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Abstract

High Content Analysis (HCA) has become a cornerstone of cellular analysis within the drug

discovery industry. To expand the capabilities of HCA, we have applied the same analysis

methods, validated in numerous mammalian cell models, to microbiology methodology.

Image acquisition and analysis of various microbial samples, ranging from pure cultures to

culture mixtures containing up to three different bacterial species, were quantified and identi-

fied using various machine learning processes. These HCA techniques allow for faster cell

enumeration than standard agar-plating methods, identification of “viable but not plate cul-

turable” microbe phenotype, classification of antibiotic treatment effects, and identification

of individual microbial strains in mixed cultures. These methods greatly expand the utility of

HCA methods and automate tedious and low-throughput standard microbiological methods.

Introduction

High Content Analysis (HCA) methods are widely deployed in the drug discovery realm and

are utilized for phenotypic drug discovery, targeted drug discovery, and target identification

and characterization[1]. Enabled by the commercialization of various HCA instruments begin-

ning in the late 1990’s, these automated microscopic platforms have greatly expanded the

ability to perform cell-based screening by reducing labor time and variability of manual micro-

scopic analysis. The ability of HCA instruments to multiplex data types and associate numer-

ous features to individual cells can easily generate large datasets, which allows for feature

analysis on a massive scale utilizing advanced machine learning techniques[2]. Machine learn-

ing supports mutable algorithmic analysis of large data sets, without pre-defined data defini-

tions. The raw data is iteratively analyzed, leading to increased accuracy of the resulting

predictions[3]. Linking high-content imaging, single-cell analysis, and machine learning,

researchers within drug discovery accelerate the process and quickly extract results from big

data. However, within microbiology, HCA of individual cells has been slow to develop. We

demonstrate here the power of HCA to progress beyond the traditional methods of colony
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forming units per milliliter (CFU/mL), selective media, and culturing pure strains, pioneered

in the early 1900’s[4].

With the aid of various fluorescent dyes and biomolecules, direct microscopic observation

methods and flow cytometry have transformed microbiology laboratory procedures[5–8].

These methods include the use of fluorescence in situ hybridization methods [9], along with

Atomic Force and Raman microscopy[6,10]. There are also recently described methods allow-

ing identification of Giardia lamblia using a cell phone application[11]. In parallel, large scale

microbial research is becoming more prevalent. For example, first launched in 2007, with a

second phase launched in 2014, the Human Microbiome Project has expressed goals of gener-

ating the resources and tools to fully characterize the human-associated microbiome (https://

hmpdacc.org)[12]. An effort to characterize as much of the currently un-cultured microbial

diversity as possible has also been launched, known as the Earth Microbiome Project[13].

Additionally, in agriculture, efforts are currently under way to study and gain insight into

plant-microbe interactions[14–16]. With these vitally important and critical initiatives in

progress, our ability to miniaturize and convert traditional microbial plating methods to high-

throughput methodology has never been more important.

The efforts of our laboratory have been focused on this challenge, with a mandate of con-

verting various bioassays and enumeration methods, traditionally using a 100mm petri dish,

to formats capable of being fully integrated into high-throughput formats. Development of

this process involved the incorporation of 96- and 384-well plate handling and assay formats,

along with automated liquid handling robotic protocols. The work described here details our

approach to incorporating traditional HCA methods into the methodologies, techniques, and

data analysis workflow of a traditional microbial discovery laboratory environment. Specifi-

cally, we describe methods that facilitate high-throughput cell enumeration and determination

of viability from microbial samples, including complex mixtures of strains, as well as the appli-

cation of various machine learning analysis methods for the identification and classification

of microbes in mixtures. Taken together, these techniques allow for faster data turn-around,

greatly reduced physical resources, and high-throughput image-based characterization of

microbial samples.

Materials and methods

All cell stains and microbial media formulations were from Thermo Fisher. Cellcarrier

384-well, black wall, clear-bottom plates were from Perkin Elmer. All antibiotics were from

Sigma-Aldrich. CLICK-IT™ Homopropargylglycine (HPG) 594 viability kits were from

Thermo Fisher (cat #C10429), and Syntrix-25 material was from Noviocell. High-content

images were acquired with the GE INCell 2200 high content platform. Microbe strain identifi-

cation was performed using a Bruker MALDI Biotyper, following manufacture’s recommenda-

tions. Statistical and machine learning analyses were performed with JMP or JMP Pro, version

14.0, unless otherwise indicated.

Bradyrhizobium japonicum plating and enumeration

To demonstrate cell adherence, Bradyrhizobium japonicum (USDA ACCES strain 110) sam-

ples were prepared by inoculating a shake flask of YEM broth with a single cell colony and

incubating the flasks for 3–5 days at 30˚C. At harvest, cell samples were prepared as described

for enumeration. For enumeration of B. japonicum experiments, frozen fermentation samples

were centrifuged at ~13,000 x g for 8 minutes to pellet the cells. Spent media was removed, and

the cell pellet was resuspended in phosphate buffered saline (PBS). These samples were then

either plated onto YEM agar plates for CFU/mL determinations or stained with a solution of
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10μM SytoBC, 10μg/mL DAPI and 5μM Propidium iodide (PI) or 5μM SYTOX Orange, for

approximately 1 hour. Stained cells were then serially diluted 1 to 5, with the starting concen-

tration at 1:10 from the original (final dilutions 1:50, 1:250, 1:1250, and 1:6250) in PBS, and a

50μL sample for each dilution was transferred to a Syntrix-25 coated CellCarrier 384-well plate

for imaging. Imaging plates were spun at 1,400 x g for 2 minutes, to adhere the bacteria cells

to the plate surface. Following centrifugation, images for DAPI, FITC, and Cy3 filtersets were

captured using an INCell 2200 high content imaging platform. Detection algorithms for indi-

vidual object detection from the raw images were developed within GE Developer software

(version 1.9.3), and an example detection algorithm is presented in the Supplemental Mate-

rial (S5 Table) section. Cellular autofluorescence intensity values in the Cy3 spectrum, used as

a background signal cut-off value for PI and SYTOX Orange intensity levels, were determined

using cell samples that were heat killed at 70˚C for 30 minutes prior to staining. These cut-off

values were calculated differentially for each strain. Using the combined signal from the DAPI

and FITC channels to describe the individual Bradyrhizobium cells, viability was determined

using PI or SYTOX Orange staining intensity, above cut-off, to identify non-viable cells. For-

mulas used to determine the cell counts persample are described in the HCA Enumeration

Calculations section in this manuscript. For the CFU/mL assays, agar plates of cells were incu-

bated for 5 days at 30˚C, and discrete colonies were counted for each dilution. All reported cell

counts are average values from three replicates, for each sampling dilution that demonstrated

linearity, described as cell counts per dilution with an R2 value of>0.95.

Comparison of enumeration methods

For each strain tested, 300μL from a frozen stock was used to inoculate a 50mL conical tube

with filter cap containing 15mL of a nutrient rich media. This pre-culture was grown overnight

with shaking at 225 RPM, and 30˚C. The pre-culture was transferred to a 2.5L shake flask, con-

taining 700mL of a nutrient rich media, and grown overnight with shaking. Flask cultures

were harvested by centrifugation (15,000 x g, 10 min, 4˚C) where the supernatant was removed

until a 5x concentration was achieved. Fifteen percent glycerol (w/w) was added to the sam-

ples, followed by mixing and removal of 100μL for enumeration. These samples taken from

each fermentation were sequentially diluted 1:10 in PBS, in triplicate. One hundred microliters

of the serial diluted samples, corresponding to 1x10-6, 1x10-7, and 1x10-8, were plated onto

tryptic soy agar plates, resulting in final CFU/mL dilution plates of 1x10-7, 1x10-8, and 1x10-9.

The same dilution samples were stained for flow cytometry enumeration with a Stratedigm

S1000EXi Flow Cytometer. Samples were stained with 2μM of SytoBC and 1.25μg/mL of Pro-

pidium Iodide. After staining, the samples were run at a flow rate of 0.8μL/s. Enumeration was

based on the acquisition time needed to collect 10,000 individual objects. The same original

dilution samples used for CFU/mL plating were also used for HCA enumeration, using the

method described for B. japonicum enumeration. Each analytical method had its result values

averaged, and all presented statistics were performed on those average values using JMP (ver-

sion 14). Three microbe samples did not generate any data from the flow cytometry enumera-

tion method due to the samples clogging the flow cells, so these strains were not included in

statistical analysis comparing the enumeration methods.

Measurement of microbe total protein synthesis via CLICK chemistry

Individual microbe samples taken from biological isolations were collected in M9 minimal

media. Using a Beckman Coulter FXp robot, microbe samples were transferred to a polypro-

pylene V-bottom 96-well plate at 135μL/well, with four individual wells per microbe sample.

Fifteen microliters of M9 media, containing 500μM HPG, was added to two of the four wells,
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giving afinal HPG concentration of 50μM. Fifteen microliters per well of M9 was added to

the remaining two wells, to create corresponding replicates with and without HPG (+/- HPG).

The V-bottom microbe test plates were then incubated for7 hours at 30˚C, to allow for HPG to

be incorporated into the global cellular protein pool. HPG incorporation enables determina-

tion of microbe viability via detection of total cellular protein synthesis, as non-viable microbes

do not synthesize protein. At the end of this incubation, the V-bottom sample plates were cen-

trifuged at ~3,000 x g for 7 minutes. Media was carefully removed, and the cell pellets were re-

suspended in 95% methanol/5% acetic acid (v/v) for fixation.

Following fixation, +/- HPG samples were washed with PBS containing 0.01% Tween 20 and

0.25% TX-100, then processed following the CLICK-IT protocol provided by the manufacturer

to attach a Alexa Fluor 594 azide to all HPG molecules incorporated into the total cellular pro-

tein pool. For identification of individual microbe cells, cellular DNA was stained with 5μM

SYTOX Green. Once all sample processing was completed for the HPG incorporation, samples

were transferred to Syntrix-25 coated 384-well CellCarrier plates, followed by centrifugation at

1,460 x g for two mintues. Images were then collected using the 100x objective on a GE INCell

2200 high content analyzer. These images were analyzed with GE Developer software, using a

custom algorithm, based on individual object detection using the FITC channel (SYTOX Green

stained DNA) to define each cell. An example detection algorithm is presented in Supplemen-

tary Materials (S6 Table). To determine HPG incorporation, individual objects from the dupli-

cate wells from both +HPG and -HPG incubations were compared for levels of Alexa Fluor 594

staining intensity collected in the Cy3 imaging channel. Cellular auto-fluorescence intensity

was determined differentially for each strain using the individual object intensity distribution in

-HPG samples. The cut-off value was set at the 90th percentile, to account for debris and outli-

ers. Along with total cell counts, viable cell intensity values were determined. As described in

HCA Enumeration Calculations, viable cells were identifiedby measuring the fluorescent sig-

nal in +HPG incubated cells above the cut-off, Correction for the 90th percentile distribution is

also shown in calculations. All calculated data was generated using JMP (version 14).

Object identification of individual microbial morphologies following

antibiotic treatments

Tetracycline (10mg/mL) and vancomycin (6mg/mL) stocks were prepared in sterile water.

Individual colonies from each test microbial strain were selected from agar plates and used to

inoculate a 35mL shake flask of Reasoner’s 2A (R2A) broth media, which were grown over-

night at 30˚C with 200 RPM shaking. Two of the three strains used, Escherichia coli (catalog

number 10798) and Pseudomonas fluorescens (catalog number 53958) were obtained from

ATCC, the Bacillus megaterium was isolated from soil samples and its identity was confirmed

via Bruker biotyping. Following the overnight incubation in a shake flask, the E. coli and B.

megaterium were diluted 1:20 into fresh medium, and the P. fluorescens was diluted 1:100.

Diluted microbes were then transferred into sterile 96-well V-bottom polypropylene plates, to

a volume of 100μL/well. Antibiotic stocks were diluted to 2X treatment concentration in R2A

media, and 100μL/well of this was added to the 100μL microbe samples in the V-bottom

96-well plates. These treatment plates were then sealed with a Breath-Easy plate seals

(Z380059, Sigma-Aldrich) for evaporation control, and incubated for an additional 18 hours at

30˚C without shaking. Following this overnight incubation, 100μL/well of 10% buffered for-

malin was added to all plates for 30 minutes, followed by centrifugation at ~3,000 x g for 7

minutes. After centrifugation, supernatants were removed, and the resulting cell pellets were

mixed with 150μL/well of PBS containing 0.01% Tween 20, 0.25% TX-100, and 5μM of the

DNA stain SYTOX Green. Following sample preparation, the antibiotic treated cells were

Image analysis and microbial characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0222528 September 23, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0222528


diluted in PBS, and transferred to Syntrix-25 coated 384-well plates, centrifuged for 2 minutes

at 1,400 x g, and imaged with the GE INCell 2200 high content analyzer 100x objective.

The resulting images were analyzed using GE Developer software to determine various

morphological and staining intensity values, with individual objects (cells) identified via DNA

staining. Algorithm settings are presented in the Supplemental Data section. Since microbes,

as prokaryote organisms, do not contain a nucleus, we generally observed DNA staining

throughout the cell, as opposed to localized DNA staining usually associated with discrete

nuclei in mammalian cells. Measures generated from individual objects were analyzed in JMP

(version 14) and used to determine the effects of each antibiotic treatment on the microbial

cultures. Unsatisfactory objects were excluded from analysis if they showed an end node

value greater than 3. As defined within the GE Developer analysis software, end node is a fiber

related measure, and we noted that objects with measured end nodes greater than 3 tended to

be un-differentiated clumps or debris.

HCA enumeration methods, calculations and machine learning

applications

All HCA images were collected using a GE INCell 2200 high content fluorescent imaging plat-

form, with a 100x/0.9 Plan Fluor objective. For image acquisition, typical exposure times were

0.3–0.8 seconds, using 1x1 binning and 2-D image settings. For imaging, all samples were seri-

ally diluted in PBS or PBS + 0.01% Tween 20 from original treatments. Given the generally

unknown starting concentrations for each sample, this facilitated generating images that

would contain as many discrete objects as possible, as opposed to images with objects too

dense and overlaying each other. All images were analyzed using GE Developer software,

image analysis protocols are presented in the Supplemental Materials section (S5 and S6

Tables), and all data outputs were based on individual object data.

For the B. japonicum and enumeration method comparison experiments, total cell

counts and total viable cell counts obtained from the INCell 2200 were determined formu-

las as follows:

Total cells per sample ¼ total object counts � 72:2 � dilution factor � sampling factor

Total viable cells per sample
¼ total gated object counts above autofluorescent background � 72:2 � dilution factor
� sampling factor

The 72.2 value represents the total area imaged from each well in the 384-well imaging

plates (9 fields) from a total possible number of images/well (equal to 650). Dilution factor

refers to which final sample dilution was imaged. To correct for sampling volume, since each

imaging sample was from a 50μL total volume sample, a factor of 20 was included to calculate

the total cell counts/mL. For enumeration, we attempted to collect data from at least 3 separate

dilutions, and only used data from wells with counts that represented a linear dilution with an

R2 value of>0.95 for cell number totals.

For viability determination based on HPG incorporation into total cellular protein syn-

thesis, calculations used were:

Where A is the set of objects in the þ HPG sample; and nðAÞ is the number of objects in set A; and

a is a member of set A And B is the set of objects in the corresponding � HPG sample A And

modedensity is the HCAmeasured mode density value on a by � object basis P90ðBmodedensityÞ ¼ x

Image analysis and microbial characterization
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Then:

Σ ½nðAÞwhere amodedensity > x� ¼ nðAÞv; which is the number of viable objects in set A

Total Cells 8 sample ¼ nðAÞ � dilution factor � sampling factor � 72:22

Viable Cells 8 sample ¼ ðnðAÞ � ðnðAÞv � 0:1 � nðAÞÞ � dilution factor � sampling factor � 72:22

For microbial identification from GE INCell image-based by-object feature data, we used

machine learning methods provided by JMP Pro (version 14). Specifically, the bootstrap

random forest machine learning algorithm with default settings. This platform predicts a

response value by averaging the responses over many decision trees. Untreated control sam-

ple by-object feature data from the antibiotic treatment experiment were used to train the

algorithm to detect each microbe type, with 60%/20%/20% training/test/validation parti-

tions. Following training, by-object feature data from each training set was re-analyzed to

establish an accuracy rate, then untreated control samples of mixed microbe strains were

analyzed, and the random forest model created a most probable strain identification for each

individual object.

Results and discussion

Our initial efforts were focused on the practicality of using an HCA instrument to image

microbes. Although direct microscopic observation is common in microbiology, utilizing

a multi-well plate as the sample holder vs. a glass slide and cover slip presented the simple

challenge of getting the cells in a flat, planar location to obtain in-focus images. Although we

have utilized z-stacking and max-projection techniques to help gather object information, we

wanted to maintain the speed of single image collection inherent with the collection of a simple

2-D image. This demanded that we use a method to capture and hold our cells stationary and

flat during plate imaging. We approached this technical issue by exploring various plate coat-

ings commonly used for cellular adherence. Much research has focused on the utilization of

proteins or organic molecules to facilitate biomolecular interactions to allow for cellular adher-

ence in multi-well plates[17–19]. We focused on commercially available coatings. After testing

collagen, poly-lysine, and a proprietary coating known at the time as artiCYT (now marketed

under the trade name Syntrix-25) we chose Syntrix-25 coated 384-well plates for protocol

development. The Syntrix-25 coated plates demonstrated good cellular adhesion of the test

microbes (Fig 1A) as compared to a non-coated, tissue culture-treated plate or plates coated

with ploy-lysine or collagen. Additionally, with a short, low-speed centrifugation, we observed

a uniform distribution of our cells of interest across the bottom of the plate well. Conversely,

we have observed that microbe cell samples suspended in complex growth media do not

adhere well to the Syntrix-25-coated plates, most likely due to non-specific media components

blocking sites of adherence.

Having determined a method to adhere our microbial cells of interest to a micro-titer plate

surface, we next attempted to use HCA methods for the enumeration of a specific microbe as a

proof of concept. Our initial experiments focused on a single strain of interest, a Bradyrhizo-
bium japonicum strain used extensively in our laboratories. In a direct comparison between

two separate cell counts taken from the same fermentation, we demonstrated comparable

cell counts between traditional CFU/mL methods and counts obtained using direct HCA-

observation approaches (Fig 1B and Table 1). Inclusion of propidium iodide (PI) or SYTOX

Orange allowed for gating and removal of non-viable cell phenotypes from the enumeration

of the total viable cells. We also noted that SytoBC stained a large proportion of the total cell
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population, but not 100% of the cell population when we used freshly thawed samples for test-

ing as opposed to the cell samples taken directly from culture. To verify total cell staining cov-

erage, we overlaid images from the fluorescent FITC channel and a bright-field image, which

allowed us to identify a sub-population of the freshly thawed B. japonicum that remained resis-

tant to staining with SytoBC alone. Inclusion of the general DNA-binding dye DAPI allowed

us to capture the full population of objects (S1 Fig). Upon closer statistical examination of our

final cell counts, comparison of the automated INCell enumeration method to the traditional

CFU/mL measured sample demonstrated no significant difference based on two different tests

of significance using a least squared difference of means Tukey test and a one-way ANOVA

test, both performed in JMP (version 14.1) software (Table 1). Both methods demonstrated

reasonable coefficient of variance (9.0% for the HCA method vs. 14.2% for the CFU/mL

method), indicating good reproducibility for both methods. The ability to consistently enu-

merate this specific microbe with HCA when compared to traditional plating methods resulted

in a dramatic improvement in our processes. The traditional CFU/mL enumeration assay for

B. japonicum requires a 5–10 days incubation for quantifiable colony formation, and is much

more labor intensive than the HCA methodology.

Fig 1. Microbial enumeration using HCA methods. Example images from SytoBC stained Bradyrhizobium japonicum are

presented in panel A. For comparison, images obtained from un-coated, standard tissue culture plates are presented with images

obtained from plates coated with Syntrix-25. To demonstrate HCA-enumeration methodology using a specific microbe, we utilized

the B. japonicum strain, graphed data in panel B., represent the average of 3 separate samples taken from two separate cryopreserved

samples from the same fermentation, error bars indicate the standard deviation. Test 1 viability was measured with PI, for test 2 we

used SYTOX Orange to determine viable cells. Panel C. is the graph of average values obtained from 21 different microbial

fermentation enumerated via CFU/mL, HCA, or Flow. All values are the mean of triplicate measurements.

https://doi.org/10.1371/journal.pone.0222528.g001

Table 1. B. japonicum enumeration results, traditional CFU/mL assay format compared to high content methods.

HCA results CFU/mL results

Average viable cells/mL (n = 6) 4.1 x 109 3.5 x 109

Standard deviation 3.7 x 108 5.0 x 108

Percent coefficient of variance 9.0 14.2

https://doi.org/10.1371/journal.pone.0222528.t001
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Encouraged by these initial enumeration results on B. japonicum, we next applied our HCA

methods to the quantification of a set of diverse microbes to understand how well our object

detection algorithms would function when applied to varied morphologies obtained from a

variety of genera tested within the same sampling set. We also added an additional enumera-

tion method to this comparison. Flow cytometry has been used for the quantification of vari-

ous microbes[20], and we have used this technology for enumeration within our labs as well.

Even though there are well known and reported issues with variability associated with the clas-

sic CFU/mL assay, it is traditionally held up as the gold standard for microbial enumeration

[21]. Our experiment was based on a three-way comparison of flow cytometry, CFU/mL and

our HCA enumeration methodologies for enumeration of a diverse set of microbes. verage

counts/mL results for 21 genera, including both Gram-negative and Gram-positive, are pre-

sented (Fig 1C). We were unable to collect any data from the three Streptomyces samples

included in the data set using flow cytometry, most likely due to the hyphae-like morphology

of this species clogging the flow cell. Removing those three strains from the final dataset,

counts obtained by CFU/mL and INCell are positively correlated (Pearson correlation coeffi-

cient 0.49, p-value 0.038), but there is no significant correlation between counts obtained by

flow cytometry and either INCell or CFU/mL across a varied pool of 21 different microbial

strains. What seems clear from this analysis is that both flow cytometry and HCA imaging

methods can return enumeration numbers but can vary between them. We did not examine

reproducibility with this experiment, but that would be the logical next step to further examine

these methods for overall robustness.

Next, as we expanded the potential of using HCA for microbial characterization, we focused

on the determination of microbe viability and alternatives to membrane potential dyes. Vari-

ous methods are used in mammalian cell culture to measure cell viability[22]. Typically, for

microbes, CFU/mL plating is used as both a measurement of viable cells and cell enumeration,

based on the understanding that a single viable cell will give rise to visible colonies that can be

counted. We attempted to develop a high content, high-throughput method to simultaneously

enumerate as well as determine the number of viable cells to streamline workflows and reduce

data turn-around time lines. We took advantage of the ability of microbes to incorporate an

artificial amino acid, in this specific instance L-homopropargylglycine (HPG), into the pool of

total cellular protein to allow for the identification of cells actively synthesizing protein. These

proteins were then detected by labeling the incorporated HPG via ligation of a Alexa Fluor 594

molecule by copper-mediated chemical reaction, commonly referred to as a CLICK Chemistry

reaction [23]. Finally, the labeled proteins could then be identified with high-content imaging.

There is a distinct advantage to using a biochemical process, in this case protein synthesis, as

a marker of viability, as opposed to detection of a dye such as PI or SYTOX Orange whose

activity is based on viable cellular exclusion. All processes were performed in multiwell plates,

using various automated liquid-handling equipment and image acquisition, highlighting the

high-throughput capability of the process. Data analysis required analyzing flluorescent

images, by first identifying the individual cells by staining their DNA content with SYTOX

Green, and then determining the level of incorporated HPG by measuring the level of Cy3

intensity based on the amount of Alexa Fluor 594 ligated to the cellular pool pf proteins (Fig

2A and 2B). For this analysis, the third channel DAPI data was ignored.

Again, using a diverse set of microbes as our subject pool, we compared agar plate-based

CFU/mL data to those obtained with HCA and HPG incorporation. Comparison of results

from the two methods indicated that counts were highly correlated to each other (Pearson cor-

relation coefficient 0.83, p-value <0.0001), indicating the HCA method described is robust

and suitable for enumeration and detection of viable microbes, when CFU plating is used as

the basline. We also noted that out of 75 total microbes tested, 6 Actinomyces, 5 Gram-negative
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strains, and 6 Bacillus did not grow on agar plates, but we were able to detect viable cells using

the HCA methodology. Alternatively, we also identified two Bacillus strains that did not indi-

cate viable cells using the HPG incorporation method, but did show growth on agar plates.

Finally, one Gram-negative strain, one Bacillus strain, and two Actinomyces strains were unde-

tected with either method, suggesting the original sample inoculation contained no viable

cells. These results indicate the HCA method may improve enumeration for microbial strains

that are difficult to grow on agar.

Comparing total viable cells obtained with our HCA method to CFU/mL plating, we dem-

onstrated a significant correlation between the two methods. We excluded samples that dem-

onstrated no growth or detectable protein synthesis from the final sample analysis, removing

23 samples from the final data set and lowering the final comparison to 52 total samples. With

this final comparison, we can conclusively state that HCA methods of microbe enumeration

and viability determination based on total protein synthesis are comparable to traditional

CFU/mL assays.

As an additional proof of concept that HCA analysis methods could be applied to complex

microbial samples, overnight antibiotic treatments were performed with the Gram-positive

strain B.megaterium, and two Gram-negative strains, Escherichia coli K12, and Pseudomonas
fluorescens. We also mixed the three strains together before antibiotic treatment. After fixation

and staining with SYTOX Green, we applied the same individual object detection, measure-

ment, and enumeration techniques as in the previous discussion. We were easily able to iden-

tify anti-proliferative effects from the three antibiotics, along with indications of drug specific

effects on microbial cellular morphology for each species (Fig 3 and S2 Fig). Treatment with

vancomycin, which mainly targets cell wall synthesis, demonstrated potent Gram-positive

Fig 2. HCA protein synthesis viability determination. Two-color images of microbes incorporating HPG (A). Total DNA was

stained with SYTOX Green and detected in the FITC channel, synthesized protein with incorporated HPG and ligated Alexa Fluor

594 was detected in the Cy3 channel. Arrows indicate cells positive for DNA staining, but negative for HPG incorporation. Three

representative data sets demonstrating the ability to separate individual cell populations into viable and non-viable populations based

on a control sample without the artificial amino acid HPG compared to HPG-containing samples. Green lines demonstrate the

approximate Cy3 intensity value used to determine HPG incorporation as opposed to autofluorescence. Individual object data are

represented by single dots, summary data is reported with box and whisker plots (B). Statistical analysis of enumeration results from

52 (largely Bacillus) samples determined by HCA measured cell viability via CLICK chemistry and CFU/mL assays (C).

https://doi.org/10.1371/journal.pone.0222528.g002
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targeted effects[24,25],but less effect against the Gram-negative strains. Tetracycline, which

binds the 30S ribosomal subunit[26], demonstrated activity against all three strains, but

appeared to be most potent against the Gram-negative strains, based on observation of total

objects detected in each sample as compared to control.

As a final test of robustness, we used the morphological feature data from the control

images, for each individual strain tested with antibiotic treatment, as training sets for Bootstrap

random forest analysis. This analysis was partitioned into 60%/20%/20% training/test/valida-

tion sets and run with default model building settings in JMP Pro (version 14). We then used

the resulting model to classify the individual objects from the untreated mixed cultures. This

machine learning analysis allowed for the identification and quantification of the individual

microbe species within the mixed culture sample (Fig 4). For all three strains, applying the

model to the full single-microbe datasets showed positive identification rates of 73–90.5% of

the individual objects for each strain. False rates of identification ranged from 0.2–16.9%.

Then, when applied to the data from the untreated mixed strain samples, the Bootstrap ran-

dom forest model indicated that E. coli growth had dominated the other two test strains, with

86.2% total of the population being identified as this strain. Visual inspection of the sample

images supported the low percentage of B.megateriummakeup within the mixture called by

the model analysis, but further effort to confirm the ratio of E. coli to P. fluorescens will be

undertaken and reported in a future manuscript, as will analysis of antibiotic strain specificity

within mixed microbe sample treatments.

Fig 3. Representative images of microbes treated with antibiotics. Representative images of control and antibiotic-treated

microbes stained with the DNA dye SYTOX Green are presented. Images were normalized for veiwing using ImageJ within each

genus for comparison, mixed microbe samples were normalized to each other.

https://doi.org/10.1371/journal.pone.0222528.g003
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These early results present the possibility of expanding HCA of microbial samples to more

complex questions, such as determining effects of mixed-microbe cultures on the effectiveness

of various antibiotic treatments. Our future research will further explore the utility of various

machine learning and artificial intelligence approaches in the interpretation of complex data

sets based on mixed-microbial cultures and responses to various environmental factors.

Conclusions

We have demonstrated the capability of HCA techniques and data analytics to record morpho-

logical characteristics of microbes, expanding the functionality of HCA from mainly mamma-

lian cell culture treatments to the field of microbiological analysis. The described HCA

techniques enable successful enumeration and viability determination of diverse classes of

microbes, help identify cells that may be classified as viable but not culturable, and allow for

the classification of mixed-microbe populations using machine learning modelling. Taken

together, these results support the wide spread adoption of HCA methodologies in large-scale

microbiological applications.

We have documented reduced time frames for the determination of microbe viability as

compared to traditional agar plate enumeration methods. The multiplex sampling methods

used here greatly reduced the amount of plastics and reagents typically used for traditional

CFU/mL enumeration methods. A single 384-well plate produces more HCA data than the

comparable stack of 384 petri dishes, does not need the resources and time necessary to pre-

pare and enumerate those petri dishes, and reduces disposal needs. A practical consideration is

the benefit of adapting protocols to liquid handling robotics, and the ability to save raw data as

a digitalized image, providing long-term data integrity, unlike a biological agar plate sample.

Fig 4. Object feature based strain identification in mixed culture. Data represented is based on the Bootstrap random forest

analysis of the total objects (indicated by N) for each microbe species tested. First, subsamples of data from each species in the un-

treated control group were used to train the algorithm. Following training, accuracy of the algorithm was determined by re-analysis

of all data from each microbe. Data is presented as the percent of objects identified within each training set, so that correctly

identified microbes match the identified sub-group, mis-identified microbes do not. Once we validated the rate of correct

identification, the algorithm was applied to the mixed-microbe sample object data set, values returned correspond to the percent

objects identified as either B.megaterium, E. coli, or P. fluorescens.

https://doi.org/10.1371/journal.pone.0222528.g004
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Most of the CFU/mL plating techniques described here are standard for all microbiology labo-

ratories, but these HCA processes are particularly amenable to many large-scale microbiome

projects currently underway. Additional benefits could be discovered if these HCA techniques

are eventually further refined and validated for use in quality assurance and quality-control

regulatory laboratories.

Finally, we show that combining machinelearning approaches with HCA generated data,

an approach now commonly used in drug discovery, can be done in a similar manner with

microbial sample datasets. This method allows for identification of changes in microbial

morphological characteristics in response to various treatments and culture conditions.

Recently, Zoffmann et. al. published a comprehensive description of various machine-learning

techniques applied to imaged bacteria samples treated with compounds for the purpose of dis-

covering novel antibiotic compounds[27]. We have utilized a similar approach to identify

morphological changes of three different microbes in response to two antibiotics with different

modes of action. Additionally, we have shown that machine learning could allow for identifica-

tion of population members of mixed microbe samples, demonstrating the potential of testing

numerous microbes simultaneously for mixed population responses, or potentially biofilm for-

mation or degradation in response to treatment. In both cases, application of machine learning

techniques has enhanced our abilities to test complex theories and return robust, annotated

data sets to drive research, reduce data turn-around timelines, and ultimately enhance the abil-

ity of microbial discovery research to progress at an increasing pace.

Supporting information

S1 Fig. Stain coverage of B. japonicum. Example images of B. japonicum enumeration sam-

ples demonstrating variable SytoBC staining, uniform DAPI staining, and SYTOX Orange via-

ble staining. Images were adjusted for color and zoom level using ImageJ.

(TIF)

S2 Fig. Representative HCA data from antibiotic treatment of microbes. All data presented

are from the same sample dilution to maintain data consistency. Microbes were treated in trip-

licate wells, and each well was imaged in duplicate for a total of n = 6 sample wells. Error bars

indicate the standard error of all objects represented. Average individual object counts per well

of treated microbe samples from the 1:250 sample dilution are presented (A). The morphologi-

cal characterization of roundness, measured as Form Factor, was averaged for all object data

collected from P. fluorescens, 1:50 dilution samples. Form Factor is scaled from 0–1, with 1

being a perfect circle, and 0 being a straight line. Total object area for treated B.megaterium,

1:250 sample dilution, was determined. Size variance was shown to be dose and compound-

class dependent (C). SYTOX Green staining intensity levels, generally associated with DNA

content or condensation were measured in treated E. coli 1:250 sample dilution, with effects

on staining intensity only noted from tetracycline treatments.

(TIF)

S1 Table. CFU/mL data vs HCA data generated from B. japonicum samples. All viable cells/

mL values are the mean calculated from triplicate determinations from at least 3 individual

sample dilutions that displayed a dilutional linearity R2 response >0.95.

(JMP)

S2 Table. Three-way enumeration comparison. Direct comparison of three different cell

enumeration methods, traditional CFU/mL plating, Flow cytometry, and HCA.

(JMP)
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S3 Table. Click viability vs. CFU/mL. Direct comparison of viable cell number determination

using total cellular protein synthesis detected via HCA compared to CFU/mL plating methods.

(JMP)

S4 Table. Antibiotic analysis results. Individual object data set collected from treatment of

three different microbe species, and a mixed species sample, treated with tetracycline or vanco-

mycin. Morphological data for each individual identified object is described in the individual

column headers.

(JMP)

S5 Table. GE Developer script for enumeration of B. japonicum. Example of the detection

algorithm script developed within GE Developer software and applied to images of B. japoni-
cum for determining sample viability enumeration. An intensity cut-off of 100 was used for

PI-stained samples, and a 1000 intensity cut-off was used for samples stained with SYTOX

Orange.

(TXT)

S6 Table. GE Developer script for analysis of 3 color microbe images. This script was used

to analyses images obtained from antibiotic treatments of microbes and determination of

microbe viability via protein synthesis detection.

(TXT)
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