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Abstract: Feys_,MnysGayx Heusler-like compounds were investigated in a wide range of Fe/Ga
ratios while keeping the Mn content constant and equal 25 at% in order to elucidate the interplay
between magnetic properties and composition. Materials were prepared by arc-melting from pure
elements and subsequently annealed. Experimental investigations were focused on magnetization
behavior in a wide temperature range from 4 to 1000 K and magnetic field up to 9 T. Optical
and magneto-optical (MO) measurements were employed to shed more light on the magnetic
state and electronic structure of investigated materials. Magnetization measurements indicated
that in the vicinity of stoichiometry (Fe;MnGa) the compounds are ferro/ferrimagnetic, whereas
the Fe-deficient compound is paramagnetic and at high Fe concentration the antiferromagnetic
interaction prevails. Theoretical calculations of corresponding ordered and disordered stoichiometric
compounds were carried out and compared to the experiment on the level of net magnetic moment
as well as magneto-optical spectra. This comparison suggests that the Heusler crystal structure, L2,
is not present even close to stoichiometry. Moreover, the comparison of density of states (DOS) for
ordered and disordered structures allowed us to explain missing martensitic transformation (MT) in
investigated materials.

Keywords: Heusler compounds; Fe-Mn-Ga; martensitic transformation; Curie point; magneto-optics;
ab initio

1. Introduction

Some Heusler compounds undergo martensitic transformation (MT), which is essential for shape
memory and caloric behavior [1]. Moreover, the twinned low symmetry phase can exhibit magnetically
induced reorientation that manifests itself as a huge magnetic field-induced strain, more than twenty
times larger compared to that of giant magnetostrictive materials [2—4]. Crucial for all effects is the
presence of MT, which is due to a peculiar electronic structure in the vicinity of the Fermi level [5].
The main examples of magnetic shape memory (MSM) material are Ni-Mn-Ga Heusler compounds.
However, these compounds suffer from several shortcomings such as fragility [6] and relatively low
martensitic and ferromagnetic transition temperatures [7-9].
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Heusler Fe-Mn-Ga compounds have been proposed as good candidates for new MSM material [10]
as they have a much higher Curie point than Ni-Mn-Ga. However, it was found very soon that martensitic
transformation is not a universal feature, and it occurs only in some particular compositions [11-14].
Apart from thermally induced transformation [15], even the field-induced transformation was observed
for Fe;MnGa by Zhu et al. [16].

It was found that ternary compounds close to Fe;MnGa composition crystallize in various cubic
structures defined by a different atomic order [12]. The ordering is very sensitive to compositional
variation and even a very small deviation from stoichiometry, often negligible or even undetectable
by usual EDS, can produce either bec-like (disordered B2, ordered L2; Heusler structure) or fcc-like
(L1, structure) phases or their mixture [12,17]. Apparently, thermal history can also play a role in
establishing various phases [18].

Unlike Ni-Mn-Ga, Fe-Mn-Ga compounds contain two kinds of atoms with different magnetic
moment localization but with comparable magnitude. Their interaction can provide various magnetic
arrangements from antiferromagnetic to ferri- or ferromagnetic states. The close coexistence of the
phases in a single compound is indicated by the exchange bias [19]. Such coexistence, in connection
with a complex interplay of bcc- and fec-like phases, results in complicated magnetic behavior. Overall,
the magnetic state is not well understood even for stoichiometric Fe;MnGa. Despite the mixed
structural order of fcc- and bec-like phases in near stoichiometric Fe;MnGa, Kudryavtsev et al. were
able to determine its electronic and optical properties and compare it with ab initio calculations [13,20].
However, the published results are incomplete as the most studied compositions are close to the
stoichiometric Fe;MnGa compound.

Here we present a comprehensive study encompassing previous experimental reports and
theoretical predictions. We investigated experimentally Feys «MnysGayx compounds derived from
Heusler compounds in a wide range of compositions with varied Fe/Ga ratios while keeping the Mn
content constant and equal 25 at%. The magnetic and MO measurements are complemented with ab
initio calculations of stoichiometric Fe,MnGa with different lattice structures and magnetic ordering in
an attempt to clarify the observed complex behavior and differences between our experimental results
and previous calculations.

2. Materials and Methods

Polycrystalline bulk samples were prepared by arc-melting from pure elements in Ar atmosphere
using a Buhler furnace. After the homogenization heat treatment at 1073 K/24 h, the samples were cut
and polished mechanically and electrolytically to obtain high-quality surfaces for scanning electron
microscopy (SEM) and optical and magneto-optical measurements. SEM was used to reveal the
microstructure, phase composition, and grain size. We used SEM Tescan Fera 3 equipped with
electron dispersion spectroscopy (EDS) analyser and electron backscattered diffraction (EBSD) device.
The crystal structure was evaluated from EBSD. Composition of the polycrystalline buttons were
determined by EDS with error up to 1 at% particularly on Mn content. The errors in these particular
compounds were estimated from our analyses of Ni-Mn-Ga Heusler compounds, using comparison
with X-ray fluorescence analysis with standards.

The magnetic properties with field and temperature were measured in the interval from 10 to
1000 K and field up to 9 T using a PPMS vibrating sample magnetometer in PPMS by Quantum
Design. The spontaneous saturation magnetization was determined by extrapolating the high-field
magnetization to zero field.

A magneto-optical spectrometer based on the rotating analyzer [21] method was obtained to
acquire complex magneto-optical Kerr effect (MOKE) in polar configuration with nearly normal light
incidence in the photon energy range from 1.2 to 4.5 eV. Applied magnetic field was 1.2 T to bring the
samples close to the magnetic saturation. All magneto-optical data were measured at room temperature.

The Vienna Ab initio Simulation Package (VASP, ver. 5.4.4) was used for structural relaxation and
calculations of magnetic moments, densities of states (DOS) as well as optical properties of stoichiometric
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Fe,MnGa [22,23]. In our calculation, the electron-ion interaction was described by projector augmented-
wave (PAW) potentials [24,25]. We used the gradient-corrected exchange—correlation functional
proposed by Perdew et al. [26]. To include expected disorder, the Special Quasirandom Supercell
(SQS) [27,28] with 32 atoms as a model of disordered system was generated using a separate software
tool [29]. This method is based on optimizing pair correlation coefficients to represent a statistically
random solid solution.

3. Results and Discussion

Prepared materials ranged from the FepsMnysGasg to FegsMnysGayg keeping Mn content at 25 at%
as close as possible. The chemical composition determined for most compounds by EDS is listed in
Table 1 together with saturation magnetization and Curie temperature. The EDS analysis indicated
that the nominal composition does not differ significantly from the measured one. Listed samples were
further analyzed by magneto-optical measurements.

Table 1. Composition, spontaneous magnetization Mg, and Curie temperatures T. of selected
compounds. The spontaneous magnetization in Bohr magnetons (ug) per formula unit (f.u.) and the
Curie temperature of the second phase are listed in brackets. The Mg was obtained by extrapolation the
magnetization from high magnetic field to zero field. The error in determination of composition is
about 1 at%; for magnetization measurement, the error is about 5%.

Mg at 10 K
Name Nominal Determined by EDS (Am?/kg) Tc (K)
(up per f.u.)
87 532
Fe40 Fe40Mn25Ga35 Fe39.5Mn26Ga34.5 3.77) (183)
100 762
Fe50  Fe50Mn25Ga25 Fe49Mn26Ga25 (4.23) (554)
57 736
Feb2 Fe52Mn25Ga23 Fe51Mn26Ga23 (2.40) Single
Fe56  Fe56Mn25Gal9 Fe56Mn26Gal8 1at300K  Antiferromagnetic
(0.04) (traces of ferro.)
0.05 Antiferromagnetic
Fe65  Fe65Mn25Gal0 - (0.02) Ty = 300 K

3.1. Structural Properties

All studied materials had a cubic structure at room temperature. None of the studied materials
exhibited transformation to the lower symmetry phase, that is, martensitic transformation (as determined
from magnetic measurement shown below) upon cooling. SEM observation using backscattered electrons
revealed that two compounds, Fe65 and Fe52, were single cubic phase. The example of single-phase
microstructure is shown in Figure 1 (right). SEM indicated a non-homogeneity of Fe50; however,
different phases could not be resolved. A notable exception was the Fe40 compound, in which two
different phases could be clearly identified, as shown in Figure 1 (left). The EBSD measurement indicated
two cubic phases. These phases had very similar compositions as determined by EDS. Magneto-optical
Kerr Effect (MOKE) microscopy indicated that only one phase was ferromagnetic at room temperature
as the magnetic domains could be observed. The phase formed ferromagnetic islands immersed in
a non-magnetic matrix. The two-phase character of the compound was confirmed by magnetization
measurement (see below).
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Fe;oMn, Ga,s Fe;;Mn,.Ga,,;

Figure 1. Microstructure of two-phase Fe40 (left) and single-phase Fe52 (right) samples observed by
backscattered electrons in SEM. It clearly shows the two-phase character of the Fe40 sample showing
irregular flower-like islands in a matrix. Sample Fe52 is single phase with relatively large grains.
Composition determined by EDS is indicated in the figure.

3.2. Magnetic Properties

Figure 2 summarizes the magnetization loops and temperature dependence of low-field and
high-field magnetization of all magnetically ordered samples. The low-field magnetization confirmed
expected high Curie temperatures in all compounds close to stoichiometry. The high Curie temperature
phase can be identified from the literature as fcc phase [12,13]. The highest temperature, about 760 K,
was measured for the sample (Fe50) closest to stoichiometry. The temperatures are listed in Table 1.
The low-field magnetization measurement also confirmed the single phase in Fe52 and the two-phase
character of Fe40 in agreement with SEM (Figure 1), indicating low Curie temperature (183 K) of the
second phase. This agreed with MOKE observation at room temperature. According to Kudryavtsev,
the matrix phase with a low Curie point is the disordered bcc phase [12,13].

Moreover, the low-field measurement revealed two different high Curie temperatures in Fe50
(as shown in the second panel of Figure 2), indicating, in accordance with inhomogeneities observed
by SEM, that the sample contained two different phases. According to Kudryavtsev [12], it should
contain fcc and bee phases. Although the fcc phase exhibited a high Curie point in accordance with the
literature, the expected bec phase had quite a high Curie temperature compared to that of Fe40. It seems
to exclude the presence of the bce phase, but it may be also ascribed to different composition close to
stoichiometry. On the other hand, the Curie temperature of the assumed fcc-phase is comparable with
sample Fe52 in line with the literature [13]. High-field thermomagnetic curves support the described
behavior; however, the separation between phases cannot be determined in any case.

Magnetization loops of selected samples at room temperature and close to 0 K, shown in
Figure 2, indicate that the materials close to stoichiometry were all ferromagnetic or ferrimagnetic in
agreement with [12]. With decreasing temperature, the saturation magnetization was often reduced
below room temperature magnetization. The decrease of saturation magnetization with decreasing
temperature is well illustrated by high-field thermomagnetic curves. This decrease indicated the onset
of antiferromagnetic interaction below room temperature.

Interestingly, the Fe52 sample, which from SEM observation and low-field magnetic measurement
seems to be single-phase material, exhibited a sharply increasing coercivity and a strong decrease of
low-field magnetization with decreasing temperature. This behavior is not observed for any other
compositions. The lowering susceptibility and increased coercivity can indicate enhanced magnetic
domain pinning. It may be ascribed to antiferromagnetism in disturbed regions [12] as grain boundaries
and even within antiphase boundaries [30-32] on which the magnetic domain walls can be pinned.
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Figure 2. Magnetization curves at room and 10 K temperatures (right) and thermomagnetic curves

measured upon heating (left) of selected samples marked in figure. Black line and left y-scale indicate
saturation magnetization at 9 T. Red line and right y-scale indicate low-field magnetization (0.01 T).
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Figure 3. Spontaneous magnetization at 10 K obtained by extrapolation from high-field magnetization
(up to 9 T) to zero field is represented by red triangles. Stoichiometric composition of Fe;MnGa
is marked by the vertical broken line. Room temperature magnetization at 1.4 T related to MO
measurements is represented by black squares. The estimated errors in composition and magnetization
determination are marked.

The compounds with the composition strongly deviated from stoichiometry were either
paramagnetic or antiferromagnetic. Clear antiferromagnetic behavior was observed for Fe65 with Néel
temperature Ty about 300 K, determined from the temperature dependence of saturation magnetization.
This is similar to temperature, where the decrease of saturation magnetization is observed for other
compositions. It suggests that the antiferromagnetic interaction becomes gradually stronger with
increasing Fe content (i.e., from Fe40 to Fe65 samples).

The dependence of the spontaneous magnetization at 10 K on Fe content shown in Figure 3
summarizes previous observations. For low Fe concentration the material is paramagnetic, for higher
Fe concentration, the ferromagnetic interaction is established and saturation magnetization increases.
The maximum moment occurs at stoichiometry. With increasing Fe content above stoichiometry, the
magnetization sharply dropped to almost zero due to antiferromagnetic interaction. The residual
magnetic moment for the compound with high content of Fe can be due to not fully compensated
antiferromagnetism or due to structural inhomogeneity, that is, the presence of a small volume of
ferromagnetic phase or even a minute amount of pure Fe.

Room temperature magnetization measured at 1.4 T follows the trends observed for the
spontaneous magnetization. It is also shown in Figure 3 as it is important for MO measurement done
at room temperature.

3.3. Magneto-Optical Spectroscopy

Room temperature experimental spectra of polar Kerr rotation and ellipticity are shown in Figure 4.
The spectra of polar Kerr rotation exhibit monotonous behavior with an increase towards the low
energy region and an indication of a spectral structure near 2 eV. On the other hand, the ellipticity
spectra rise with increasing energy with a broad maximum situated near 3.5 eV.

This spectral dependence resembles already reported results on polycrystalline Feq;gMnysGapg [33]
and FesoMnysSnys [34] bulk samples. However, the spectra were completely different than
those previously reported on other Heusler compounds containing Mn, but without Fe atoms,
such as Ni-Mn-Ga [35,36], Ni-Mn-5n, Ni-Mn-Sb, or other compounds containing Mn atoms [37].
This result indicates a major difference in the electronic band structure between Fe-Mn-Ga and
Ni-Mn-Ga compounds.
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Figure 4. Experimental spectra of polar Kerr rotation (top) and ellipticity (bottom) measured at 1.2 T
and room temperature together with ab initio theoretical calculations.

Figure 4 also shows strong variation of magneto-optical effect upon the composition of the sample.
Although the spectral behavior is similar for all the samples, sample Fe50 exhibits the highest MOKE
amplitude, whereas sample Fe56 has almost negligible magneto-optical response. This is consistent
with magnetic measurements and is demonstrated in Figure 5, where the amplitude of MOKE at 1.5 eV
is plotted as a function of Fe composition. As one can see from this figure, the magnetization together
with MOKE has a maximum for nearly stoichiometric composition.
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Figure 5. Composition-dependent polar Kerr effect of Fe-Mn-Ga compounds at the photon energy of

1.5eV.
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3.4. Theoretical Calculations

To explain our experimental data and to compare with previously published results, we performed
new ab initio calculations with stoichiometric composition. Kudryavtsev et al. [13] show that the L2;
ordered structure has slightly higher total energy and thus it does not appear in the stoichiometric
compound. This calculation seems to suggest that there is no Heusler compound with proper ordering.
We next considered the L1, (fcc) ordered structure.

Previous ab initio calculations performed for the stoichiometric compound with the L1, (fcc) order
indicated the ferromagnetic ordering as the most stable with a magnetic moment of 6.13 ug/f.u. This is
significantly higher than measured values of saturation magnetization of 4.23 ug/f.u. In contrast, the
ferrimagnetic ordering with opposite orientation of magnetic moments at Fe and Mn atoms exhibits
much smaller magnetic moments of 0.48 pug/f.u. [13].

In our calculation, we used the L1, (fcc) structure described previously [13] but we considered
opposite orientation of magnetic moment at neighboring Fe atoms within the same plane. This resulted
in a magnetic moment of 1.90 up/f.u. An even higher magnetic moment of 2.75 ug/f.u. was found for
antiferromagnetic interaction between Fe planes, whereas in-plane interaction between Fe atoms was
ferromagnetic. The magnetic moment is, however, still lower than experimentally observed values for
nearly stoichiometric compounds.

Further increasing of magnetic moments can be achieved by considering the chemical disorder
between Ga and Fe atoms in the L1, lattice. We used the Special Quasirandom Supercell (SQS) [27,28]
with 32 atoms as a model of disordered system. Such a supercell exhibits a magnetic moment
of 431 pg/fu. due to the opposite orientation of magnetic moments at particular Fe atoms.
Antiferromagnetic interaction appears if the Fe atom is surrounded at least by six other Fe atoms.
In an ordered L1, structure, each Fe atom is surrounded by only four other Fe atoms. Moreover,
we also found that this ferrimagnetic state of disordered structure was energetically more favorable
than ferromagnetic ordering about 0.017 eV/atom. This clearly indicates that the compound Fe50 is
disordered L1, which results in the highest magnetic moment of all ferrimagnetic states.

For slightly non-stoichiometric compounds with excess Fe content (i.e., the Fe52 sample), a sharp
decrease of magnetic moment down to 2.4 ug/f.u. was observed in the experiment. Based on
the theoretical calculation of stoichiometric compound, this sharp decrease of magnetic moment
can be explained by the disappearance of the disorder and the appearance of L1, ordering. The
theoretical prediction for ordered compounds is 2.75 pg/f.u or 1.9 pg/f.u., depending on the mode
of antiferromagnetic interaction as described above. The further sharp decline of magnetic moment
observed in the experiment in the compounds with higher Fe content can be ascribed to fully established
antiferromagnetic interaction.

The ab initio calculation showed that further decrease of magnetic moment is due to increasing
chance to form Fe clusters with oppositely oriented magnetic moments at Fe atoms. The predicted
trend was observed in the experiment; however, the experimentally observed magnetization decrease
is much sharper than predicted.

To explain the missing MT in the investigated samples, the ab initio calculations of MOKE
spectra of L2; and disordered L1, structures were performed using the complex permittivity tensor
obtained within the linear response theory as implemented in the VASP 5.4 code. The results are
shown in Figure 4 together with experimental data. Theoretical spectra of L2; structure do not
follow experimental data, as they exhibit several maxima and minima and change sign of MOKE
several times across the investigated energy range. This indicates the absence of L2; order in the
investigated samples.

On the other hand, the spectra of the disordered L1, structure provide better agreement with
the experiment. They exhibit similar monotonous increase and decrease of polar Kerr rotation and
ellipticity, respectively. Admittedly, the amplitude of the effect is lower than the experimental data
of the Fe50 sample. However, this can be explained by the relatively small unit cell (32 atoms) used
in the calculation due to prohibitively high memory requirements. Such a small cell might describe
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the more severe deviation from the fully ordered structure than the disorder present in our sample.
This deviation then changes the electronic structure excessively as manifested by the smooth DOS
below, which can result in a suppression of the probability of electronic transitions responsible for
magneto-optical response.

To explain the difference in the MOKE of stoichiometric Ni-Mn-Ga and investigated Fe-Mn-Ga
samples, spin-resolved total DOS were calculated and are displayed in Figure 6.
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Figure 6. Calculated spin-resolved total DOS for L2; and disordered L1, structures compared to those
of stoichiometric Ni,MnGa.

Comparing the total DOS of L2; and disordered L1, structures with those reported for NipMnGa [5],
one can see a major difference in the majority spin channel just above the Fermi level. While the L2
and disordered L1, structures of Fe;MnGa have a clearly visible band approximately 0.2-0.3 eV above
the Fermi level (visible as a sharp peak indicated by arrows), this band is completely missing in the case
of NipMnGa. It indicates that a substitution of Ni by Fe results in the presence of empty states above
the Fermi level in the majority spin channel, which can act as excited states of particular electronic
transitions. Figure 6 also shows that the disordered L1, structure exhibits higher DOS at Fermi energy
compared to the L2 structure.

On the other hand, the minority spin channel looks similar for the case of Ni;MnGa [5] as well as
for both Fe-Mn-Ga structures. Therefore, one should expect certain similarities in the MOKE spectra
of these two compounds. Indeed, besides strong monotonous increase/decrease towards the low
energy region, one can see certain indications of spectral structures in experimental MOKE spectra
around 2 eV in rotation and 3 eV in ellipticity. These may originate, similarly to Ni;MnGa [35,36], from
transitions between states in the minority spin channel. However, their transition probability is much
lower compared to the low energy transitions. This is the case of the disordered L1, structure where
the energy gap in the minority spin channel around the Fermi level is not observed contrary to the L2
structure and Ni;MnGa (see Figure 6). High DOS around the Fermi energy raise the optical absorption
at lower energies [20] and enhance the magneto-optical response as was experimentally observed in the
spectra of polar Kerr rotation. The huge difference in DOS in the vicinity of the Fermi level most likely
suppresses the MT. Since the energy gap in the minority spin channel makes the martensite phase
more energetically favorable over austenite [5] (it is shifted from below the Fermi level to the Fermi
level during the MT), the stabilization of the disordered L1, structure in the investigated compound is
the reason for the missing MT.
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4. Conclusions

In Fe-Mn-Ga compounds with constant 25 at% manganese content the saturation magnetization
sharply grows, when iron content overcomes approximately 30 at% of Fe and then nearly immediately
drops to zero above 50 at% of iron. The structural observation indicated that polycrystalline samples
contained a mix of cubic phases, and the ordered single phase is difficult to prepare. We observed
complex magnetic behavior ascribed to various magnetic ordering underlined by a different structural
order. Our ab initio calculation showed that there is a transition between the disordered and ordered
L1, phases in the stoichiometric boundary (i.e., on Fe;MnGa). Inferring from this theoretical calculation,
we suggest that the experimentally observed sharp drop of magnetization with increasing Fe content
is caused by disorder-order transition in the L1, structure and incipient antiferromagnetism in the
ordered structure. The calculated magneto-optical spectra do not follow the spectral dependence
reported for L2; Ni;MnGa; however, they are consistent with the presence of the disordered L1,
structure. Disordered L1, exhibits a completely different electronic structure near the Fermi energy
and therefore does not undergo martensitic transformation.
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