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Abstract
An essential prerequisite for the efficient biomechanical tailoring of crops is to accurately relate mechanical behavior to 
compositional and morphological properties across different length scales. In this article, we develop a multiscale approach 
to predict macroscale stiffness and strength properties of crop stem materials from their hierarchical microstructure. We 
first discuss the experimental multiscale characterization based on microimaging (micro-CT, light microscopy, transmis-
sion electron microscopy) and chemical analysis, with a particular focus on oat stems. We then derive in detail a general 
micromechanics-based model of macroscale stiffness and strength. We specify our model for oats and validate it against 
a series of bending experiments that we conducted with oat stem samples. In the context of biomechanical tailoring, we 
demonstrate that our model can predict the effects of genetic modifications of microscale composition and morphology on 
macroscale mechanical properties of thale cress that is available in the literature.

Keywords Continuum micromechanics · Microimaging · Hierarchical multiscale materials · Biomechanical tailoring · Oats

1 Introduction

Recent advances in genomics have paved the way for biome-
chanical tailoring of crops (Brulé et al. 2016). The tailoring 
of crop properties could open up a plethora of agricultural 
and forestry applications. Examples are the optimized deg-
radation of crop residues to biofuels (Vermerris and Abril 
2015; McCann et al. 2014), breeding high yield and lodging 
resistant crop species (Berry et al. 2004), and the design of 
engineered plants with functional properties for sustainable 
construction (Schleicher et al. 2015; Holstov et al. 2015). 
Genetic alterations, however, can change the mechanical 
behavior of crops, with dire consequences on its growth 

progress and survival (Horvath et al. 2010; Koehler and Tel-
ewski 2006). Therefore, there is a growing interest in models 
that can accurately and consistently predict the mechanical 
behavior of the genetically altered crop plant structure.

Plant materials organize themselves hierarchically across 
multiple length scales that range from base constituents such 
as lignin, cellulose, hemicellulose, and pectin to cell wall, 
functional tissue, organ, and whole plant levels (Wegst et al. 
2015). Figure 1 illustrates the hierarchical organization 
for the case of bamboo. The stiffness and strength prop-
erties of crops thus depend on a complex combination of 
morphological and compositional parameters across these 
length scales. In addition to mechanical requirements, they 
must meet physiological and reproductive requirements for 
survival. These factors contribute to the growth and mor-
phology of crops, and thus its mechanical properties. This 
complex interdependency makes it difficult to determine the 
contribution of each parameter to the mechanical properties 
through simple models. The detailed characterization of the 
hierarchical microstructure and a model considering all rel-
evant length scales are therefore core prerequisites for the 
reliable prediction of crop mechanical properties.

The framework of continuum micromechanics (Zaoui 
2002; Suquet 2014) presents a promising opportunity to 
model crop stem materials by rationally taking into account 
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their hierarchical structure. On the one hand, the direct 
resolution of all scales in a numerical sense implies pro-
hibitive computational cost (Nguyen et al. 2017; Yosibash 
et al. 2007), while other approaches such as the framework 
of cellular solids rely on extensive empirical parameter tun-
ing to address the wide variability and complexity due to 
the multiscale nature of plants (Gibson and Ashby 1999; 
Gibson 2005). On the other hand, the success of stiffness 
and strength models based on continuum micromechanics 
has been established for hierarchical materials such as bone 
and cement in the last decade (Fritsch and Hellmich 2007; 
Fritsch et al. 2009; Pichler and Hellmich 2011; Hamed et al. 
2012; Morin et al. 2017). In the plant modeling arena, con-
tinuum micromechanics approaches have been already used 
to predict microstructure–property relationships for wood 
(Hofstetter et al. 2005; Bader et al. 2010) and in our prior 
work on bamboo (Gangwar and Schillinger 2019).

In this article, we present a model for the stiffness and 
strength of crop stem materials in the framework of the cas-
cade continuum micromechanics approach that was recently 
proposed for a broad range of inclusion morphologies (Tim-
othy and Meschke 2016, 2017). In contrast to our work on 
bamboo that focused on functionally graded type materials, 
we focus here on the configuration of an inner layer of foam-
like parenchyma cells surrounded by a dense outer shell, 
which is typical for crop stems (Gibson et al. 1995). This 
morphology brings along specific challenges for deriving 
microstructure–property relationships, which we describe 
and suggest solutions for.

For the example of oat, we experimentally profile the 
compositional and morphological properties across the 
hierarchical levels in the crop stem material, using micro-
imaging technologies such as micro-CT, light microscopy, 
and transmission electron microscopy along with chemical 
composition analysis at the relevant scale. We show that all 
model parameters can be exclusively obtained from micro-
images without any phenomenological tuning. We assess the 

accuracy of our model predictions against flexural bending 
tests of oat stems. In addition, we demonstrate for thale cress 
that our model is able to consistently explain the contribu-
tion of compositional and morphological changes at different 
scales resulting from genetic mutation.

Our article is structured as follows: Sect. 2 characterizes 
the multiscale nature of crop stem material for the example 
of oat, using chemical analysis and microimaging technolo-
gies. In Sect. 3, we describe our micromechanics modeling 
approach for the stiffness and elastic limit strength of crop 
stem material and discuss essential modeling assumptions 
directly derived from plant physics. In Sect. 4, we validate 
model predictions that we obtained for parameters retrieved 
from the microimages reported in Sect. 2 with four-point 
bending flexural tests that we performed on oat stems. 
Finally, Sect. 5 demonstrates the ability of our model to 
quantify the effect of gene mutations and the associated 
compositional and morphological changes at multiple length 
scales on the macroscale mechanical properties.

2  Multiscale characterization of oat stem 
material

Crop stems usually consist of hollow and cylindrical inter-
node regions separated by nodes, where leaves are attached. 
The length of the internodes increases from the ground to 
the top (root to grain head). Figure 2a illustrates a typical 
macroscale anatomy. An in-depth geometric and material 
characterization enables a better physics-based understand-
ing of the mechanical behavior. In this section, we profile the 
compositional and morphological properties across scales 
for the example of the node and internode regions of oats. 
Advanced microimaging technologies such as computed 
tomography (CT), light microscopy, and transmission elec-
tron microscopy (TEM) along with chemical composition 
analysis enable the qualitative and quantitative description 

Fig. 1  Hierarchical structure of bamboo. Adapted from Wegst et al. (2015) with kind permission from Nature Publishing Group
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of various hierarchical levels in the plant stem organization. 
The oat stem specimens used for the analysis were grown 
at the University of Minnesota in greenhouses and fields in 
St. Paul, MN. Four commercial varieties of oats—Gopher, 
Reins, ND021052, and IL07-8721—were selected for the 
analysis. All specimens were checked for disease, pest dam-
age, and other mechanical damage. Only specimens with no 
visible damage were included for the imaging and chemical 
analysis.

2.1  Node morphology through micro‑CT images

Figure 2b schematically describes the morphology of the 
node in the longitudinal direction, moving toward the grain 
head. This figure also shows the selected micro-CT images 
indicating their position in the node region. It is apparent 
from the micro-CT images that the morphology changes 
from left to right (moving upwards to the grain head) in 
the node region. Image 3 depicts the dense node core mate-
rial, which is the hardest anatomical part of the oat stem. In 
images 4 and 5, the distinction between the outer and inner 
elliptical rings is apparent. In images 2 and 3, however, the 
elliptical rings are absent. This investigation reveals that the 
internode starts after the node core zone and the elliptical 
rings become smaller until they disappear, marking the start 
of the hollow upper internode. In conclusion, the structure of 
the node is asymmetrical along the length direction, which 
makes the node an important anatomical site in the context 
of the mechanical behavior of the plant. Similar morpho-
logical observations are reported for a wheat nodal region 
(Ghaffar and Fan 2015). In this contribution, however, we 
focus on the internode region.

2.2  Cross‑section through light microscopy images

Figure 3 illustrates anatomical details of the oat stem cross-
section in different regions via light microscopy images. 
Figure 3a, b outlines the elliptical rings in the upper inter-
node region and the dense node core material, respectively. 
Figure 3c, d shows the cross-section and the transverse-sec-
tion of the oat stem internode region. The morphological 
longitudinal profile of the internode region is consistent, 
excluding the beginning and the termination stages of the 
internode. These images confirm the observations described 
in Sect. 2.1.

In Fig. 3c, d, dense epidermal layers with elongated col-
lenchyma cell layers can be identified in the outer part of 
the internode cross-section. In this paper, we call these lay-
ers collectively the outer shell. The primary function of the 
outer shell is considered to stiffen the stem structure. In the 
inner part, vascular bundles are embedded in a matrix made 
up of parenchyma tissues. The vascular bundle tissues run 
through the length of the stem and have the main axis paral-
lel to the longitudinal direction of the stem. The vascular 
bundles integrated with the parenchyma tissues are antici-
pated to act as a compliant core supporting the outer shell 
against loads beard during the lifetime of a plant.

2.3  Functional regions through transmission 
electron microscopy images

Figure 4a demonstrates the morphology of fibers and vessels 
in a vascular bundle. Xylems and phloems are responsible 
for the transportation of nutrients and water into the plant. 
Xylem and phloem vessels are supported by sclerenchyma 
fiber sheath in a vascular bundle. The sclerenchyma fibers 

(a) (b)

Fig. 2  Typical anatomy of a crop plant and nodal region characterization with the help of micro-CT images



 T. Gangwar et al.

1 3

72

are long hollow tubes with thick cell walls oriented in the 
stem direction. The bundles are embedded in the paren-
chyma matrix. The parenchyma cells consist of thin cell 
walls and exhibit polyhedral geometry (see Fig. 4b). The 
cells are filled with living protoplasm and a major storage 
place for nutrients in the plant. The outer-shell region exhib-
its a similar morphology as sclerenchyma fibers. They have 
elongated thick cell walls surrounding holes (lumen) with 
a polygonic or circular cross-section (see Fig. 4c). The bio-
logical function of the epidermis is to control gas exchange 
and water balance.

The cell wall material in the functional regions is made 
up of cellulose, hemicellulose, and lignin. In the cell wall 
material, cellulose fibrils are helically wound with an average 
microfibril angle (MFA) to the cell axis that we denote by �̄� . 
Figure 4b, c depicts TEM images showing the multilayered 
cell wall structure in the parenchyma and epidermis cells in 
the oat stem, respectively. Lignin and hemicellulose are also 
hydrophilic sites within the cell wall material. Therefore, the 

properties of lignin and hemicellulose depend on moisture con-
tent (Cousins 1976, 1978).

2.4  Chemical composition of the oat stem

Table 1 summarizes the chemical composition as the per-
centage of total dry mass in the oat stem. Field-grown plants 
were collected two weeks after flowering, and oven-dried for 
two days to preserve samples. Tissue samples were grounded 

Fig. 3  Cross-section profile 
of an oat stem through light 
microscopy images

(a) (b)

(c) (d)

Table 1  Chemical composition of the oat stem in percentage of total 
dry mass

Variety Lignin Hemicellulose Cellulose
wl whc wc

Gopher 50.69 18.80 30.51
Reins 65.30 15.28 19.42
ND021052 61.20 17.83 20.97
IL07-8721 62.47 18.24 19.29
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and further divided into three types of chemical analysis. 
All chemicals used were research grade (Sigma-Aldrich, St. 
Louis, MO, USA). Hemicellulose concentration was deter-
mined by HPLC-MS (Anderson 2016; Anderson et al. 2015). 
Lignin was digested using a modified Klauson method to 
determine acid-soluble lignin (Aldaeus et al. 2011), while 
cellulose was determined by the one-step/two-step method 
(Yeats et al. 2016a, b).

In Table 2, we report the material constants of constituent 
materials cellulose, hemicellulose, lignin, and water. Native 
cellulose is a highly crystalline material that is assumed to 
exhibit a transversely isotropic behavior. This assumption 
has been confirmed experimentally in Matsuo et al. (1990), 
Nishino et al. (1995), where the longitudinal elastic proper-
ties of cellulose were determined by X-ray diffraction, and 
computationally in Mark (1967), Tashiro and Kobayashi 
(1996), where the full anisotropic behavior of cellulose was 
investigated via molecular dynamics simulations. Lignin and 
hemicellulose are hydrophilic amorphous materials. Cousins 
found that the stiffness of lignin and hemicellulose decreases 
with increasing moisture content (Cousins 1978, 1976). The 

living protoplasm of the cell is generally in a solute state. 
Therefore, from a mechanical point of view, it can be treated 
as water. We also assume that this water is in a drained state 
and therefore does not exert any pore pressure. Moreover, 
lignin is known to fail in shear, and its shear strength is 
reported as 20.2 MPa (Bader et al. 2010).

3  Multiscale modeling of stiffness 
and strength of crop stem material

In this section, we describe in detail our micromechanics-
based modeling approach for crop stem materials. First, 
we review central concepts of continuum micromechanics, 
largely following the excellent presentations given in Zaoui 
(2002), Fritsch et al. (2009), Suquet (1997). We then describe 
the multistep micromechanical representation of the hierarchi-
cal organization of crop stem materials and establish micro-
structure–stiffness and microstructure–strength relationships. 
Our modeling decisions and required parameters are based on 

(a) (b) (c)

Fig. 4  Functional region characterization through transmission electron microscopy (TEM)

Table 2  Mass densities and stiffness properties of constituent phases

E
A
 ( �

A
 ) and E

T
 ( �

T
 ) denote axial and transverse stiffness moduli (Poisson’s ratios), G

A
 denotes the axial shear modulus. k and � denote bulk and 

shear moduli for isotropic material.
Values of E, G, k and � are in GPa, density (g/cm3 ) is obtained from de Borst and Bader (2014) and references therein.

Constituent Density Material behavior Elastic coefficients References

Cellulose 1.59 Transversely isotropic E
A
= 130

�
A
= 0.087

E
T
= 15

�
T
= 0.49

G
A
= 3 Matsuo et al. (1990), Nishino et al. (1995), Mark 

(1967),Tashiro and Kobayashi (1996), Harrington 
et al. (1998)

Hemicellulose 1.50 Isotropic E = 9.00 � = 0.20 Cousins (1978), Bergander and Salmén (2002), Persson 
(2000)

Lignin 1.37 Isotropic E = 5.25 � = 0.33 Cousins (1976), Persson (2000)
Water 1 Isotropic k

w
= 2.30 �

w
= 0



 T. Gangwar et al.

1 3

74

the multiscale characterization data discussed in the previous 
section.

3.1  Conceptual overview of continuum 
micromechanics

3.1.1  Basic concepts and assumptions

The goal of continuum micromechanics is to replace the 
actual complex heterogeneous medium with a fictitious 
homogeneous one that has equivalent global behavior. An 
important objective is to establish an “equivalent homogene-
ous element” whose mechanical response is equivalent to a 
representative volume element (RVE) of the microheteroge-
neous material. One major prerequisite is that length scales 
are clearly separated:

Equation (1) states that the characteristic length scale of 
such an RVE, l, must be considerably larger than the dimen-
sions of heterogeneities in the RVE, d. Moreover, l must 
be much smaller than the characteristic length scale of the 
variation in the loading on the macroscopic structure, L. In 
addition, the smallest characteristic length scale, d, should 
respect the lower bound on the length scale under which the 
assumptions of continuum mechanics are still valid.

In each phase r, the average microscopic stress �r , the 
average microscopic strain �r , and the phase stiffness �r are 
related as

Using the equilibrated microscopic stress field � , that is, 
∇ ⋅ � = 0 , we can derive a homogenized macroscopic stress 
field � by taking the average over the RVE volume V as

Homogeneous strain boundary conditions at the boundary 
of the RVE can be parameterized as ug(x) = Ex , where E is 
the macroscopic strain tensor, and x is the position vector 
at the boundary of the RVE. The resulting kinematically 
compatible microscopic strains � inside the RVE fulfill the 
volume-averaged condition as

The homogenized macroscopic stress and strains, � and E , 
are related to the homogenized macroscopic stiffness tensor 
ℂ

hom as

(1)d ≪ l ≪ L.

(2)�r = �r ∶ �r.

(3)� = ⟨�⟩ = 1

V ∫V

� dV =
�

r

�r�r.

(4)E = ⟨�⟩ = 1

V ∫V

� dV =
�

r

�r�r.

(5)� = ℂ
hom ∶ E.

The homogenized macroscopic stiffness tensor ℂhom of the 
RVE needs to be linked with the geometric and mechanical 
characteristics of all constituent phases. A fourth-order con-
centration tensor �r of phase r establishes the link between 
the average macroscopic strain E and the average micro-
scopic strain �r in phase r as

Inserting (6) into (2) and averaging over all the phases 
according to (3) yields

From (7) and (5), we identify the relation between the mac-
roscopic stiffness ℂhom , and the phase stiffnesses �r and the 
concentration tensors �r as

3.1.2  Eshelby’s analytical solution‑based elastic 
homogenization

The computation of the concentration tensor �r can be 
based on Eshelby-type analytical solutions. They relate 
the strain in an ellipsoidal inclusion perfectly bonded with 
the surrounded infinite matrix to the applied homogene-
ous strains at infinity. The elastic moduli of the matrix and 
the ellipsoidal inclusion are denoted as ℂ0 and �H , respec-
tively. Following (Zaoui 2002), the uniform strain field �H 
in the inclusion in response to the homogeneous strain E0 
at infinity is

where � is the fourth-order unit tensor and ℙ0

H
 is known as 

Hill tensor that characterizes the morphology of the inclu-
sion and its interaction with the surrounding matrix. ℙ0

H
 

depends on the morphology, that is, the shape and orienta-
tion of the inclusion as well as the stiffness tensor of the 
reference matrix ℂ0 . Analytical expressions for ℙ0

H
 can be 

found in Laws (1977, 1985).
For the estimation of �r , we approximate the aver-

age strains in each phase r by such inclusion strains, i.e., 
�r = �H . It implies that the average strains �r in each phase 
of the RVE are considered to be equal to those of an ellip-
soidal inhomogeneity with phase stiffness �r , embedded in a 
fictitious infinite matrix with stiffness ℂ0 , subjected to some 
homogeneous strain E0 applied at infinity. Using the strain 
average rule (4), we can find a relation between the homog-
enized macroscopic strain E and the homogeneous strain E0 
at infinity in the fictitious matrix as

(6)�r = �r ∶ E.

(7)� =
∑

r

�r�r ∶ �r ∶ E.

(8)ℂ
hom =

∑

r

�r𝕔r ∶ 𝔸r.

(9)�H = [𝕀 + ℙ
0

H
∶ (𝕔H − ℂ

0)]−1 ∶ E
0
,
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The relation between E0 and E accounts for the influence of 
the fictitious matrix phase strains on the inclusion strains. 
The simplest case with E0 = E results in the dilute scheme, 
where inclusions do not affect each other. Here, we briefly 
summarize schemes that account for the influence on one 
phase caused by other phases. With �r = �H , substitution 
of E0 in (9) and comparison with (6) yields the following 
estimate of the concentration strain tensor �r:

The expression for the homogenized stiffness ℂhom follows 
from (11) and (8) as

In (11) and (12), ℂ0 accounts for the influence that inclu-
sions have on each other in the RVE. If one of the phases 
assumes the role of the matrix for other phases, that is, 
ℂ

0 = 𝕔M , where �M represents the stiffness of the matrix 
phase, the homogenization method is called Mori-Tanaka 
scheme (Mori and Tanaka 1973; Wakashima and Tsukamoto 
1991). Another way to capture this influence is averaging 
the response of all phases in the sense of a virtual matrix 
material, that is, ℂ0 = ℂ

hom . This homogenization method 
is known as the self-consistent scheme (Kröner 1958; Hill 
1963). It is particularly useful in the morphologically dis-
ordered case, for instance, when several phases are present 
that interpenetrate each other such that a clear distinction 
between matrix and inclusions is impossible.

3.1.3  Estimate of homogenized elastic limit strength

A macroscale RVE reaches the elastic limit state when any 
one of the constituents in the RVE yields. Let us focus on 
the weakest constituent phase, denoted by index r = w . We 
assume that its elastic limit behavior is described by the foll-
lowing failure criterion

where �w is the stress distribution in the weak phase w. We 
write �w in terms of the effective strain �∗

w
 with the help of 

the elasticity tensor �w as

(10)E
0 =

{
∑

r

�r[𝕀 + ℙ
0

r
∶ (𝕔r − ℂ

0)]−1

}−1

∶ E.

(11)

𝔸r = [𝕀 + ℙ
0

r
∶(𝕔r − ℂ

0)]−1 ∶
{

∑

r

�r[𝕀 + ℙ
0

r
∶ (𝕔r − ℂ

0)]−1

}−1

.

(12)

ℂ
hom =

∑

r

�r𝕔r ∶ [𝕀 + ℙ
0

r
∶ (𝕔r − ℂ

0)]−1 ∶

[
∑

s

�s[𝕀 + ℙ
0

s
∶ (𝕔s − ℂ

0)]−1

]−1

.

(13)�w(�w) ≤ 0,

A natural choice for the effective strain tensor �∗
w
 would be 

the average phase strain introduced in (6). However, micro-
scopic failure is governed by “peak strains” rather than by 
“average strains.” The strain peaks in phase w can be esti-
mated with the second-order moment of the strain field in 
this phase, which is the quadratic strain average �w over the 
phase volume Vw expressed as

The stress tensor �w can be computed in the weak phase with 
the effective strain �∗

w
 , which allows us to evaluate the failure 

criterion for the weak phase from (13). ℂhom represents the 
overall stiffness of the RVE as a function of the elastic stiff-
ness coefficients of the individual constituent phases. The 
elastic coefficients, the bulk modulus and the shear modulus 
of the weak phase with the volume fraction �w are denoted 
by kw and �w , respectively. Following (Suquet 1997), the 
von Mises equivalent strain of the quadratic strain average 
�w can be related to the macroscopic strains E imposed on 
the boundary of the RVE as

The von Mises equivalent stress �eq is defined as

where �dev
ij

 represents the deviatoric stress field. Following 
(16) and (17), the von Mises equivalent stress in the weak 
phase �eq(w) is

If �w is a scalar deviatoric stress-based failure criterion such 
as the von Mises criterion, then it can be expressed in terms 
of �eq(w) . It implies that the local phase-related failure cri-
terion (13) can be expressed in terms of the macroscopic 
strains E following (18). With E = [ℂhom]−1 ∶ � , the weak 
phase criterion �w translates to the macroscopic failure cri-
terion � as

We note that the limiting stress level � in (19) is the elastic 
limit strength of the RVE.

(14)�w = �w ∶ �
∗
w
.

(15)�
∗
w
= �w = ⟨� ∶ �⟩1∕2

w
=

�
1

Vw
∫Vw

1

2
� ∶ �dV

�1∕2

.

(16)⟨�2
eq(w)

⟩ = 1

3�w

E ∶
� ℂ

hom

��w

∶ E.

(17)�eq =
(
3

2
�dev
ij

�dev
ij

)1∕2

,

(18)�eq(w) = 3�w�eq(w) = �w

(
1

�w

E ∶
�ℂhom

��w

∶ E

)1∕2

.

(19)�(�) ≤ 0.
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3.2  From hierarchical representation to multistep 
micromechanics modeling

Figure 5 provides a summary of our multistep micromechanics 
model. Following Sect. 2, we transfer the multiscale characteri-
zation (given here for the example of an oat stem) in a multistep 

Fig. 5  Multistep micromechanical representation of crop stem mate-
rial. The two columns in a represent individual models for the paren-
chyma and vascular bundles in the soft-pith region. b depicts the 

multistep model for the outer-shell region and c a schematic represen-
tation of the stem cross-section



Multiscale characterization and micromechanical modeling of crop stem materials  

1 3

77

micromechanical representation. The cross-section of a crop 
stem consists of an outer shell and the inner foam-like soft pith. 
To this end, we build multistep micromechanics models for both 
regions independently and combine them together in the crop 
stem cross-section (see Fig. 5c). Here, we describe each RVE of 
the multistep model for outer-shell and soft-pith regions.

• At the finest scale in the soft-pith, we consider RVEs of 
the cell wall material in the parenchyma and sclerenchyma 
region, represented by level (a1) and (a2) in Fig. 5. Each 
RVE is regarded as a three-phase material, consisting of 
crystalline cellulose, hemicellulose, and lignin. The cylin-
drical cellulose fibrils helically wind around the lumen 
within the cell wall with an average inclination angle to the 
cell axis denoted as microfibril angle (MFA) �̄� . Since all 
three phases have contact with each other, we assume that 
they form an “average” transversely isotropic matrix. The 
“average” matrix hosts spherical inclusions of hemicellu-
lose and lignin, and helically wound cylindrical inclusions 
of the cellulose fibrils.

• The RVE at level (b1) represents the parenchyma base 
tissues in the soft-pith region. It contains two phases: the 
cell wall material and the living symplast. The mechani-
cal properties of living symplast are assumed equivalent to 
water. Due to its polyhedral geometry, we assume that the 
living symplast forms spheroidal inclusions in the matrix 
of the cell wall material.

• The RVE at level (b2) represents a sclerenchyma fiber, that 
consists of a matrix of cell wall material hosting cylindri-
cal inclusions of lumens. The RVE at level (c) represents a 
vascular bundle in soft pith, where xylem and phloem tis-
sues are surrounded by sclerenchyma sheath. The constitu-
ent phases of this RVE are sclerenchyma fibers (matrix) 
and vessels (cylindrical inclusion assumed to be filled with 
water).

• At the RVE level (d), the parenchyma base material and 
the vascular bundles are brought together to form soft pith. 
The vascular bundles are distributed in the parenchyma 
matrix. They run through the whole length of the stem and 
are modeled as cylindrical inclusions.

• The multistep model for the outer shell consists of two 
RVEs (see Fig. 5b). The RVE at level (e) represents a cell 
wall material for the outer-shell region. It is equivalent to 
the level (a2) in the soft-pith region. Level (e) forms matrix 
and hosts cylindrical inclusions of lumens for the RVE of 
an outer-shell material at level (f).

3.3  Microstructure–stiffness relationship 
in the elastic range

We describe the homogenization procedure for the elastic 
stiffness coefficients for the example of oat. To this end, 

we consider the hierarchical structure in terms of the RVEs 
illustrated in Fig. 5. Homogenization in the elastic range 
is mainly based on the central relation (12).

3.3.1  Cell wall materials

In the RVE that corresponds to the cell wall material in 
the parenchyma region (level a1 in Fig. 5), we denote the 
volume fractions of hemicellulose, lignin, and crystalline 
cellulose as �wall,par

h
 , �wall,par

l
 , and �wall,par

cc  , which satisfy 
�
wall,par

l
+ �

wall,par

h
+ �

wall,par
cc = 1 . The stiffness tensors of 

hemicellulose, lignin, and cellulose, �h , �l , and �cc , can 
be filled with values from Table 2. All three phases are 
in contact with each other and form an intimate mixture. 
Therefore, we assume the self-consistent scheme with an 
“average” host matrix for this RVE. As discussed in the 
previous section, helically wound cylindrical inclusions of 
cellulose fibrils, and spherical inclusions of hemicellulose 
and lignin are embedded in this “average” matrix.

To account for the helical orientation of the fibrils, we 
assume that there are infinite cylindrical cellulose fibrils 
embedded in the “average” matrix in the RVE of the cell 
wall material (Hofstetter et al. 2006). The orientation of 
these inclusions is defined by the two angles ( 𝜑, �̄� ). We can 
obtain the Hill tensor ℙ0

r
= ℙ

wall,par

cyl
 for a cylindrical inclu-

sion in the transversely isotropic “average” matrix that 
refers to a local coordinate system (see Appendix A.1 in 
Fritsch et al. (2009)). Tensors �cc(𝜑, �̄�) and ℙhl,par

cyl
(𝜑, �̄�) for 

one such cylindrical inclusion in the global coordinate 
system can be obtained by standard tensor transformations 
(Salençon 2012; Bao 2005).

The Hill tensor ℙwall,par

sph
 describes the morphological dis-

tribution for the spherical inclusions of the hemicellulose 
and lignin in the RVE. For the calculation of its components, 
we refer to Appendix A. 2 in Fritsch et al. (2009). Following 
(12) with ℂ0 = ℂ

hom = ℂ
par

wall
 , we arrive at the stiffness tensor 

ℂ
par

wall
 of the cell wall material in the parenchyma region as

where the operator ⟨.⟩ is defined as
(20)

ℂ
par

wall
=

{
∑

r

𝜙wall,par
r

𝕔r ∶ [𝕀 + ℙ
wall,par

sph
∶ (𝕔r − ℂ

par

wall
)]−1

+𝜙wall,par
cc

⟨
𝕔cc(𝜑, �̄�) ∶ [𝕀 + ℙ

wall,par

cyl
(𝜑, �̄�) ∶ (𝕔cc(𝜑, �̄�)

−ℂ
par

wall
)]−1

⟩}
∶

{
∑

s

𝜙wall,par
s

[𝕀 + ℙ
wall,par

sph
∶ (𝕔s

− ℂ
par

wall
)]−1 + 𝜙wall,par

cc

⟨
[𝕀 + ℙ

wall,par

cyl
(𝜑, �̄�) ∶

(𝕔cc(𝜑, �̄�) − ℂ
par

wall
)]−1

⟩}−1
; r, s ∈ [h, l]

(21)⟨g(�)⟩ = 1

2� ∫
2�

0

g(�)d�.
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Due to its implicit format with respect to ℂpar

wall
 , relation (20) 

is computed iteratively (Hellmich et al. 2004; Hellmich and 
Ulm 2002). We note that the integration over � in (21) is 
performed numerically with a simple rectangle rule.

We deal with the RVE of the cell wall material in the 
sclerenchyma region (level a2 in Fig. 5) in a similar fashion, 
where the volume fraction of hemicellulose, lignin, and cel-
lulose are �wall,fib

l
 , �wall,fib

h
 , and �wall,fib

cc  . The corresponding 
homogenized stiffness tensor ℂfib

wall
 of the RVE is

3.3.2  Parenchyma region

The RVE of the parenchyma (level b1 in Fig. 5) contains the 
inclusions of the living symplast in the matrix of the cell wall 
material. Previous studies indicate that their volume fraction 
in the parenchyma is in the range of 0.5 − 0.8 (Gangwar and 
Schillinger 2019). Neither the Mori-Tanaka scheme nor the 
self-consistent scheme is suitable at higher inclusion volume 
fractions. On the one hand, the Mori-Tanaka scheme assumes 
inclusions to be completely isolated with a continuous matrix, 
and this completely connected matrix contributes to the over-
all stiffness even at a very high volume fraction of the inclu-
sions. Therefore, it largely overestimates the elastic proper-
ties at higher inclusion volume fractions. On the other hand, 
the self-consistent scheme assumes phases to be perfectly in 
contact with each other. Beyond a certain volume fraction 
of inclusions, however, the matrix does not have a sufficient 
volume fraction to form a connected matrix to resist material 
failure. Therefore, the self-consistent scheme leads to physi-
cally meaningless homogenization estimates above a particular 
inclusion volume fraction (Willis 1977).

Timothy and Meschke proposed the cascade continuum 
micromechanics (CCM) model to estimate elastic properties 
for a broad range of inclusion volume fractions (Timothy and 
Meschke 2016, 2017). We briefly outline the model in Appen-
dix A for completeness, but refer interested readers to Timothy 
and Meschke (2016, (2017) for details. Basically, CCM is a 
set of matrix-inclusion problems obtained through recursion. 
Recursion or cascade level n represents the degree of connec-
tivity of the inclusion phase (see 40). Following (Timothy and 

(22)

ℂ
fib

wall
=

{
∑

r

𝜙wall,fib
r

𝕔r ∶ [𝕀 + ℙ
wall,fib

sph
∶ (𝕔r − ℂ

fib

wall
)]−1

+𝜙wall,fib
cc

⟨
𝕔cc(𝜑, �̄�) ∶ [𝕀 + ℙ

wall,fib

cyl
(𝜑, �̄�) ∶ (𝕔cc(𝜑, �̄�)

−ℂ
fib

wall
)]−1

⟩}
∶

{
∑

s

𝜙wall,fib
s

[𝕀 + ℙ
wall,fib

sph
∶ (𝕔s

−ℂ
fib

wall
)]−1 + 𝜙wall,fib

cc

⟨
[𝕀 + ℙ

wall,fib

cyl
(𝜑, �̄�) ∶

(𝕔cc(𝜑, �̄�) − ℂ
fib

wall
)]−1

⟩}−1

; r, s ∈ [h, l].

Meschke 2016), the morphology of the parenchyma region is 
identical to foam, and cascade level n = 2 leads to good agree-
ment with experimental results. We use the CCM model with 
n = 2 to estimate the homogenized stiffness of the parenchyma 
region following (40) and (22).

We denote the volume fraction of the living symplast inclu-
sions and the cell wall material matrix as �par

ls
 and �par

wall
 , which 

satisfy �par

ls
+ �

par

wall
= 1 . The elastic properties of the living 

symplast can be assumed to be equivalent to water, that is, �w . 
At cascade level n = 1 , the cell wall material acts as a matrix, 
that is, 𝕔m = ℂ

par

wall
 in (41a), in which the symplast forms sphe-

roidal inclusions. With the Hill tensor ℙ0
r
= ℙ

wall
sphrd

 , which cor-
responds to spheroidal inclusions with a known elongation 
ratio in the transversely isotropic matrix of the cell wall mate-
rial (Laws 1985), the homogenized stiffness tensor ℂ(1)

par
 at 

cascade level n = 1 can be expressed as

The homogenized stiffness tensor ℂ(1)
par

 acts as a matrix for 
cascade level n = 2 . Following (41b) with analogous nota-
tions, we obtain the stiffness tensor of the parenchyma ℂpar 
as

3.3.3  Sclerenchyma fibers and vascular bundles

In the RVE of the sclerenchyma fibers (level b2 in Fig. 5), 
we denote the volume fractions of the cell wall material in 
the matrix phase as �fib

wall
 and the volume fraction of the 

lumen inclusions as �fib

lum
 , where �fib

wall
+ �

fib

lum
= 1 . The stiff-

ness of the lumen material is the same as stiffness �w of 
water. The RVE can be suitably modeled by the Mori-Tanaka 
scheme. Hence, we assume that ℂ0 = ℂ

fib

wall
 and ℙ0

r
= ℙ

wall
cyl

 , 
which corresponds to cylindrical inclusions in the trans-
versely isotropic matrix of the cell wall material in scleren-
chyma fibers (Fritsch et al. 2009). Following (12), the stiff-
ness tensor ℂ

fib
 for the RVE of the sclerenchyma region can 

be obtained as

(23)

ℂ
(1)
par

=
{
�
par

wall
ℂ

par

wall
+ �

par

ls
𝕔w ∶ [𝕀 + ℙ

wall
sphrd

∶

(𝕔w − ℂ
par

wall
)]−1

}
∶
{
�
par

wall
𝕀 + �

par

ls
[𝕀 +

ℙ
wall
sphrd

∶ (𝕔w − ℂ
par

wall
)]−1

}−1

.

(24)

ℂ
par

=
{
�
par

wall
ℂ

(1)
par

+ �
par

ls
𝕔w ∶ [𝕀 + ℙ

par,(1)

sphrd
∶

(𝕔w − ℂ
(1)
par

)]−1
}
∶
{
�
par

wall
𝕀 + �

par

ls
[𝕀 +

ℙ
par,(1)

sphrd
∶ (𝕔w − ℂ

(1)
par

)]−1
}−1

.
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In the RVE of the vascular bundle (level c in Fig. 5), we 
denote the volume fractions of the sclerenchyma fibers and 
the vessels as �

fib
 and �

v
 , where �

fib
+ �

v
= 1 . The vessels 

form cylindrical inclusions in the matrix of sclerenchyma 
fibers, which motivates the use of the Mori-Tanaka scheme. 
We are given the Hill tensor ℙ0

r
= ℙ

fib

cyl
 , which corresponds 

to cylindrical inclusions in the transversely isotropic matrix 
of the sclerenchyma fibers (Fritsch et al. 2009). Hence, with 
ℂ

0 = ℂ
fib

 , the elastic stiffness tensor ℂ
vb

 of a vascular bundle 
RVE can be determined as

3.3.4  Soft‑pith and outer‑shell materials

The macroscopic section of the crop stem material is made up 
of a soft-pith core surrounded by outer-shell material (see 
Fig. 5c). In the RVE of the soft-pith region (level d in Fig. 5), 
the vascular bundles are embedded into the matrix of paren-
chyma base tissues. The volume fraction of the parenchyma 
region and the vascular bundles are �

par
 and �

vb
 , such that 

�
par

+ �
vb
= 1 . The RVE can be suitably modeled by the 

Mori-Tanaka scheme. Hence, we assume that ℂ0 = ℂ
par

 and 
the Hill tensor ℙ0

r
= ℙ

par

cyl
 , which corresponds to cylindrical 

inclusions in the transversely isotropic matrix of the paren-
chyma (Fritsch et al. 2009). Following (12), we arrive at the 
homogenized stiffness tensor ℂpith of the soft-pith as

Figure 5c shows a multistep model for the outer-shell mate-
rial. The RVE of the cell wall material in this model (level e 
in Fig. 5) is identical to the RVE level (a2) . In the RVE of 
the outer-shell at level (f) , we denote the volume fractions 
of the cell wall material and lumen as �shell

wall
 and �shell

lum
 , where 

�shell
wall

+ �shell
lum

= 1 . The RVE can be modeled by the Mori-
Tanaka scheme. The stiffness of the lumen material is the 
same as the stiffness �w of water. With ℂ0 = ℂ

fib

wall
 from (22) 

(25)

ℂ
fib

=
{
�
fib

wall
ℂ

fib

wall
+ �

fib

lum
𝕔w ∶ [𝕀 + ℙ

wall
cyl

∶

(𝕔w − ℂ
fib

wall
)]−1

}
∶
{
�
fib

wall
𝕀 + �

fib

lum
[𝕀 +

ℙ
wall
cyl

∶ (𝕔w − ℂ
fib

wall
)]−1

}−1

.

(26)
ℂ

vb
=
{
�
fib
ℂ

fib
+ �

v
𝕔w ∶ [𝕀 + ℙ

fib

cyl
∶ (𝕔w − ℂ

fib
)]−1

}
∶

{
�
fib
𝕀 + �

v
[𝕀 + ℙ

fib

cyl
∶ (𝕔w − ℂ

fib
)]−1

}−1

.

(27)

ℂ
pith

=
{
�
par

ℂ
par

+ �
vb
ℂvb ∶ [𝕀 + ℙ

par

cyl
∶

(ℂvb − ℂ
par

)]−1
}
∶
{
�
par

𝕀 + �
vb
[𝕀 + ℙ

par

cyl
∶

(ℂvb − ℂ
par

)]−1
}−1

.

and ℙ0
r
= ℙ

wall
cyl

 and following (12), the stiffness tensor for the 
RVE of the outer shell is

3.4  Upscaling elastic limit strength in crop stem 
material

In the next step, we estimate the elastic limit strength of the 
soft-pith and outer-shell materials in the crop stem cross-
section, following the discussion in Sect. 3.1.2. The elastic 
limit point in wood and grass stems correspond to the yield-
ing of lignin at microscales (Hofstetter et al. 2008; Gang-
war and Schillinger 2019). Therefore, we assume that the 
soft-pith material and the outer-shell material reach the limit 
state when the elastic limit is reached in the lignin phase at 
the microscales. Lignin is an amorphous material, and it is 
known to fail in shear (Bader et al. 2010). The shear strength 
of lignin slig is reported as 20.2 MPa (Bader et al. 2010). Its 
stress–strain response is assumed to be first elastic and then 
perfectly plastic, following the von Mises failure criterion 
expressed as

�eq(l) is the von Mises equivalent stress of the quadratic stress 
average in the lignin phase, which can be evaluated from 
(17).

3.4.1  Elastic limit of the soft‑pith material

Algorithm 1 outlines how to compute the elastic limit 
strength of the soft-pith material. The parenchyma base 
material and the vascular bundles come together to form 
the soft-pith material (level d in Fig. 5). Both parenchyma 
and vascular bundle branches have lignin at the lowermost 
cell wall material levels. Therefore, the yielding of lignin 
within any one of parenchyma or vascular bundle tissues 
determines the elastic limit state of the soft-pith material. 

(28)

ℂ
shell

=
{
�shell
wall

ℂ
fib

wall
+ �shell

lum
𝕔w ∶ [𝕀 + ℙ

wall
cyl

∶

(𝕔w − ℂ
fib

wall
)]−1

}
∶
{
�shell
wall

𝕀 + �shell
lum

[𝕀 + ℙ
wall
cyl

∶

(𝕔w − ℂ
fib

wall
)]−1

}−1

.

(29)�lig(�l) = �2

eq(l)
− 3s2

lig
≤ 0,
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By analogy to (18), we write the von Mises equivalent 
of the quadratic stress averages �eq(l),par in the lignin phase 
embedded in the parenchyma tissues as

where �lig,par is the equivalent volume fraction of the lignin in 
the parenchyma, computed as �lig,par = �par ⋅ �

par

wall
⋅ �

wall,par

l
 . 

The derivative term �ℂpith∕��lig,par denotes the change in 
the elasticity tensor of soft-pith material with respect to the 
change in the shear modulus of the lignin phase in the cell 
wall material of the parenchyma region. This derivative 
can be evaluated via a finite difference approximation (see 
Appendix 3 in Pichler et al. (2008)). Uniform macrostrain 
Epith imposed on the RVE of the soft-pith material is related 
to the macrostress �pith as

We emphasize that we do not “successively” propagate from 
one RVE to the other. The term �ℂpith∕��lig,par implicitly 
accounts for all hierarchical scales and directly provides 
access down to the lignin phase. In Pichler and Hellmich 
(2011), a similar approach is used for upscaling the strength 
of cement paste and mortar. The failure criterion for the 
lignin in the parenchyma region follows from (29) as

Similarly, we write the von Mises equivalent of the quadratic 
stress average �eq(l),fib in the lignin phase in the fibers embed-
ded in the bundles as

(30)
�eq(l),par

�lig

=

(
1

�lig,par

Epith ∶
� ℂpith

��lig,par

∶ Epith

)1∕2

.

(31)Epith = [ℂpith]
−1 ∶ �pith.

(32)�lig,par = �2

eq(l),par
− 3s2

lig
≤ 0.

where �lig,fib is the equivalent volume fraction 
of the lignin in the bundle regions, computed as 
�lig,fib = �vb ⋅ �fib ⋅ �

fib

wall
⋅ �

wall,fib

l
 . The corresponding fail-

ure criterion is

The stress level �pith that violates (31) or (33) is the elastic 
limit strength �el

pith
 of the soft-pith region (see also 

Algorithm 1).

3.4.2  The elastic limit of the outer‑shell region

Following the above discussion, determining the elastic limit 
strength of the outer shell (see Fig. 5) is straightforward. We 
can write the von Mises equivalent of the quadratic stress 
average �eq(l),shell in the lignin phase as a function of the mac-
roscopic strain Eshell imposed on the RVE as

where �lig,shell is the equivalent volume fraction of lignin in 
the outer-shell region, computed as �lig,shell = �shell

wall
⋅ �

wall,fib

l
 . 

The macroscopic strain Eshell can be expressed in terms of 
macrostress �shell with the help of the homogenized elastic-
ity tensor ℂshell as

Corresponding failure criterion �lig,shell reads as:

Equation (37) together with (35) and (36) affects the macro-
scopic failure criterion for the outer-shell region. The stress 
level �shell that results in the failure of lignin according 
to (37) is the elastic limit strength �el

shell
 of the outer-shell 

region.

4  Results and discussion

In this section, we first validate our micromechanics-based 
model against four-point bending tests that we performed 
on oat stems. To this end, we integrate our multiscale mate-
rial model with macroscale finite element analysis. We 
then illustrate the potential of our model for simulating and 
understanding the biomechanical tailoring of crop stems. To 
this end, we quantify the effect of genetic modifications on 

(33)
�eq(l),fib

�lig

=

(
1

�lig,fib

Epith ∶
� ℂpith

��lig,fib

∶ Epith

)1∕2

.

(34)�lig,fib = �2

eq(l),fib
− 3s2

lig
≤ 0.

(35)
�eq(l),shell

�lig

=

(
1

�lig,shell

Eshell ∶
� ℂshell

��lig,shell

∶ Eshell

)1∕2

(36)Eshell = [ℂshell]
−1 ∶ �shell.

(37)�lig,shell = �2

eq(l),shell
− 3s2

lig
≤ 0.
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the mechanical properties of thale cress as predicted by our 
micromechanics model and compare the predictions with 
experimental evidence reported in the literature.

4.1  Model validation against four‑point bending 
experiments with oat stems

To validate our micromechanics model against crop stem 
experiments, we conducted a series of standard four-point 
bending tests with oat stems. The stem specimens used in 
the tests were grown in the fields at the University of Min-
nesota in St. Paul, MN. Four commercial varieties of oats—
Gopher, Reins, ND021052, and IL07-8721—were planted in 
the summer of 2017 with four different sowing dates for each 
variety. Plants were randomly selected for the tests includ-
ing all of the varieties. The plants were carefully plucked 
with visually intact roots and kept for 24 h with the roots 
submerged in water. Test specimens were prepared from dif-
ferent internode locations for each plant. The leaf sheath was 

carefully removed, and adjacent nodes were kept to maintain 
the integrity of the specimens. Only specimens with no vis-
ible damage were included in the four-point bending tests.

Figure 6a shows the schematic diagram of the four-point 
bending test apparatus. The total span length and loading 
span length were fixed at 40 mm and 20 mm. The oat stem 
specimen can be approximated as a hollow cylinder with 
an elliptical cross-section. The major axis was kept perpen-
dicular to the transverse loading axis in the tests. The major 
axis a, the minor axis b, and the thickness t were measured 
at different locations with Vernier calipers, and the average 
values are reported in B. The tests were conducted via a 
universal testing frame (MTS Instron 858 Mini Bionix II) 
with a 500 N load cell. The loading platen was displaced at 
a slow rate of 0.01 mm/s during the tests (see Fig. 6b). Load 
P and displacement data were recorded every second until 
a clear failure of the specimen. Failure is when the speci-
men loses structural integrity after a complete ovalization 
of the cross-section under the loading pins. Thereafter, the 

(a)

(b) (c)

Fig. 6  Material characterization of oat stems
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load begins to decrease with an increasing deflection in the 
recorded load–displacement curve (Fig. 6c). The failure load 
along with the slope of the load–displacement curve in the 
linear elastic region (red line in Fig. 6c) is reported in B.

We then build a finite element model for each specimen 
in the commercial software ABAQUS, discretizing the 
inner solid core region with twenty-node brick elements 
(C3D20R) and the outer-shell region with eight-node shell 
elements (S8R), respectively. Since the basis functions of 
the shell conform with those of the solids at the coupling 
surface, surface locking between shell and solid elements is 
prevented (Schillinger et al. 2018). Once the model param-
eters are known for each oat variety (see B), we calculate 
and assign the macroscopic elastic stiffness moduli and 

strength properties for both the solid core and shell region. 
We model the loading and supporting pins using three-
dimensional rigid elements (R3D4). We define surface-to-
surface interactions between the specimen model and the 
rigid pins with a tangential friction coefficient of 0.2. We 
fix the support pins and apply the vertical displacement at 
the loading pins, keeping other displacement components 
zero. We perform nonlinear finite element analysis using the 
displacement control static-general algorithm in ABAQUS. 
We also considered the nonlinear geometric effects in the 
simulations. A typical load–displacement curve for one of 
the specimens obtained from the simulation and from the 
experimental observations is shown in Fig. 7b. A linear part, 
a peak and a softening branch are apparent in this figure. The 

(a) (b)

(c) (d)

Fig. 7  Comparison of results from the micromechanics model and the experimental tests
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softening branch is a result of the interaction of geometric 
nonlinearities and material yielding. However, in this work, 
we mainly focus on the linear elastic slope and peak failure 
load predictions. In the softening region, large macroscopic 
deformation gradients may invoke second-order effects on 
the microscales. In the scope of the present work, we do not 
account for these effects in the material model.

Figure 7c, d plots 24 four-point bending simulation pre-
dictions versus the experimental values for the linear elastic 
slope and the failure load, respectively. These plots show 
good agreement between the simulations and the experi-
ments. The correlation coefficient R between the experi-
mental and simulation results for the linear-elastic slope and 
failure load is 0.65 and 0.88, respectively. We also compute 
the mean percentage difference and standard deviation of 
the relative difference in percent between the experimental 
results and model predictions,

where q is either the linear elastic slope or the failure load. 
We find that the relative difference ē ± esd is in the range 
of 16.9 ± 23.9% for the linear elastic slope and in the range 
−0.4 ± 22.0% for the failure load. The variance in the 
experimental observations and model predictions is mainly 
because of possible measurement and experimental errors. 
Overall, the results confirm that our material model is able 
to accurately predict the stiffness and strength properties of 
oat stem sections.

4.2  Model comparison with isotropic flexural 
constants

To emphasize the importance of a properly calibrated mul-
tiscale material model, we compare the model predictions 
obtained with our micromechanics based model against 
predictions based on standard isotropic material constants. 
Using standard beam flexural theory and the available exper-
imental results, one can compute Young’s modulus to be 
L3(�P∕��)∕(96 I) , where �P∕�� is the linear-elastic slope 
of the load–displacement curve, L is the span length, and 
I is the second moment of area of the section. The elastic 
limit strength of the material follows from PmaxLb∕4I , where 
Pmax is the maximum force value in the load–displacement 
curve. We can now use these material parameters in the 
finite element simulations, where we obtain the load–dis-
placement curve shown in Fig. 8a. We observe, however, 
that the simulated material response based on flexural theory 

(38)ē =
1

n

∑
ei =

1

n

∑ q
exp

i
− q

pred

i

q
exp

i

× 100,

(39)esd =
[

1

n − 1

∑
(ei − ē)2

]1∕2
,

based isotropic constants grossly overestimates the maxi-
mum strength.

The reason for the large deviation can be traced back 
to the assumption of isotropy, where the two elastic mate-
rial parameters are associated with the axial response of 
the structure. Taking the same constants in all directions, 
the structural response in the transverse direction, which 
is essential to resist ovalization and thus local buckling, is 
stiffer than it is in reality. The consequence is illustrated 
via the deformation and stress plots in Fig. 8b, c that show 
a quarter of a simulated structure from one of the supports 
to the nearest leading pin location. While the result based 
on our micromechanics-based material model clearly indi-
cates ovalization, the result based on the experimentally 
calibrated material model still maintains an intact circular 
cross-section. Therefore, taking into account the anisotropy 
and associated material parameters is essential to accurately 
predict the mechanical response of plant stems. Anisotropy 
in plant materials is the outcome of different microstructures 
across several scales. Our micromechanics-based model nat-
urally accounts for the anisotropic material properties from 
the underlying plant physiology, accurately predicting their 
effects on the macroscale mechanical behavior.

4.3  Predicting and explaining the mechanical 
behavior of crop mutants

The stem material properties depend on the specific combi-
nation of morphological and compositional parameters that 
vary across different length scales from the cell wall to the 
cross-section level. Brule and co-authors (Brulé et al. 2016) 
reviewed the effect of genetic modification of these param-
eters on the stiffness and strength for the genetic reference 
plant Arabidopsis thaliana (Arabidopsis), commonly known 
as thale cress. In their study, a consistent explanation of 
their findings was not possible as the genetic modifications 
affected the plant structure and the physiological response 
at multiple levels. The authors concluded: “What is needed 
is a comprehensive, systematic and consistent multiscale 
mechanical analysis of structural parameters across length 
scales to feed into an integrated model of the development 
of plant stiffness.”

In Table  3, we compile experimentally determined 
changes in the mechanical properties of the primary cell 
wall, secondary cell wall, and functional region mutants of 
Arabidopsis from Brulé et al. (2016). In the following, we 
demonstrate that our multiscale modeling approach is capa-
ble of rationally interpreting and quantifying the effect of 
compositional and morphological parameters across multi-
ple length scales on the mechanical response of Arabidopsis.

Remark 1 We note that for the Arabidopsis mutant tensile 
test samples, not all of the required parameters are available. 
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(a)

(b) (c)

Fig. 8  Comparison of simulation results based on our micromechanics material model and based on experimentally calibrated flexural constants

Table 3  Comparison of model predictions with experiments for crop mutants

Gene Phenotype Experiment (% of 
WT)

Model (% of Base) Reference

Stiffness Strength Stiffness Strength

Primary cell wall (expressed in parenchyma cell wall) mutants:
atkin/frac2/bot Reduced cellulose 40–60% 40–60% 66% 71% Ryden et al. (2003)
mur2/xxt1xxt2 Reduced hemicellulose 80–100% 80% 85% 85% Ryden et al. (2003), Burgert and Dunlop 

(2011), Cavalier et al. (2008)
qua2 Reduced pectin 80–100% 100% NA NA Burgert and Dunlop (2011), Abasolo et al. 

(2009)
Second cell wall (expressed in fiber cell wall) mutants:
cesa7/irx3/frac5 Reduced cellulose 20–40% 60–80% 56% 58% Turner and Somerville (1997)
irx4/ccr1 Reduced lignin 40% 40% 56% 65% Jones et al. (2001)
Functional region (vascular bundles, sclerenchyma fibers, outer-shell tissues) mutants:
parvus/gatl1/irx7/frac8 Reduced xylan NA 20% 40% 40% Zhong et al. (2005), Peña et al. (2007), Lee 

et al. (2007)
abv1/ifl1/rev Modified bundle arrangements NA 60% 68% 70% Zhong and Ye (2004)
ifl1/rev Missing outer-shell NA 20% 48% 48% Zhong et al. (1997)
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To enable model predictions, we chose our base specimen as 
the oat variety Gopher with measured parameters reported 
in Appendix B. We characterize morphological and compo-
sitional changes in the respective mutants and assume that 
oat will experience similar changes in the composition and 
morphology against similar genetic alterations. We calculate 
and apply these changes in our model to predict the axial 
stiffness and the strength of the “mutant” oat. In Table 3, 
we report percentage changes in the stiffness and strength 
compared to our base specimen and use these results in the 
following discussion.

4.3.1  Primary cell wall mutants

Experimental tests in Table 3 indicate a reduction in the 
stiffness and strength as a result of mutations that reduce 
constituent materials in the primary cell wall. For experi-
mental determination, one can use tensile tests on hypoco-
tyl tissues (Ryden et al. 2003). The tissues were obtained 
from the basal region of Arabidopsis in the early growth 
stage with the assumption that no secondary cell wall 
growth has happened. Cell wall material in the paren-
chyma region is largely made up of primary cell walls. 
Therefore, the parenchyma region from our micromechan-
ics model that consists of the RVEs (a1) and (b1) shown in 
Fig. 5 can represent the test specimen. We use (20) and 
(24) to derive stiffness tensor ℂpar and the axial stiffness 
modulus as 1∕ℂ−1

par,33
 , where ℂ

par,33
 is the longitudinal com-

ponent of the stiffness tensor ℂpar . We estimate the axial 
strength following the procedure discussed in Sect. 3.4 and 
Algorithm 1.

A reduction in cellulose content results in a drastic 
decrease in stiffness and strength. In Ryden et al. (2003), 
a 40% decrease in the cellulose content was reported due 
to the presence of a cellulose synthesis inhibitor gene. This 
alteration resulted in a 40% axial stiffness and strength 
decrease with respect to the respective wild-type (WT) 
specimen. We can now use our model to predict the new 
cell wall fraction parameters in (20), i.e., �wall,par

i
 with 

i ∈ [cc, h, l] , and �par

wall
 in (24). The axial stiffness and 

strength are computed with the parameters that correspond 
to mutants with 40% reduced cellulose. The stiffness and 
strength values are reduced to 66% and 71% compared 
to the base oat material. In Table 3, we observe that the 
model predictions are in line with the experimental results. 
Our observations reconfirm the role of cellulose as a load-
bearing polymer in the cell wall.

Mutants mur2 and xx1xx2 show a significant reduction 
in the hemicellulose component xyloglucan in the primary 
cell wall (Ryden et al. 2003; Burgert and Dunlop 2011). 
The corresponding loss of stiffness and strength, however, 

is not as severe as in the case of reduced cellulose (see 
Table 3). To enable a comparison with cellulose reduc-
tion, we assume an identical 40% reduction in hemicel-
lulose content in the cell wall material. Using our model, 
we find that the axial stiffness and strength is reduced to 
85% of the base oat material, consistent with the experi-
mental observations. This result is plausible as the axial 
stiffness modulus of hemicellulose is approximately 15 
times smaller than that of cellulose. Therefore, cellulose 
contributes to a much larger extent to the macroscale 
mechanical properties than hemicellulose. We anticipate 
that our micromechanics model could help settle the cur-
rent controversial discussion in the literature about the role 
of hemicellulose as a load-carrying polymer in the cell 
wall material (Park and Cosgrove 2015; Cosgrove 2015).

Pectin, a major component of middle lamella, is a com-
plex set of polysaccharides. Pectin-rich middle lamella 
forms a continuous layer between the adjacent cells in 
the primary cell wall (see Fig. 4b). This layer presumably 
acts as a binding agent between the cells (Braidwood et al. 
2014). Table 3 indicates a minimal effect on the stiffness 
and strength in the reduced pectin mutants. Our model 
does not explicitly account for the role of middle lamella 
in the homogenized properties. A fundamental assumption 
of the continuum micromechanics frameworks, however, 
is perfect bond between the different phases in a RVE. The 
experimental results in Table 3 suggest that if “sufficient” 
pectin is present in the middle lamella to ensure perfect 
bond, it will not have a major effect on the overall stiff-
ness and strength properties. For a detailed quantitative 
investigation on the role of pectin, however, more detailed 
computational models supported by physiological investi-
gations at relevant length scales are needed.

4.3.2  Secondary cell wall mutants

Secondary cell wall mutants result in a loss of stiffness and 
strength as shown in Table 3. For mechanical testing, one 
can use three-point bending tests (Turner and Somerville 
1997; Jones et al. 2001). The reported strength corresponds 
to PmaxLr∕4I , where Pmax is the maximum force the sam-
ple withstands before failure, L is the span length, r is the 
radius of the stem, and I is the second moment of area. The 
axial stiffness modulus is simply L3(�P∕��)∕(48I) , where 
�P∕�� is the linear-elastic slope of the load–displacement 
curve. For consistent comparison, we simulate the three-
point bending test, where we follow the procedure outlined 
in Sect. 4.2, using the whole-stem specimen. The complete 
model described in Sect. 3 is used to predict the material 
parameters for the mutants after accommodating the com-
positional and morphological changes. Based on our simula-
tions results, we report percentage changes in stiffness and 
strength compared to the oat base specimen.
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Cellulose is a major load-bearing polymer in the sec-
ondary cell walls. A reduction in the cellulose content is 
expected to decrease stiffness and strength, as shown in 
Table 3. In Turner and Somerville (1997), the percentage of 
cellulose content in the cell wall is reported as low as 18% of 
the WT variety after genetic alteration. The reduction is also 
reflected in the thinning of the secondary cell walls in the 
fibers (Figs. 3 and 6 in Turner and Somerville 1997). Using 
our model, we recalculate the volume fractions in the RVEs 
that involve secondary cell walls, considering the mutant 
cellulose content (18% of the WT variety). The resulting 
stiffness and strength parameters are fed in the three-point 
bending simulations and the percentage change is reported 
in Table 3. We observe that the model predictions are in 
good agreement with the experimental observations, con-
firming the importance of cellulose for the overall stiffness 
and strength of plants.

Lignin reduction is a crucial process in various bioengi-
neering applications such as biomass conversion to paper, 
fuel, and cattle feedstock. The genetic reduction in lignin 
content, however, results in a drastic loss of stiffness and 
strength as summarized in Table 3. In Jones et al. (2001), a 
50% reduction in lignin content in the secondary cell wall 
is reported as a consequence of mutant gene irx4. In addi-
tion, other morphological changes were observed such as 
the reduction of sclerenchyma fiber fractions in bundles and 
physiological changes in the outer-shell region (Figs. 2 and 
5 in Jones et al. 2001). To predict and quantify the effect of 
these changes, we use the three-point bending simulation, 
where we assume a 50% reduction in fiber volume fraction 
�fib in the bundles and shell thickness tshell . Based on these 
changes, we predict a 56% and 65% reduction in stiffness 
and strength, respectively, compared to the base oat material. 
These results confirm the importance of considering mor-
phological changes at multiple levels in mutants. In Horvath 
et al. (2010), Koehler and Telewski (2006); Köhler and Spatz 
(2002), similar observations in reduced lignin mutants for 
wood are reported.

4.3.3  Functional region mutants

Using our model, we finally assess the stiffness and strength 
impact of mutants that result in morphological changes in 
the functional regions such as vascular bundles, scleren-
chyma fibers, and outer-shell tissues. Table 3 indicates a 
severe reduction in the axial strength as a consequence of 
these mutants. We note that the axial strength was measured 
through tensile tests with matured whole-stem specimens. 
In each case, we accommodate the observed changes in the 
morphology for the specific mutants in the model and pre-
dict the stiffness and strength for both pith and outer-shell 
region. For comparison, we compute the volumetric average 

of the predicted axial stiffness and strength components of 
the pith and outer-shell properties.

Xylans are found in sclerenchyma fibers in bundles and 
outer-shell tissues. The disruption of genes involved in xylan 
synthesis leads to a reduction of up to 50% of the WT xylan 
level and results in a severe decrease in tensile strength (see 
Table 3). Xylan mutants such as PARVUS resulted in compo-
sitional and morphological changes in the hierarchical struc-
ture of the reference plant (Lee et al. 2007). A reduction of 
50% and 64% cell wall thickness was reported in the scleren-
chyma fibers in the bundles and outer-shell regions, respec-
tively. Overall, a 25% reduction in the cellulose content in 
the cell walls was reported. We incorporate these changes in 
our model and modify �fib

wall
 , �shell

wall
 , and the constituent cell 

wall fractions, i.e., �wall,fib
cc  with i ∈ [cc, h, l] (see Appendix B 

for details), leading to a 60% reduction in the axial stiffness 
and strength. These results confirm the drastic changes in the 
mechanical properties as a result of xylan mutants.

The spatial arrangement and proportion of tissue types 
in the cross-section of crop stems affect their mechanical 
properties. The mutant abv1 (Zhong and Ye 2004) alters 
the organization of vascular bundles from a “collateral 
pattern” to an “amphivasal pattern.” In the collateral pat-
tern, bundles are arranged in a ring-like configuration 
near the periphery of the cross-section. In the amphivasal 
pattern, bundles are irregularly distributed in the pith. As 
a result of this mutation, a gross thinning of the outer-
shell fiber cell wall was also observed (see Fig.  6 in 
Zhong and Ye 2004). Assuming a 60% reduction in the 
cell wall fraction in outer-shell tissues, our model predicts 
a 30% reduction in the axial stiffness and strength of the 
stem cross-section. Similarly, a diminished outer shell is 
reported in Zhong et al. (1997) after ifl1/rev mutation, 
resulting in the severe loss of axial strength as reported 
in Table 3. Our model predicts the axial stiffness and 
strength as 48% of the base oat material for this alteration 
in the cross-section morphology. This result is consistent 
with experimental observations.

5  Summary, conclusions and outlook

In this article, we presented a multiscale material model that 
predicts the stiffness and strength of crop stem materials 
directly from the interaction of hierarchical microstructures 
and associated parameters. Building on our prior work on 
bamboo that focused on functionally graded type materials, 
we focused here on the configuration typical for crop stems 
that consists of an inner foam-like parenchyma layer and a 
dense outer shell. We first reviewed the hierarchical organi-
zation of crop stem materials for the prototypical example 
of oats, and derived a set of morphological and material data 
at different length scales with the help of chemical analysis 
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and imaging data from transmission electron microscopy, 
light microscopy, and micro-CT scans. We then transferred 
this data into representative micromechanical parameters at 
different length scales (e.g., volume fractions, shape, orienta-
tion, distribution, elastic and failure properties of constitu-
ents, etc.). We used this set of parameters at different scales 
to motivate a sequence of RVEs that enables the prediction 
of the stiffness and elastic limit properties of crop stem mate-
rials within the framework of continuum micromechanics. 
We validated our model against bending experiments that 
we conducted for oat stem samples grown in a controlled 
environment on test fields at the University of Minnesota. 
The predictions from our multiscale material model built in 
the ABAQUS finite element solver showed very good agree-
ment with the experimental results, both with respect to the 
stiffness in the linear elastic range and the failure load in the 
inelastic range.

A significant advantage of our multiscale model over 
simpler phenomenological approaches is the physiologi-
cally correct relation of the mechanical properties with 
compositional and morphological parameters across mul-
tiple length scales. This connection enables an understand-
ing of the multiscale origin of stiffness and strength. We 
demonstrated this opportunity by explaining the effect of 
genetic modifications on the stiffness and strength reported 
for thale cress from our model that predicted the observed 
behavior correctly in all cases. From a plant breeding per-
spective, this connection opens the door for tailoring plant 
materials in situations where their mechanical properties 
are of key importance. In the future, we plan to use our 
micromechanics model to help identify optimal material 
and geometric traits that maximize lodging resistance of 
cereals.

Appendices

A. Cascade continuum micromechanics model

In the cascade continuum micromechanics (CCM) model 
(see Fig. 9), a set of matrix-inclusion problems are obtained 
through recursion Timothy and Meschke (2016, 2017). 
The CCM model is inspired by the self-consistent scheme. 
Instead of the virtual “average” matrix phase, the stiff-
ness of the matrix phase at cascade level n is recursively 
updated and set equal to the previously homogenized stiff-
ness (see Fig. 9). At all cascade levels, inclusion properties 
are assumed to remain the same.

We assume that there are two phases in a RVE, namely 
inclusion and matrix, with volume fractions �ic and �m , 
respectively, and �ic + �m = 1 . We denote inclusion and 
matrix stiffness properties with �ic and �m , respectively. 
Following (11) and (12), we can write the homogenized 
stiffness ℂhom,(n) at cascade level n after setting the matrix 
stiffness equal to the homogenized stiffness obtained from 
the previous homogenization step ( ℂ0 = 𝕔m = ℂ

hom,(n−1) ) as

The Hill tensor ℙhom,(n−1)

ic
 describes the morphological 

description of the inclusion in the matrix with elastic stiff-
ness ℂhom,(n−1).

Equation (40) represents the recursive equation for the 
homogenized stiffness of the RVE. The initial configuration 
at n = 1 is assumed to be a continuous matrix with a dis-
connected distribution of the inclusions. The homogenized 
elastic properties for n = 1 is provided by the Mori-Tanaka 

(40)

ℂ
hom,(n) =

[
�m ℂ

hom,(n−1) + �ic 𝕔ic ∶ [𝕀 + ℙ
hom,(n−1)

ic
∶

(𝕔ic − ℂ
hom,(n−1))]−1

]
∶
[
�m 𝕀 + �ic [𝕀+

ℙ
hom,(n−1)

ic
∶ (𝕔ic − ℂ

hom,(n−1))]−1
]−1

.

(a) (c)

(b)

Fig. 9  Outline of the cascade continuum micromechanics scheme: 
a matrix-inclusion problem with matrix stiffness ℂhom,n−1 , b homog-
enized composite with stiffness ℂhom,n , c matrix-inclusion problem 
with updated matrix stiffness ℂhom,n obtained from step (b) (for more 
details see Timothy and Meschke 2016)
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scheme ( ℂhom,(1) = ℂ
hom,MT  ). The Mori-Tanaka estimate 

ℂ
hom,MT of the configuration at n = 1 can be obtained from 

(12) with ℂ0 = 𝕔m and r ∈ {ic,m} . We summarize the algo-
rithm for cascade levels n = 1 and n = 2 : 

The cascade level n can be thought of as a reflection of 
the connectivity of the inclusion phase. n = 1 represents the 
isolated inclusions in a continuous matrix (the Mori-Tanaka 
estimate). n → ∞ represents a completely intermixed inclu-
sion phase (the self-consistent estimate). This feature ena-
bles CCM to predict homogenization estimates for a large 
range of volume fractions of the inclusion phase with differ-
ent microstructure quality.

B. Some more details on model input data for oats

The micromechanics model for homogenized stiffness 
and limit states developed in Sect. 3 requires “universal” 

(41a)

n = 1: ℂ
hom,(n−1) = 𝕔m

ℂ
hom,(1) = ℂ

hom,MT

=
[
�m 𝕔m + �ic 𝕔ic ∶ [𝕀 + ℙ

m
ic
∶ (𝕔ic − 𝕔m)]

−1
]
∶

[
�m 𝕀 + �ic[𝕀 + ℙ

m
ic
∶ (𝕔ic − 𝕔m)]

−1
]−1

,

(41b)

n = 2: ℂ
hom,(n−1) = ℂ

hom,(1)

ℂ
hom,(2)

=
[
�m ℂ

hom,(1) + �ic 𝕔ic ∶

[𝕀 + ℙ
hom,(1)

ic
∶ (𝕔ic − ℂ

hom,(1))]−1
]
∶

[
�m 𝕀 + �ic[𝕀 + ℙ

hom,(1)

ic
∶ (𝕔ic − ℂ

hom,(1))]−1
]−1

.

material properties of base materials cellulose, hemicellu-
lose and lignin, and their hierarchical composition according 
to Fig 5. The “universal” mechanical properties of constitu-
ents are listed in Table 2. Cousins found that the stiffness of 
lignin and hemicellulose decreases with increasing moisture 
content (Cousins 1978, 1976), and reported the relations 
with the relative humidity. The graphs read 67% reduction 
in Young‘s modulus of both lignin and hemicellulose at the 
relative humidity of 70%, the average relative humidity in St. 
Paul. We assume proportional reduction in the shear strength 
of lignin too. The crystallinity index (CI), which quantifies 
the fraction of crystalline cellulose in relation to the volume 
of the whole cellulose, has been predicted experimentally 
using X-ray diffraction for oats as CI = 0.44 (Espinosa et al. 
2017). The volume fraction of the constituents in the cell 
wall material RVEs in Fig. 5 can easily be calculated from 
chemical composition data listed in Table 1 (Gangwar and 
Schillinger 2019).

The volume fractions of phases in all other RVEs in Fig. 5 
are the other required inputs for the model. We derive the 
volume fractions with the help of microimages reported in 
Sect. 2. The data are reported in Table 4.

C. Four‑point bending test results for oat specimens

In Table 5, we also summarize the geometric measurements, 
the linear-elastic slope (�P∕��)exp , and the failure load Pmax

exp
 

for each four-point bending test specimen. Please see Sect. 4 
for further details.

Table 4  Measured model 
parameters phases

*Measured from TEM images of oats of the Gopher variety. In absence of imaging data, we assume that 
other varieties share the same volume fractions

Variety �
par

wall �
fib∗

wall
�fib �vb �shell∗

wall
t∕tshell

Gopher 0.18 0.50 0.82 0.16 0.40 0.14
Reins 0.15 0.50 0.85 0.13 0.40 0.15
ND021052 0.17 0.50 0.80 0.11 0.40 0.16
IL07-8721 0.20 0.50 0.90 0.13 0.40 0.15
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(�P∕��)est Pmax
est
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