model orgnanisms for reproduc-
tive endocrinology. In: Aimaretti
G, Marzullo P, Prodam F edi-
tors. Update on Mechanisms of Hor-
mone Action – Focus on Metabolism,
Growth and Reproductions. Vienna:
IN-TECH (2011). p. 313–36.

51. Pennefather JN, Patak E, Ziccone
S, Lilley A, Pinto FM, Page NM,
et al. Regulation of the stimulant
actions of neurokinin a and human
hemokinin-1 on the human uterus:
a comparison with histamine. Biol
Reprod (2006) 75:334–41. doi:10.
1095/biolreprod.106.051508

52. Ravina CG, Seda M, Pinto FM,
Orea A, Fernandez-Sanchez M,
Pintado CO, et al. A role for
tachykinins in the regulation of
human sperm motility. Hum Reprod
(2007) 22:1617–25. doi:10.1093/
humrep/dem069

53. Patak E, Pennefather JN, Gozali M,
Candenas ML, Kerr K, Exintaris B,
et al. Functional characterisation of
hemokinin-1 in mouse uterus. Eur J
Pharmacol (2008) 601:148–53. doi:
10.1016/j.ejphar.2008.10.036

54. Pinto FM, Ravina CG, Subi-
ran N, Cejudo-Román A,
Fernández-Sánchez M, Irazusta
J, et al. Autocrine regula-
tion of human sperm motil-
ity by tachykinins. Reprod
Biol Endocrinol (2010) 8:104.
doi:10.1186/1477-7827-8-104

55. Aoyama M, Kawada T, Fujie M,
Hotta K, Sakai T, Sekiguchi T, et al. A
novel biological role of tachykinins
as an up-regulator of oocyte growth:
identification of an evolutionary
origin of tachykininergic functions
in the ovary of the ascidian, Ciona
intestinalis. Endocrinology (2008)
149:4346–56. doi:10.1210/en.2008-
0323

56. Aoyama M, Kawada T, Satake H.
Localization and enzymatic activity
profiles of the proteases responsi-
ble for tachykinin-directed oocyte
growth in the protochordate, Ciona
intestinalis. Peptides (2012) 34:186–
92. doi:10.1016/j.peptides.2011.07.
019

57. Kawada T, Ogasawara M, Sekiguchi
T, Aoyama M, Hotta K, Oka
K, et al. Peptidomic analysis of
the central nervous system of the
protochordate, Ciona intestinalis:
homologs and prototypes of verte-
brate peptides and novel peptides.
Endocrinology (2011) 152:2416–27.
doi:10.1210/en.2010-1348

58. Topaloglu AK, Reimann F, Guclu
M, Yalin AS, Kotan LD, Porter KM,
et al. TAC3 and TACR3 muta-
tions in familial hypogonadotropic
hypogonadism reveal a key role for
Neurokinin B in the central control
of reproduction. Nat Genet (2009)
41:354–8. doi:10.1038/ng.306

59. Rance NE, Krajewski SJ, Smith
MA, Cholanian M, Dacks PA. Neu-
rokinin B and the hypothalamic reg-
ulation of reproduction. Brain Res

(2010) 1364:116–28. doi:10.1016/j.
brainres.2010.08.059

60. Lasaga M, Debeljuk L. Tachykinins
and the hypothalamo-pituitary-
gonadal axis: an update. Peptides
(2011) 32:1972–8. doi:10.1016/j.
peptides.2011.07.009

61. Molnár CS, Vida B, Sipos MT, Ciofi
P, Borsay BÁ, Rácz K, et al. Mor-
phological evidence for enhanced
kisspeptin and neurokinin B sig-
naling in the infundibular nucleus
of the aging man. Endocrinology
(2012) 153:5428–39. doi:10.1210/
en.2012-1739

62. Grachev P, Li XF, Kinsey-Jones JS, di
Domenico AL, Millar RP, Lightman
SL, et al. Suppression of the GnRH
pulse generator by neurokinin
B involves a κ-opioid receptor-
dependent mechanism. Endocrinol-
ogy (2012) 153:4894–904. doi:10.
1210/en.2012-1574

63. Hrabovszky E, Sipos MT, Molnár
CS, Ciofi P, Borsay BÁ, Gergely
P, et al. Low degree of over-
lap between kisspeptin, neurokinin
B, and dynorphin immunoreactivi-
ties in the infundibular nucleus of
young male human subjects chal-
lenges the KNDy neuron concept.
Endocrinology (2012) 153:4978–89.
doi:10.1210/en.2012-1545

64. Gill JC, Navarro VM, Kwong C,
Noel SD, Martin C, Xu S, et
al. Increased neurokinin B (Tac2)
expression in the mouse arcuate
nucleus is an early marker of puber-
tal onset with differential sensitiv-
ity to sex steroid-negative feedback
than Kiss1. Endocrinology (2012)
153:4883–93. doi:10.1210/en.2012-
1529

65. Ruiz-Pino F, Navarro VM, Bentsen
AH, Garcia-Galiano D, Sanchez-
Garrido MA, Ciofi P, et al. Neu-
rokinin B and the control of
the gonadotropic axis in the
rat: developmental changes, sex-
ual dimorphism, and regulation
by gonadal steroids. Endocrinology
(2012) 153:4818–29. doi:10.1210/
en.2012-1287

66. Pfeiffer M, Kirscht S, Stumm
R, Koch T, Wu D, Laugsch M,
et al. Heterodimerization of sub-
stance P and mu-opioid recep-
tors regulates receptor trafficking
and resensitization. J Biol Chem
(2003) 278:51630–7. doi:10.1074/
jbc.M307095200

67. Kah O, Lethimonier C, Somoza
G, Guilgur LG, Vaillant C, Lareyre
JJ. GnRH and GnRH receptors
in metazoa: a historical, compara-
tive, and evolutive perspective. Gen
Comp Endocrinol (2007) 153:346–
64. doi:10.1016/j.ygcen.2007.01.030

68. Millar RP, Pawson AJ, Morgan
K, Rissman EF, Lu ZL. Diversity
of actions of GnRHs mediated
by ligand-induced selective signal-
ing. Front Neuroendocrinol (2008)
29:17–35. doi:10.1016/j.yfrne.2007.
06.002

69. Adams BA, Tello J, Erchegyi J,Warby
C, Hong DJ, Akinsanya KO, et al. Six
novel gonadotropin-releasing hor-
mones are encoded as triplets on
each of two genes in the protochor-
date, Ciona intestinalis. Endocrinol-
ogy (2003) 144:1907–19. doi:10.
1210/en.2002-0216

70. Tello JA, River J, Sherwood NM.
Tunicate gonadotropin-releasing
hormone (GnRH) peptides selec-
tively activate Ciona intestinalis
GnRH receptors and the green
monkey type II GnRH receptor.
Endocrinology (2005) 146:4061–73.
doi:10.1210/en.2004-1558

71. Kawada T, Aoyama M, Okada
I, Sakai T, Sekiguchi T, Oga-
sawara M, et al. A novel inhibitory
gonadotropin-releasing hormone-
related neuropeptide in the ascidian,
Ciona intestinalis. Peptides (2009)
30:2200–5. doi:10.1016/j.peptides.
2009.08.014

72. Kusakabe T, Mishima S, Shimada
I, Kitajima Y, Tsuda M. Structure,
expression, and cluster organization
of genes encoding gonadotropin-
releasing hormone receptors found
in the neural complex of the
ascidian Ciona intestinalis. Gene
(2003) 322:77–84. doi:10.1016/j.
gene.2003.08.013

73. Sakai T, Aoyama M, Kusakabe T,
Tsuda M, Satake H. Functional
diversity of signaling pathways
through G protein-coupled recep-
tor heterodimerization with a
species-specific orphan receptor
subtype. Mol Biol Evol (2010) 27:
1097–106. doi:10.1093/molbev/
msp319

74. Sakai T, Aoyama M, Kawada T,
Kusakabe T, Tsuda M, Satake H. Evi-
dence for differential regulation of
GnRH signaling via heterodimer-
ization among GnRH receptor par-
alogs in the protochordate, Ciona
intestinalis. Endocrinology (2012)
153:1841–9. doi:10.1210/en.2011-
1668

75. Kusakabe TG, Sakai T, Aoyama M,
Kitajima Y, Miyamoto Y, Takigawa T,
et al. A conserved non-reproductive
GnRH system in chordates. PLoS
ONE (2012) 7:e41955. doi:10.1371/
journal.pone.0041955

76. Rivero-Muller A, Chou YY, Ji I,
Lajic S, Hanyaloglu AC, Jonas K, et
al. Rescue of defective G protein-
coupled receptor function in vivo

www.frontiersin.org August 2013 | Volume 4 | Article 100 | 7

http://dx.doi.org/10.1016/j.neuron.2010.12.001
http://dx.doi.org/10.1016/j.neuron.2010.12.001
http://dx.doi.org/10.3389/fphar.2010.00114
http://dx.doi.org/10.3389/fphar.2010.00114
http://dx.doi.org/10.1210/en.2011-1053
http://dx.doi.org/10.1038/sj.embor.7400838
http://dx.doi.org/10.2174/0929867043364748
http://dx.doi.org/10.2174/0929867043364748
http://dx.doi.org/10.2174/138945006778019273
http://dx.doi.org/10.2174/138945006778019273
http://dx.doi.org/10.1016/j.vph.2005.08.028
http://dx.doi.org/10.2174/0929866511320060002
http://dx.doi.org/10.1074/jbc.M408161200
http://dx.doi.org/10.1095/biolreprod.106.051508
http://dx.doi.org/10.1095/biolreprod.106.051508
http://dx.doi.org/10.1093/humrep/dem069
http://dx.doi.org/10.1093/humrep/dem069
http://dx.doi.org/10.1016/j.ejphar.2008.10.036
http://dx.doi.org/10.1186/1477-7827-8-104
http://dx.doi.org/10.1210/en.2008-0323
http://dx.doi.org/10.1210/en.2008-0323
http://dx.doi.org/10.1016/j.peptides.2011.07.019
http://dx.doi.org/10.1016/j.peptides.2011.07.019
http://dx.doi.org/10.1210/en.2010-1348
http://dx.doi.org/10.1038/ng.306
http://dx.doi.org/10.1016/j.brainres.2010.08.059
http://dx.doi.org/10.1016/j.brainres.2010.08.059
http://dx.doi.org/10.1016/j.peptides.2011.07.009
http://dx.doi.org/10.1016/j.peptides.2011.07.009
http://dx.doi.org/10.1210/en.2012-1739
http://dx.doi.org/10.1210/en.2012-1739
http://dx.doi.org/10.1210/en.2012-1574
http://dx.doi.org/10.1210/en.2012-1574
http://dx.doi.org/10.1210/en.2012-1545
http://dx.doi.org/10.1210/en.2012-1529
http://dx.doi.org/10.1210/en.2012-1529
http://dx.doi.org/10.1210/en.2012-1287
http://dx.doi.org/10.1210/en.2012-1287
http://dx.doi.org/10.1074/jbc.M307095200
http://dx.doi.org/10.1074/jbc.M307095200
http://dx.doi.org/10.1016/j.ygcen.2007.01.030
http://dx.doi.org/10.1016/j.yfrne.2007.06.002
http://dx.doi.org/10.1016/j.yfrne.2007.06.002
http://dx.doi.org/10.1210/en.2002-0216
http://dx.doi.org/10.1210/en.2002-0216
http://dx.doi.org/10.1210/en.2004-1558
http://dx.doi.org/10.1016/j.peptides.2009.08.014
http://dx.doi.org/10.1016/j.peptides.2009.08.014
http://dx.doi.org/10.1016/j.gene.2003.08.013
http://dx.doi.org/10.1016/j.gene.2003.08.013
http://dx.doi.org/10.1093/molbev/msp319
http://dx.doi.org/10.1093/molbev/msp319
http://dx.doi.org/10.1210/en.2011-1668
http://dx.doi.org/10.1210/en.2011-1668
http://dx.doi.org/10.1371/journal.pone.0041955
http://dx.doi.org/10.1371/journal.pone.0041955
http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Satake et al. GPCR heterodimers in the reproductive system

by intermolecular cooperation. Proc
Natl Acad Sci USA (2010) 107:2319–
24. doi:10.1073/pnas.0906695106

77. Narumiya S, Sugimoto Y, Ushikubi
F. Prostanoid receptors: structures,
properties, and functions. Physiol
Rev (1999) 79:1193–226.

78. Matsui M, Miyamoto A. Evaluation
of ovarian blood flow by colour
Doppler ultrasound: practical use
for reproductive management in the
cow. Vet J (2009) 181:232–40. doi:
10.1016/j.tvjl.2008.02.027

79. Fujimori C, Ogiwara K, Hagiwara A,
Rajapakse S, Kimura A, Takahashi
T. Expression of cyclooxygenase-2
and prostaglandin receptor EP4b
mRNA in the ovary of the

medaka fish, Oryzias latipes: possi-
ble involvement in ovulation. Mol
Cell Endocrinol (2011) 332:67–77.
doi:10.1016/j.mce.2010.09.015

80. Takahashi T, Fujimori C, Hagi-
wara A, Ogiwara K. Recent advances
in the understanding of teleost
medaka ovulation: the roles of pro-
teases and prostaglandins. Zool Sci
(2013) 30:239–47. doi:10.2108/zsj.
30.239

81. McGraw DW, Mihlbachler KA,
Schwarb MR, Rahman FF, Small
KM, Almoosa KF, et al. Air-
way smooth muscle prostaglandin-
EP1 receptors directly modulate
beta2-adrenergic receptors within
a unique heterodimeric complex. J

Clin Invest (2006) 116:1400–9. doi:
10.1172/JCI25840

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 06 June 2013; accepted: 31 July
2013; published online: 15 August 2013.
Citation: Satake H, Matsubara S,
Aoyama M, Kawada T and Sakai
T (2013) GPCR heterodimerization
in the reproductive system: func-
tional regulation and implication for

biodiversity. Front. Endocrinol. 4:100.
doi: 10.3389/fendo.2013.00100
This article was submitted to Frontiers in
Experimental Endocrinology, a specialty
of Frontiers in Endocrinology.
Copyright © 2013 Satake, Matsubara,
Aoyama, Kawada and Sakai. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the origi-
nal author(s) or licensor are credited and
that the original publication in this jour-
nal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Endocrinology | Experimental Endocrinology August 2013 | Volume 4 | Article 100 | 8

http://dx.doi.org/10.1073/pnas.0906695106
http://dx.doi.org/10.1016/j.tvjl.2008.02.027
http://dx.doi.org/10.1016/j.mce.2010.09.015
http://dx.doi.org/10.2108/zsj.30.239
http://dx.doi.org/10.2108/zsj.30.239
http://dx.doi.org/10.1172/JCI25840
http://dx.doi.org/10.3389/fendo.2013.00100
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive

	GPCR heterodimerization in the reproductive system: functional regulation and implication for biodiversity
	Introduction
	GPCR protomers as allosteric modulators
	Typical functional consequences of GPCR heterodimerization
	Heterodimers among reproduction – associated GPCRs
	Melatonin receptor
	Tachykinin receptor
	GnRH receptor
	LH receptor
	Prostaglandin receptor

	Effects of GPCR heterodimerization on diversification of animal species and biological function
	Conclusion and perspectives
	Acknowledgments
	References


