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Lung squamous carcinoma (LUSC) is a malignant tumor of the respiratory system with highly
heterogeneous characteristics. Lactate is the main product of aerobic glycolysis during the metabolic
reprogramming of tumors. There is growing evidence that lactate metabolic processes have a broad
and sophisticated impact on tumor phenotypic plasticity and tumor microenvironment (TME).
However, the pattern of lactate metabolism in patients with LUSC and its impact on TME, phenotype,
prognosis, and treatment have not been fully elucidated. In this study, we identified two subtypes with
different lactate metabolism patterns in LUSC by non-negative matrix factorization and explored their
multi-omics features. We observed that lactate metabolism levels in LUSC extensively influenced tumor
immune infiltration patterns, adaptation to the hypoxia environment, and energy metabolic reprogram-
ming. Subsequently, we constructed the lactate metabolism-related prognostic index (LMRPI) using Cox
stepwise regression analysis. LMRPI showed excellent stability and accuracy, and based on the median
value of LMRPI, LUAD were divided into two subgroups. The two subgroups have different patterns of
immune infiltration and somatic mutations. Meanwhile, the two subgroups had different responsiveness
to immune checkpoint inhibitor (ICI) therapies and different sensitivity to various chemotherapeutic and
molecular targeting agents. In conclusion, we defined two subtypes with different lactate metabolism
patterns in LUSC and extensively characterized their multi-omics profile. Furthermore, we developed
LMRPI that predicts the prognosis of LUSC patients while also predicting their response to various adju-
vant therapies, including immunotherapy, to guide their individualized treatment.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lung cancer has been the leading cause of cancer-related deaths
worldwide in recent decades and it is predicted that an average of
350 people will die from lung cancer every day in the United States
in 2022 [1]. From a pathological perspective, lung cancer is classi-
fied as small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC). Lung squamous carcinoma (LUSC) accounts for approxi-
mately 30 % of NSCLC and is highly aggressive. Patients with LUSC
are typically characterized by an older age, a later stage, a higher
incidence of complications, and a poor five-year survival rate
[2,3]. Meanwhile, due to the rarity of activated epidermal growth
factor receptor (EGFR) mutations in LUSC, EGFR tyrosine kinase
inhibitors (TKIs) used as first-line therapy in NSCLC have been
found to be unsatisfactory in LUSC [4]. Although LUSC responds
poorly to common adjuvant therapies, immune checkpoint inhibi-
tor (ICI) therapies have shown exciting efficacy in LUSC, and sev-
eral drugs have already been applied in treatment [5,6].
However, due to tumor heterogeneity, heterogeneous metabolic
phenotypic distribution of tumor cells in tumor microenvironment
(TME), and different immune infiltration patterns, the benefit that
patients receive from ICI therapy is fraught with uncertainty [7].
Therefore, a simultaneous approach to discriminate different sub-
types of LUSC from both metabolic reprogramming and the
immune microenvironment of tumors and to predict patients’
response to multiple therapies, including ICI therapies, would be
a good contribution to individualized treatment.
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Reprogramming energy metabolism in tumors is necessary to
promote the growth and differentiation of tumor cells [8]. Within
tumors, aerobic glycolysis is an aberrant feature of tumor energy
metabolism, consumingglucoseandproducing lactate [9]. For a long
time, lactate molecule was regarded only as a metabolic waste pro-
duct within the tumor, but in recent years its diverse effects in TME
have been unveiled. The lactate metabolism plays multiple roles to
promote the development and progression of tumors, such as
metabolites, tricarboxylic acid (TCA) cycle carbon sources, and sig-
naling molecules, through multiple modalities: formation of
lactate-based dual-compartment metabolic couplings to enhance
environmental adaptation of tumor cells, promotion of hematologic
reconstitution in tumor regions, and assistance in the formation of a
suppressive immune environment [10–13]. Meanwhile, recent
studies have found that lactate-based lactylation protein modifica-
tions suppress immune cells within the tumor by regulating the
phenotype of macrophages [14]. Notably, the impact of lactate
metabolism on the functions of immune cells in tumors is extensive
and profound. Tumor cells and immune cells compete for glucose
and secrete lactate acidified TME through aerobic glycolytic meta-
bolism [15]. In a TME with high lactate concentrations, multiple
effectorT cell subtypes andNKcells becomedysfunctional, andcyto-
lytic activity is reduced,whereas Treg cells are unaffected due to dif-
ferent metabolic patterns [16,17]. Given the complex role of lactate
metabolism on the immune environment within the tumor, explor-
ing the ways that lactate metabolism-related genes (LMRGs) inter-
act in LUSC might be instrumental in understanding the biology
characteristics and predicting the response to ICIs therapies.

In our study, we identified two LUSC subtypeswith different lac-
tate metabolism levels based on The Cancer Genome Atlas (TCGA).
We also systematically analyzed the effect of the levels of lactate
metabolism on the biological characteristics for LUSC through mul-
tiomics study. Subsequently, we constructed and validated a lactate
Fig. 1. The flowchart o
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metabolism-related prognostic indictor (LMRPI) based on hub
LMRGs to assess the prognosis of LUSC patients. We also evaluated
the immune infiltration characteristics of LMRPI and the relation-
ship with the response to various adjuvant therapies including
immunotherapy. The results of the study revealed the complex
impact of lactate metabolism in LUSC and presented a novel
approach to assess patient prognosis and guide individualized adju-
vant therapy.
2. Materials and methods

2.1. Dataset collection and preprocessing

The detailed analysis process and analysis tools for this study
are shown in Fig. 1. All abbreviations mentioned in this article
are shown in Supplementary Table 1.

In this study, we used the RNA-seq data of LUSC patients
(n = 502) from the TCGA GDC database (portal.gdc.cancer.gov)
and their matched clinical phenotype data as a training cohort.
Meanwhile, we obtained transcriptome data and survival data
from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo) for the GSE157009 cohort [18] as an
independent validation cohort. Detailed baseline clinical pheno-
type information for the TCGA cohort of patients with LUSC is sum-
marized in Supplementary Table 2.

The TCGA-LUSC simple nucleotide variation (SNV) data (Masked
Somatic Mutation proceed by VarScan) and copy number variation
(CNV) data (Masked Copy Number Segment) were obtained from
TCGA GDC. To better perceive CNV data, we performed GISTIC2.0
[19] analysis through GenePattern (https://www.genepattern.org).

The preannotated gene sets used in the study were obtained
from the Molecular Signatures Database (MsigDB, https://www.
f the study design.

http://portal.gdc.cancer.gov
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gsea-msigdb.org/gsea/msigdb). By searching and filtering with
‘‘lactate” as the keyword, we included 6 lactate metabolism-
related gene sets (GOBP lactate transmembrane transport, GOMF
lactate transmembrane transporter activity, GOMF lactate dehy-
drogenase activity, HP elevated lactate pyruvate ratio, HP increased
circulating lactate dehydrogenase concentration, HP increased
serum lactate) and obtained 248 LMRGs by merging and de-
duplication of these genes (Supplementary Table 3).

2.2. Non-negative matrix factorization (NMF) partition the sample

Univariate Cox regression analysis was performed in LMRGs
based on the TCGA cohort to screen for trait genes related to LUSC
prognosis. Each trait gene was examined using Kaplan-Meier (K-M)
survival analysis.

Based on the expression profile of the traits LMRG, NMF was
performed using the NMF package in R [20] to achieve unsuper-
vised clustering of patients into clusters with different expression
patterns of LMRG. In the NMF clustering process, a random seed
is set, the rank value is set from 1 to 10, the method is selected
as ‘‘brunet”, and the number of iterations is set to 10. The optimal
rank value is determined from the variation curve of the cophe-
netic correlation coefficient and the residual sum of squares (rss)
with factorization rank.

2.3. Crosstalk analysis of lactate metabolism and immune infiltration

With the GSVA package in R [21], gene set variation analysis
(GSVA) was performed based on four gene sets of biological pro-
cesses related to lactate metabolism for all samples of multiple
clusters. Based on the gene set of 28 immune cells in NSCLC
obtained by integrating multidimensional immune-related infor-
mation through machine learning [22], the immune cell infiltration
analysis was performed using GSVA. Tumor purity, immune score,
and stromal score in tumor tissues were calculated using the ESTI-
MATE package in R using the estimation of stromal and immune
cells in malignant tumor tissues using the expression data (ESTI-
MATE) algorithm [23]. Through a comprehensive evaluation and
comparison of lactate metabolism and immunogenomics, the clus-
ters were finally merged with the criteria of lactate metabolism
levels and the LUSC lactate metabolism-low (LML) / high (LMH)
subtypes were identified.

2.4. Genetic polymorphism analysis

The Maftools package in R [24] was used to analyze and visual-
ize the somatic mutation data for two subtypes. From the COSMIC
website (cancer.sanger.ac.uk/signatures), we obtained 30 muta-
tional signatures that were broadly verified and had explicit bio-
logical implications. 96 mutation spectra were obtained for each
sample through the DeconstructSigs package in R [25] and the frac-
tion of 30 signatures was calculated.

For genomic structural variation, we analyzed the CNV data of
the two subtypes. We firstly extracted the copy number of the trait
LMRGs to analyze the genomic structural differences associated
with lactate metabolism. Subsequently, the CNV data were con-
verted into chromosome arms and local alterations through GIS-
TIC2.0 analysis [19].

2.5. DEGs between subtypes and functional enrichment analysis

Using the DESeq2 package in R [26], a differential expression
analysis was performed on the RNA-seq counts data of both sub-
types in the TCGA cohort. Genes with an adjust p value < 0.05 and |
log2FoldChange| > 1were considered differentially expressed genes
(DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
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Genomes (KEGG) enrichment analysis were performed for DEGs.
Also, based on the expression profiles, gene set enrichment analysis
(GSEA) was performed through the clusterProfiler package in R [27]
using the curated gene set retrieved from MsigDB, adjusted p
value < 0.05 for the phenotype was considered statistically
significant.

2.6. Identification of hub genes related to lactate metabolism

Weight gene co-expression network analysis (WGCNA) was
performed through the WGCNA package in R [28] to obtain the
most highly correlated co-expressed gene modules in DEGs with
differentiation of two subtypes. First, setting the cut height to 60,
we detected and excluded outliers through sample clustering.
The transformation of the adjacency matrix was completed by set-
ting the optimal soft threshold of the scale-free network, and the
topological overlap matrix (TOM) was obtained. Subsequently,
minimum number of genes in per module was set to 25, and the
obtained co-expressed gene modules by dynamic shearing tree
and the similar modules were merged. Finally, through the corre-
lation heatmap of modules and subtypes, genes within the module
with the highest absolute value of correlation with the two sub-
types were identified as hub genes related to lactate metabolism.

2.7. Construction and validation of LMRPI

Based on the TCGA-LUSC cohort, univariate Cox regression anal-
ysis was performed on the hub genes to obtain independent prog-
nostic factors. Subsequently, LMRPI, a risk proportional model was
developed by multivariate Cox stepwise regression analysis. Model
scores were obtained by summing the products of each variable
and coefficient, and patients were classified into LMRPI-low and
LMRPI-high subgroups based on the median values. K-M analysis
and time-dependent receiver operating characteristic (ROC) analy-
sis were used to assess the prognostic efficacy of LMRPI in the
TCGA cohort and the GEO cohort. The independent prognostic
capacity of LMRPI was verified by univariate and multivariate
Cox regression analysis.

Based on the information of TCGA-LUSC patients, differences in
the distribution of multiple clinical phenotypes between two sub-
groups were examined using the chi-square test. A clinical nomo-
gram using LMRPI and clinical characteristics based on the
coefficients of Cox regression was established to predict the overall
survival (OS) of patients at 1, 3 and 5 years. Subsequently, the clin-
ical applicability of the nomogram was examined by calibration
curve, ROC analysis, and decision curve analysis (DCA).

2.8. Immune infiltration and genetic characteristic

The expression data of all samples were deconvoluted using the
CIBERSORTx algorithm [29] to calculate the composition of 22
immune cell infiltrations. Wilcoxon rank sum test was used to
compare differences in the fraction of immune cells of each of
the two subgroups. Using the Maftools package, oncoplot was plot-
ted to show the top 20 genes with the highest mutation frequen-
cies in both subgroups and their mutation types, and the tumor
mutation burden (TMB) and nucleotide changes for each individual
sample were also shown.

2.9. Evaluation of the efficacy of multiple therapies

Multidimensional analysis and multiple validation analysis
were used to more accurately assess the efficacy of ICI therapies
in two subgroups. Differences between the two subgroups for
widely acknowledged biomarkers or potential targets in various
ICI therapies were analyzed. To predict the sensitivity to ICI

https://www.gsea-msigdb.org/gsea/msigdb
http://cancer.sanger.ac.uk/signatures
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therapy in patients with LUSC, tumor immune dysfunction and
exclusion (TIDE) scores [30] and immunephenoscore (IPS) score
[31] were compared between two subgroups. TIDE scores were cal-
culated based on TCGA-LUSC expression profiles online (https://
tide.dfci.harvard.edu/), and IPS scores were obtained from The Can-
cer Immunome Atlas (TCIA; https://tcia.at/).

For the comparison of the sensitivity of the two subgroups to
the chemotherapeutic and targeted drugs typically adopted in
the course of LUSC treatment, we opted for the pRRophetic package
in R [32], which is based on the Genomics of Drug Sensitivity in
Cancer (GDSC) database to derive the inhibition concentration 50
(IC50) of antitumor compounds.
2.10. Statistical analysis

R software (version 4.1.1; https://www.r-project.org/) and its
corresponding R packages were used for statistical analysis and
graph production. A p value < 0.05 was considered statistically sig-
nificant. Log-rank test was used to compare the K-M curves
between two groups. Wilcoxon rank sum test was used to analyze
the differences in continuous variables between two groups. The
Fig. 2. Non-negative matrix factorization (NMF) clustering based on trait lactate metabol
curve of NMF clustering at rank = 2 to 10. (C) The residual sum of squares (rss) curve of
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Kruskal-Wallis test was used to compare the differences in contin-
uous variables between multiple groups. The chi-square test was
used to analyze the differences in graded variables between two
groups.
3. Results

3.1. Unsupervised clustering based on trait LMRGS

By univariate Cox analysis, we obtained 14 trait LMRGs (7 pro-
tective factors, 7 risk factors) that were significantly associated
with prognosis (Fig. 2A), and the validation results of the K-M anal-
ysis for each gene were consistent (Fig. S1). The rank value in NMF
can be 3 or 4 based on two criteria: the front point of the largest
decline in the cophenetic curve (Fig. 2B) and the first inflection
point of the rss curve (Fig. 2C). However, the clustering results
are more biologically significant when the rank value is 3, so 3
was chosen as the number of clusters. Based on the expression pro-
files of the trait LMRGS, the samples of TCGA-LUSC were classified
into three clusters, including cluster 1 (n = 106), cluster 2 (n = 241),
and cluster 3 (n = 148) by unsupervised clustering (Fig. 2D).
ism-related genes (LMRGs). (A) Univariate Cox analysis of LMRGs. (B) The cophenetic
NMF clustering at rank = 2 to 10. (D) NMF clustering matrix at rank = 3.

https://tide.dfci.harvard.edu/
https://tide.dfci.harvard.edu/
https://tcia.at/
https://www.r-project.org/
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3.2. Lactate metabolic subtypes in LUSC

To understand the interactions between lactate metabolism and
immune infiltration, the GSVA analysis based on the gene sets of
lactate metabolism and immune cell infiltration, ESTIMATE analy-
sis and cytolytic activity (CYT) analysis were implemented in the
three clusters. Heatmap shows the enrichment scores of biological
processes related to lactate metabolism, CYT score, ESTIMATE anal-
ysis score (Tumor Purity, ESTIMATE score, Immune Score, Stromal
Score) and Immune cell infiltration score for each sample in the
three clusters (Fig. 3A). The enrichment scores of the ‘‘increased
serum lactate” and ‘‘elevated lactate pyruvate ratio” gene sets in
Cluster 2 were significantly higher than the other two clusters,
while the ‘‘lactate transmembrane transporter activity” gene set
in Cluster 1 had a high enrichment score (Fig. 3B). The high concen-
tration of lactate laid the basis for its reflection of the degree of
tumor metabolic reprogramming and its role as a signaling mole-
cule to inhibit antitumor immunity [13]. Besides, the higher lactate
pyruvate ratio precisely reflected the fact that lactate has become
the main carbon source of the TCA cycle in the energy metabolism
of tumor cells [15]. Therefore, among the three clusters, cluster 2
was considered to have the highest level of lactate metabolism,
while cluster 1 had a higher lactate transmembrane transporter
protein activity.

In the ESTIMATE analysis, from cluster 1, cluster 3 to cluster 2,
the stromal component of the tumor and the degree of immune
infiltration decreased, while the purity of the tumor increased
(Fig. 3C). The CYT score, which reflects the cytolytic activity of
Fig. 3. Lactate metabolism and immunogenomic characterization of three clusters in l
enrichment scores, Clusters, ESTIMATE scores (Tumor Purity, ESTIMATE Score, Immune Sc
different colors according to the figure annotations represent the scores of different en
lactate metabolism-related biological functions in different LUSC clusters. (C) Estimatio
(ESTIMATE) scores in three clusters. (D) Cytolytic activity (CYT) scores in three clusters. (
scattered dots represent the scores. The thick lines represent the median value. The botto
was performed to assessed significant statistical differences between clusters (ns, not si
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immune cells in tumors, was significantly lower in cluster 2 than
in the other two clusters (Fig. 3D). Cluster 2 had the lowest enrich-
ment scores for the eight classical antitumor immune cells, while
cluster 1 had the highest enrichment levels except for activated
CD4 cells and activated CD8 cells (Fig. 3E).

Based on cross-talk analysis of lactate metabolism and immu-
nogenomics, we identified the characteristics of three clusters.
Cluster 2 had the highest level of lactate metabolism and was the
cold tumor with the lowest level of immune infiltration; cluster
1 and cluster 3 both had lower levels of lactate metabolism activ-
ity, but were, respectively, hot and cold tumors. Finally, cluster 2
was identified as the as LMH subtype while cluster 1 and cluster
3 were merged as LML subtype based on the level of lactate
metabolism.
3.3. Somatic mutations and genetic structural polymorphisms in two
subtypes

As shown in the mutation summary plots of the two subtypes
(Fig. S2A, B), the two subtypes shared a similar pattern of somatic
mutation and nucleotide alterations, but the LMH subtype had a
higher mutation frequency. Both subtypes were dominated by
the Missense mutation, C > T mutation and C > A mutation, which
accounted for the majority, and TTN and TP53 had a mutation rate
of>60 % in two subtypes. Among the 30 mutant signatures, Signa-
ture 3 (which was associated with the failure of DNA double-
strand break repair by homologous recombination) and Signature
ung squamous carcinoma (LUSC). (A) The heatmap shows the Lactate metabolism
ore, Stromal Score), CYT scores, and immune cell infiltration from top to bottom, and
tries of each sample respectively. (B) Gene set variation analysis (GSVA) scores of
n of stromal and immune cells in malignant tumor tissues using expression data
E) GSVA scores of tumor microenvironment TME immune cells in three clusters. The
m and top of the boxes are the 25th and 75th percentiles, respectively. Wilcoxon test
gnificant; *, P < 0.05; **, P < 0.01; ***, P < 0.001).
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4 (which due to tobacco mutagens) had high scores (mean
value > 0.1) in both subtypes (Fig. 4A, B; Fig. S3).

The trait LMRGs had similar CNV patterns in the two subtypes
(Fig. 4C), but their gain copy and loss copy levels are significantly
different (Fig. 4D, E). The results of GISTIC2.0 analysis showed that
chromosome 11q13.3 in the LML subtype tended to gain copy,
while 3q26.31 and 3q28 in the LMH subtype tended to gain copy
(Fig. 4F, G).
3.4. Differential expression profiles and biological functions of two
subtypes

In the differential expression analysis of two subtypes, we
obtained 917 DEGs, 24 genes up-regulated, and 893 genes down-
regulated in the LMH subtype (Fig. S4A). GO enrichment analysis
revealed that in addition to organic hydroxy compound transport
and catabolic process, carboxylic acid transport and other organic
metabolic processes, DEGs were mainly enriched in biological pro-
cesses related to immune function such as humoral immune
response, cell chemotaxis, leukocyte, leukocyte migration, immune
receptor activity (Fig. 5A). KEGG enrichment analysis showed that
DEGs were highly enriched in pathways such as cell adhesion
molecules and focal adhesion, and adhesion molecules played an
important role in tumor metastasis and colonization (Fig. 5B). At
Fig. 4. Somatic mutations and copy number variation (CNV) characteristics of two lung
clinical phenotype of lactate metabolism low (LML) subtypes. (B) COSMIC 30 mutational s
(C) Location of 14 trait lactate metabolism-related genes (LMRGs) on 23 chromosomes a
(E) CNV of 14 trait LMRGs in LMH subtype. (F) G-Scores of chromosome fragments in GIST
analysis of LMH subtypes.

4761
the same time, the high enrichment of the cytokine-cytokine
receptor interaction pathway also implies a strong connection
between DEGs and the immune system.

In GSEA analysis, the LMH subtype was more enriched in the
TCA cycle, respiratory electron transport, mitochondrial function,
and other sets of genes related to aerobic oxidative metabolism,
while LML was more enriched in the pathways related to immune
response (Fig. 5C, D). The results of GSEA analysis reveal that
higher levels of lactate metabolism may reflect the metabolic
adaptation of the tumor, while low levels of lactate metabolism
are associated with a better tumor immune environment. Surpris-
ingly, the LMH and LML subtypes were respectively enriched in the
hypoxia up and hypoxia low gene sets, which was consistent with
the basic study [33,34] and confirmed the fact that hypoxia is inex-
tricably linked to lactate metabolism levels from a bioinformatics
perspective.
3.5. Lactate metabolism-related co-expression hub genes

To obtain hub genes for differences between subtypes with dif-
ferent levels of lactate metabolism, a WGCNA analysis was per-
formed based on DEGs of two subtypes. After eliminating 5
outlier samples and setting the power value to the optimal soft
threshold 3, we identified 5 co-expression modules based on the
squamous cell (LUSC) subtypes. (A) COSMIC 30 mutational signatures scores and
ignatures scores and clinical phenotype of lactate metabolism high (LMH) subtypes.
nd CNV variations in both two subtypes. (D) CNV of 14 trait LMRGs in LML subtype.
IC2.0 analysis of LML subtypes. (G) G-Scores of chromosome fragments in GISTIC2.0



Fig. 5. Functional enrichment analysis of two LUSC subtypes. (A) Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) between two LUSC
subtypes. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs between two LUSC subtypes. (C) Gene sets enriched in lactate metabolism high
(LMH) subtype. (D) Gene sets enriched in lactate metabolism low (LML) subtype.
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dynamic shear tree (Fig. 6A-C). The turquoise module had the lar-
gest absolute value of correlation with the distinction of the two
subtypes (Fig. 6D); therefore, 389 genes in the turquoise module
were identified as genes related to the lactate metabolism, and
the gene co-expression network with a threshold>0.3 was visual-
ized (Fig. 6E).
3.6. Construction and validation of LMRPI

Based on the TCGA-LUSC cohort, we performed a univariate Cox
analysis on hub genes and obtained 69 prognostic associated fac-
tors (Fig. S4B). Based on prognostic genes, using Cox stepwise
regression analysis, we developed a Cox proportional hazards
prognostic model called LMRPI. LMRPI ¼ IGFN1� 0:412þ
GAB2 � 0:179 þ RETN � 0:171 þ CLIC5 � 0:338 þ KCNQ3 � 0:165þ
TCF21�0:522þASPA� �1:043ð ÞþATOH8� �0:357ð ÞþLBP �0:142þ
AGTR2� �0:171ð ÞþDLC1� �0:274ð ÞþCHRDL1�0:175þSLC22A3�
0:186þ FGA� 0:223þ FHL5� 0:352þMMP19� 0:214þ GGTLC1�
�0:354ð ÞþSLC39A8� �0:410ð ÞþKIAA0408�2:263þA2M� �0:335ð Þ
þSERPIND1�0:231: Based on the median value of the LMRPI score,
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we divided LUSC patients into LMRPI-low and LMRPI-high
subgroups.

In the TCGA cohort, the correspondence between the LMRPI
score and OS of the patient has been shown in Fig. 7A, and the
LMRPI-high subgroup had a poorer prognosis compared to
LMRPI-low subgroup (Fig. 7B). The AUC value in the time-
dependent ROC was 1,2,3 at one year, two years, and three years
(Fig. 7C). The survival results of the patients of the two subtypes
in the GEO validation cohort were consistent with the training
cohort (Fig. 7D-F). Age, stage, and LMRPI were shown to be prog-
nostic correlates by univariate Cox analysis of LMRPI and common
clinical phenotypes (Fig. 7G). After excluding covariance between
the three variables using multivariate Cox analysis, the excellent
independent prognostic power of LMRPI was demonstrated
(Fig. 7H).
3.7. Clinical phenotypic characteristics of LMRPI

There was no significant difference in the age distribution
between the two subgroups (Fig. 8A), but in gender distribution,



Fig. 6. Weighted gene co-expression network analysis (WGCNA) identified lactate metabolism-related hub genes. (A) Five outliers were cut by setting the cut height at 60. (B)
Determine the optimal soft threshold of WGCNA by scale independence and average connectivity. (C) Dendrogram and module colors of genes in WGCNA process. (D) Four
non-gray modules were obtained through WGCNA. (E) The network of the genes in the turquoise module (weight of edge > 0.3).
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a higher proportion of female patients and a lower proportion of
male patients in the LMRPI-high subgroup suggested that female
LUSC patients may have a worse survival expectation (Fig. 8B).
Meanwhile, a higher proportion of LMRPI-high patients had stage
I (Fig. 8C). Lower staging usually tends to predict a better prognosis
[35], but specific results may indicate that a high LMRPI score is
associated with a worse survival outcome even if the patient has
a lower stage. Finally, according to the study by Thorsson et al.
on immune characteristics of TCGA data [36], the distribution of
LMRPI-high and LMRPI-low subgroups of was investigated
(Fig. 8D). Compared to the LMRPI-low subgroup, the LMRPI-high
subgroup contained more C3 and C6 subtypes. The C3 subtype
was characterized by elevated expression of Th17 and Th1 with a
lower frequency of aneuploidy levels and copy number changes,
while the C6 subtype was characterized by high expression of
TGF-b signature and was associated with the worst prognosis.
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3.8. Development of clinical nomogram

To better predict OS in LUSC patients, we developed a nomo-
gram based on clinical phenotype and LMRPI (Fig. 9A). In the
nomogram, the median survival rates of LUSC patients at 1, 3,
and 5 years were 0.863,0.633, and 0.506, respectively. The calibra-
tion graph of the nomogram showed high consistency between the
prognostic prediction and the true survival outcome of the patients
(Fig. 9B). The AUC values of the ROC curves at 1, 3, and 5 years were
0.715, 0.709 and 0.691, respectively (Fig. 9C-E), which were supe-
rior to the independent predictive power of LMRPI and other clin-
ical factors. The DCA curves at 1, 3, and 5 years also confirmed the
better benefit of the nomogram in clinical decision making (Fig. 9F-
H). These findings showed that the nomogram has a high predic-
tive efficacy in LUSC patients and has a promising clinical
application.



Fig. 7. Construction and validation of lactate metabolism-related prognosis index (LMRPI). (A) LMRPI score and survival information of lung squamous carcinoma (LUSC)
patients in The Cancer Genome Atlas (TCGA) cohort. (B) Kaplan-Meier (K-M) survival curves for two LMRPI subgroups in the TCGA cohort. (C) 1-year, 2-years, and 3-years
receiver operating characteristic (ROC) curves and their area under the curve (AUC) of LMRPI in TCGA cohort. (D) LMRPI score and survival information of LUSC patients in
Gene Expression Omnibus (GEO) cohort. (E) K-M survival curves for two LMRPI subgroups in the GEO cohort. (F) 1-year, 2-years, and 3-years ROC curves and their AUC of
LMRPI in GEO cohort. (G) Univariate Cox analysis to validate the independent prognostic ability of LMRPI. (H) Multivariate Cox analysis to validate the independent prognostic
ability of LMRPI.
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3.9. Immune infiltration and somatic mutation characteristics of two
subgroups

We obtained immune cell infiltration fractions using CIBER-
SORTx to deconvolute samples from both subgroups (Fig. 10A).
The LMRPI-low subgroup had more resting natural killer (NK) cells,
M1 macrophages and activated mast cells, while the LMRPI-high
subgroup had more naive CD4 T cells, monocytes, M2 macro-
phages, resting mast cells, neutrophils (Fig. 10B). The two main
macrophage subclasses, m1 and m2, were found to be significantly
different in two subgroups of LMRPI. M1 macrophages, which were
highly expressed in the LMRPI-low subgroup, played an important
role in initiating inflammatory and antitumor responses in TME
[37]. In contrast, M2 macrophages, which were more abundant in
the LMRPI-high subgroup, were converted from M1 macrophages
by the action of factors released in TME and were characterized
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by anti-inflammatory, profibrotic, proangiogenic, and immunosup-
pressive effects [38]. Based on the above, it could be inferred that
the two subgroups might have quite different immune
environments.

We presented the somatic mutation information of two sub-
groups using oncoplot (Fig. 10C). In particular, the LMRPI-low sub-
group of patients had a high frequency of CSMD3 mutations (42 %),
while the high mutation rate of CSMD3 was considered to be asso-
ciated with a better prognosis in patients with LUSC in a previous
clinical study [39].

3.10. Treatment efficacy of LMRPI subgroups

The regulation between TME and immune cells and the produc-
tion of neoantigens by tumors themselves are the main factors
influencing the efficacy of ICI therapy [40]. In the analysis that



Fig. 8. Distribution of clinical phenotypes in two lactate metabolism-related prognostic index (LMRPI) subgroups. (A) Heatmap and table showing the distribution of lung
squamous carcinoma (LUSC) patients by age (<65 and � 65) between two LMRPI subgroups. (B) Heatmap and table showing the distribution of LUSC patients by gender
(female and male) between two LMRPI subgroups. (C) Heatmap and table showing the distribution of LUSC patients by clinical stage (stage I, stage II, stage III, and stage IV)
between two LMRPI subgroups. (D) Heatmap and table showing the distribution of LUSC patients by immune subtypes (C1, C2, C3, C4, and C6) between two LMRPI subgroups.
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examined the differences in the biomarker and potential targets of
ICI in two subgroups, we found that TMB, which was directly asso-
ciated with neoantigen production and the target PD-L1, was not
significantly different between the two subgroups, while the
expression of CTLA4, CD28, ICOS and PD-1 was significantly ele-
vated in the LMRPI-high subgroup (Fig. 11A-F). High expression
of CTLA-4 was a classic indicator of the effectiveness of anti-
CTLA-4 therapies, and ICOS was is also important in response to
anti-CTLA-4 therapy, and therapies to stimulate ICOS checkpoints
were also being developed [41]. To some extent, PD-1 expression
in tumor bulk data also reflects the expression of PD-1 on the sur-
face of infiltrating T cells in TME. Recently, CD28 was found to be
required for effective anti-PD-1 therapy, and studies have reported
that targeting CD28 bispecific antibodies could enhance the effi-
cacy of anti-PD-1 therapy [42,43]. TIDE analysis showed that the
LMRPI-high subgroup had a higher dysfunction score, which pre-
dicted immune cell dysfunction in their TME, while the exclusion
score was not significantly different (Fig. 11G, H). The IPS scores
of CTLA-4 positive PD-1 negative and CTLA4 positive PD-1 positive
were significantly higher in the LMRPI-high subgroup (Fig. 11I).
Based on the combined results, the LMRPI-high subgroup tended
to have a better response and efficacy in anti-CTLA-4 and anti-
PD-1 therapies, and had a higher expression of ICOS and CD28,
which are two potential targets to promote the efficacy of existing
therapies.

In the analysis of the sensitivity of chemotherapy and molecular
targeted therapy drugs (Fig. 11J), the LMRPI-high subgroup had a
higher sensitivity to two chemotherapy drugs, cytarabine, vin-
blastine, while the LMRPI-low subgroup had a higher sensitivity
to paclitaxel, gemcitabine, epothilone.B, docetaxel.B, docetaxel,
etoposide, and vinorelbine, which could be helpful for different
chemotherapeutic strategies during the treatment of patients in
two subgroups. Meanwhile, the LMRPI low subgroup had a higher
sensitivity to two targeted drugs, erlotinib and afatinib, suggesting
that patients in the LMRPI-low subgroup may have a better benefit
for molecular targeted therapies.
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4. Discussion

LUSC accounts for approximately 30 % of lung cancers and is
poor responsive to multiple adjuvant therapies, including molecu-
larly targeted therapies [4]. However, ICI therapies have produced
exciting results in the treatment of LUSC, and several drugs have
been approved by the FDA for immunotherapy of LUSC [5,6].
Tumor cell heterogeneity and complex variations in TME are the
major causes of drug resistance in NSCLC, of which metabolic
reprogramming and immune microenvironment are two impor-
tant constituents [7]. Lactate produced by tumor aerobic glycolysis
has a broad impact on energy metabolism of tumors and on the
composition and function of immune cells in TME [15]. Therefore,
there is an intrinsic demand for cross-talk analysis of tumor lactate
metabolism and immune environment to differentiate the hetero-
geneity of LUSC, assess patient prognosis, and predict the efficacy
of multiple therapies including immunotherapy.

Undergoing metabolic reprogramming, lactate is secreted in
large amounts during aerobic glycolysis in tumors, and high con-
centrations of lactate have been proved to be associated with can-
cer aggressiveness and low survival [44,45]. At the same time, the
dual-compartment metabolic coupling pattern formed in tumors
with upregulated secretion of lactate by aerobic glycolysis in
hypoxic regions and uptake of lactate for TCA cycling in relatively
oxygen-rich regions provides for energy metabolism in tumors
[10–13]. Based on the expression profiles of prognosis-related
LMRGs, we found two subtypes of LUSC with different levels of lac-
tate metabolism, and the crosstalk between lactate metabolism
and immunogenomics determined the distinct characteristics of
the disease. The samples of the LMH subtype had high lactate
metabolism levels, high tumor purity, and low stromal and
immune composition, while the samples of the LML subtype were
the opposite. Apparently, the immune environment between the
two subtypes was not just different in the quantity of immune
cells. Thus, we additionally assessed the cytolytic activity of the
two subtypes by CYT score. The CYT score is a quantitative measure



Fig. 9. Development and examination of clinical nomogram. (A) Clinical nomogram was established based on clinical characteristics and lactate metabolism-related
prognosis index (LMRPI) to predict the survival rate of patients at 1-year, 3-years, and 5 years. (B) The calibration plot of clinical nomogram at 1-year, 3-years, and 5 years. (C-
E) 1-year (C), 3-years (D), and 5-years (E) receiver operating characteristic (ROC) curves and their area under the curve (AUC) of nomogram, LMRPI, and clinical characteristics.
(F-H) 1-year (F), 3-years (G), and 5-years (H) decision curve analysis (DCA) of nomogram, LMRPI, and clinical characteristics.
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of transcript levels based on granzyme A (GZMA) and perforin
(PRF1), representing the antitumor cytolytic activity of cytotoxic
T cells (CTL) and NK cells in TME [46]. Consistent with the results
of the basic research [12,13,17], we found that higher levels of lac-
tate metabolism had a significant negative effect on the quantity
and quality of antitumor immune cells and that there was a signif-
icantly suppressed tumor microenvironment in the samples of
high lactate metabolism.

Metabolic reprogramming of tumors is a process in which
tumors autonomously alter their metabolic patterns through var-
ious metabolic pathways to meet their increasing demands for
energy and substance synthesis and to reduce oxidative stress
during their extensive proliferation [47]. In functional analysis,
the LMH subtype exhibits diverse relevance to the energy meta-
bolic links of tumor cells, which are closely related to multiple
biological processes of aerobic oxidation. The enrichment of
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LMH and LML subtypes in the hypoxia up and hypoxia down
pathways also reflects the response of tumor cells to hypoxia
and adaptation to TME in lactate metabolism-high tumors. Such
results provide us with the hypothesis that lactate metabolism
levels may have potential as an indicator of the extent of tumor
metabolic reprogramming. Therapies targeting tumor metabo-
lism have been extensively studied, and lactate, as a key mole-
cule in aerobic glycolysis, is also an important target, and
there have already been drugs targeting lactate metabolism
under development [48–51]. Our study also reflects from a
bioinformatic perspective that targeted lactate metabolic therapy
may have a multifaceted benefit in LUSC patients and that the
high level of tumor metabolic reprogramming and the low
degree of immune infiltration associated with lactate metabolic
levels in LMH subtypes may be improved by targeted lactate
therapy.



Fig. 10. Immune infiltration and somatic mutation characteristics of lactate metabolism-related prognosis index (LMRPI). (A) The relative percent of 22 immune cells in The
Cancer Genome Atlas (TCGA) cohort of two LMRPI subgroups. (B) The different fractions of immune cells in two LMRPI subgroups. The scattered dots represent the immune
cell fraction. The thick lines represent the median value. The bottom and top of the boxes are the 25 and 75 percentiles, respectively. ‘‘*” is used to represent significant
statistical differences between the two subgroups (*, P < 0.05; **, P < 0.01; ***, P < 0.001). (C) Oncoplot shows the mutation types and nucleotide changes in the 20 genes with
the highest mutation frequencies in the two LMRPI subgroups and the tumor mutation burden (TMB).
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The two LUSC subtypes were composed of three clusters identi-
fied by NMF. LMHwas composed of cluster 2 with the highest level
of lactate metabolism and the lowest level of immune infiltration,
while the LML subtype was composed of clusters 1 and 3 with low
levels of lactate metabolism, and we found that the two clusters
had different immune microenvironments. Cluster 1 exhibited a
richer degree of immune infiltration, more stromal components,
and lower tumor purity than cluster 3indicatingthat there were
potential factors that could further subdivide patients’ characteris-
tics in LUSC according to the levels of lactate metabolism. In future
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studies, we will further investigate the phenotypic factors that
interact strongly with lactate metabolism to refine the subtypes
and establish a comprehensive LUSC typing system to assess meta-
bolic and immunological characteristics.

In our study, we developed a prognostic model LMRPI based on
the hub genes differentially expressed in the two subtypes, and
subsequently classified patients into LMRPI-low subgroup and
LMRPI-high subgroup according to the median value of index.
Based on two independent cohorts of TCGA and GEO, we tested
the excellent predictive efficacy of LMRPI by K-M survival analysis



Fig. 11. Treatment efficacy of two lactate metabolism-related prognosis index (LMRPI) subgroups. (A) Tumor mutation burden of two subgroups. (B) CTLA-4 expression of
two subgroups. (C) CD28 expression of two subgroups. (D) ICOS expression of two subgroups. (E) PD-1 expression of two subgroups. (F) PD-L1 expression of two subgroups.
(G) T cell dysfunction score of two subgroups. (H) T cell exclusion score of two subgroups. (I) immunephenoscore (IPS) score of two subgroups. (J) Inhibition concentration 50
(IC50) for different chemotherapeutic and molecularly targeted therapeutic agents of two subgroups.
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and time-dependent ROC analysis, and identified it as an indepen-
dent prognostic factor by univariate and multivariate Cox regres-
sion analysis. To better utilize clinical information to determine
the prognosis of patients, we established a clinical nomogram
based on six clinical phenotypes and LMRPI, and confirmed its reli-
ability in clinical application using calibration curve, time-
dependent ROC analysis, and DCA analysis. The results showed that
the nomogram had a potential in accurately predicting the short-
term (1 year) and long-term (5 years) prognosis of LUSC patients
which is a valuable guideline for clinical decision.
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ICI therapies have proven excellent efficacy in tumors, but the
low response rate leads to a high dependence on the predictive
biomarker. In our analysis, higher levels of CTLA-4, CD28, ICOS,
and PD-1 transcripts in the LMRPI-high subgroup implied high
responsiveness to anti-CTLA-4 and anti-PD-1 therapies, as well as
a good response to potential targets of ICI. Furthermore, by GDSC
analysis of patients’ IC50 for antitumor drugs, we found that the
two subtypes also had different sensitivities to various chemother-
apeutic agents and molecularly targeted drugs. Based on the the
above, we recommend two ICIs, anti-CTLA-4 and anti-PD-1, as well
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as cytarabine- and vinblastine-based chemotherapy for patients in
the LMRPI-high subgroup for adjuvant therapy. For the LMRPI-low
subgroup, the high sensitivity to erlotinib and afatinib suggests a
higher benefit of molecularly targeted therapy. Furthermore,
chemotherapy regimens based on paclitaxel, gemcitabine, epothi-
lone. B, docetaxel, vinorelbine are more suitable for the LMRPI-
low subgroup.

Although our study has a comprehensive analytical process,
there were still several limitations. First, to elucidate the mecha-
nisms underlying the complex effects of lactate metabolism on
the biological functions of LUSC in our study, robust functional
experiments need to be considered. Second, as a retrospective
analysis based on public databases, prospective studies will be nec-
essary to be carried out in future to investigate the mechanisms
involved in lactate metabolism and to assess the predictive efficacy
of LMRPI.

In conclusion, we first identified 14 prognostic-related trait
LMRGs in LUSC, divided LUSC patients into three distinct clusters,
and formed two subtypes, LMH and LML, based on lactate metabo-
lism levels. The two subtypes showed distinct metabolic patterns,
an immune microenvironment, and biological characteristics, pro-
viding important information to explore the mechanisms of lactate
metabolism in LUSC. Meanwhile, we established a prognostic index
for LUSC based on differentially expressed hub genes of the two
subtypes, which was able to predict the responsiveness of patients
to immunotherapy, chemotherapy, and molecular targeted ther-
apy, and had a potential in guiding physicians to implement indi-
vidualized adjuvant therapy for patients with LUSC.
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