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Abstract

After harvesting agricultural crops, the residue can be returned to the soil as mulch. This

study performed a meta-analysis of previous research to investigate the effects of crop resi-

due return and other factors on crop yields and water use efficiency (WUE). Overall, the

results show that crop residue return increases crop yields by 5.0% relative to crops grown

without it. The greatest increases in yield for crops grown with returned residue were associ-

ated with average annual temperatures < 10 ˚C (yield increase = 7.6%), rainfall� 800 mm

(9.5%), plowing depth� 20 cm (6.5%), corn crops (8.0%), growth of a single crop per year

(10.1%), no irrigation (11.9%), nitrogen (N), and potassium (K) fertilization (20.0%), and low

nitrogen application rates of 0–100 kg N ha-1 (10.8%). The effects of crop residue return on

crop yields were found to vary according to the following soil properties: organic matter con-

tent� 15 g kg-1 (yield increase = 9.4%), available nitrogen content� 100 mg kg-1 (10.3%),

and pH� 6.5 (11.2%). The greatest magnitudes of increase in WUE associated with crop

residue return were associated with corn (yield increase = 13.7%), medium nitrogen content

(100–150 kg ha-1; 23.3%), high soil organic matter (� 15 g kg-1; 25.5%) and low air tempera-

tures (< 10 ˚C; 19.9%). In addition, our results suggest that crop residue return might be

most effective in increasing crop yields and WUE in corn crops, crops with a tillage depth�

20 cm, crops grown with moderate nitrogen fertilization (0–150 kg ha-1), growth of a single

crop per year, high soil organic matter content (� 15 g kg-1), and cold conditions (< 10 ˚C).

Overall, the results of this meta-analysis suggest that crop residue return can increase crop

yields and WUE, with the relationship being mainly affected by climatic conditions, plowing

depth, fertilization management, crop types, and soil properties.

Introduction

The production of residues associated with 27 food crops has been evaluated at 3758 × 106 Mg

yr-1 [1]. Returning crop residue to the soil can avoid the greenhouse gas emissions caused by

burning it [2] while improving the soil organic matter content, soil physical properties, water

use efficiency (WUE), soil structural stability, soil expansion, and capacity expansion, as well

as reducing soil bulk density [3, 4, 5]. Moreover, crop residue return can increase crop yields

and quality [6, 7]. Thus, crop residue return plays important roles in sustainable agriculture

and environmental protection.
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However, some studies have shown that crop residue return can have negative effects

on the environment and crop yields [8, 9]. For example, the decomposition of crop resi-

dues consumes soil-available nitrogen, which is not conducive to crop growth and yields

[10]. Reductions in crop yields induced by crop residue return are caused by imbalances

in the soil carbon:nitrogen ratio [11]. In other cases where crop residue return does not

increase crop yields, the emergence rate is poor because of improper farming methods or

poor-quality seeding [12]. Crop residue return improves the soil’s water retention capac-

ity, which increases wheat growth during the nutritional growth period and reduces the

harvest index of wheat [13]. Zhou et al. [14] showed that crop residue return decreases

ground temperature and delays crop growth, which reduces yields. Thus, although there

has been extensive research on the effects of crop residue return, the results are inconsis-

tent or contradictory because of differences in soil conditions, planting systems, and cli-

matic conditions [15, 16].

Meta-analysis has been used to synthesize information from diverse studies performed

under various conditions. It can provide effect sizes, which are calculated as the response

of a treatment relative to that of an untreated control [17, 18]. This can solve problems that

can’t be solved by a single study. The effects of crop residue return on crop yields and

WUE have been widely investigated using different methods, including meta-analysis [19,

20, 21]. For example, by applying a meta-analysis method, Yu et al. [20] showed that crop

residue return can significantly improve maize grain yields and WUE in Northern China

because it enhances the soil hydrothermal environment. Crop residue return can clearly

increase crop yields and WUE, but the magnitude of the effect may vary according to the

site and agronomic management regime [22, 23]. However, the understanding of the

effects of crop residue return on crop yields and WUE under different types of agricultural

management (e.g., different crop types, irrigation conditions, tillage type, fertilizer condi-

tions, and cropping system type), experimental durations, climatic conditions, and soil

properties (such as soil organic matter and pH) remains incomplete. Therefore, we con-

ducted a meta-analysis to evaluate the impacts of crop residue return on crop yields and

WUE relative to those of crops grown without crop residue treatment (referred to here as

no-straw). These effects were also studied in relation to agricultural management strategies

(crop type, tillage type, fertilizer type, depth of tillage, amount of N fertilizer, cropping sys-

tem type), climatic conditions (mean annual temperature, precipitation), soil properties,

and experimental duration.

Materials and methods

Data sources

Experimental research papers were identified via a search for field-based reports on the effects

of crop residue return on crop yields and WUE that were published prior to 2018. Chinese and

English databases were used, including the China Knowledge Network, Weipu, Wanfang,

Web of Science, Springer, Engineering Village, and Google Scholar. The keywords included

“straw”, “mulching”, “residue”, and “yield”. To reduce uncertainties and meet the require-

ments of the meta-analysis, the studies were selected using the following criteria: (1) the exper-

iment must have been conducted in the field; (2) the experimental duration must have

been� 2 years; (3) there were� 3 replicates; (4) the test site and year were clearly identified;

(5) the test treatments included both crop residue return and no return; and (6) in cases where

many years of production data were included, only the most recent year was used. If standard

deviations (SDs) were given in an original paper, they were used directly. If standard errors
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(SEs) were given, they were converted to SDs using Eq (1):

SE ¼ SD= ffiffinp ð1Þ

In other cases, the average coefficient of variation through the whole dataset was used to

calculate the standard deviation according to the method of van Groenigen et al. [24]. A total

of 39 articles were selected after screening 268 papers (Fig 1 and S1 Table).

The WUE was calculated according to Li et al. [2]:

WUE ¼
Yield
ETa

ð2Þ

where Yield is the grain yield (kg ha−1) and ETa is actual crop evapotranspiration (mm).

The type of crops included in the database search comprised oilseed rape (Brassica napus
L.), corn (Zea mays L.), soybean (Glycine max Merri L.), wheat (Triticum aestivum L.), rice

(Oryza.sativa L.), pea (Pisum sativum L.), and cotton (Gossypium spp). Irrigation conditions

were separated into three categories: no irrigation, irrigation, and paddy. We grouped irriga-

tion water types into two groups: brackish water and fresh water. The tillage types were classi-

fied into five groups: rotary tillage, chisel plow tillage, no-tillage, harrow plowing tillage, and

moldboard plowing tillage. The fertilizer types were partitioned into seven groups: no fertil-

izer, nitrogen (N), phosphorus (P), and potassium (K) + organic fertilizer, NPK, NP + organic

fertilizer, NP, NK, and N. The depth of tillage was classified into two groups:� 20 cm

and< 20 cm. The rate of N fertilizer application was divided into the following classes: > 150

kg ha-1, 100–150 kg ha-1, 0–100 kg ha-1 and 0 kg ha-1. The experimental durations were divided

Fig 1. Flowchart diagram of the process applied to obtain the literature data to build a database for the study.

https://doi.org/10.1371/journal.pone.0231740.g001
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into three categories:� 10 years, 3–10 years, and� 2 years. The cropping system types were

divided into two groups: one crop per year and two crops per year. The soil organic matter

was divided into three groups: > 15 g kg-1, 10–15 g kg-1, and� 10 g kg-1. The soil-available

nitrogen content was divided into two categories: < 100 mg kg-1 and�100 mg kg-1. The soil

pH value was divided into three categories: > 8.0, 6.5–8.0, and� 6.5. The mean annual tem-

perature was divided into three categories: > 15 ˚C, 10–15 ˚C, and< 10 ˚C. Precipitation was

divided into three categories:� 800 mm, 400–800 mm, and< 400 mm. The soil total nitrogen

content was classified into two categories: < 1 g kg-1 and� 1 g kg-1 (Table 1).

Calculation of size of the effects

The effect sizes were calculated using the yield, WUE, standard deviation (SD), and number of

replicates used in each study [25].

lnðRÞ ¼ lnðXex=XckÞ; ð3Þ

where R is the effect size, and Xex and Xck are the yields and WUEs for the crop residue return

and no-straw treatments, respectively.

The variance (Var) was calculated after Xu et al. [26]:

v ¼
SD2

ex

nex � X2
ex

þ
SD2

ck

nck � X2
ck

ð4Þ

where SDex and SDck represent the SDs of the yield and WUE for crop residue return and no-

straw treatments, respectively; and nex and nck are the sample sizes for these treatments,

respectively.

Table 1. Categorical variables (Var), total number of paired observations of crop yield for crop residue return and no-straw treatments (k), specific levels of each

Var (L), between-group heterogeneity (Qb), and significant P values produced by the meta-analysis.

No Var. k L1 L2 L3 L4 L5 L6 L7 Qb p
1 Crop types 144 Rape Corn Soybean Wheat Rice Pea 21.5166 0.0094

2 Irrigation condition 119 No irrigation Irrigation Paddy 12.5712 0.0064

3 Irrigation water types 89 Brackish

water

Freshwater 23.3343 0.0008

4 Tillage types 108 Rotary tillage Chisel plow tillage No

tillage

Harrow ploughing

tillage

Mouldboard ploughing

tillage

12.7747 0.0272

5 Fertilizer types 142 No fertilizer NPK+organic

fertilizer

NPK NP+organic

fertilizer

NP NK N 31.6973 0.001

6 Depth of tillage (cm) 77 �20 <20 5.3109 0.0418

7 Amount of N fertilizer

(kg ha-1)

131 >150 100–150 0–100 0 11.57 0.021

8 Experimental duration (year) 145 �10 3–10 �2 9.5218 0.0252

9 Cropping system types 134 One crop a

year

Two crops a year 12.0566 0.0028

10 Soil organic matter (g kg-1) 109 >15 10–15 �10 9.0164 0.0322

11 Soil-available nitrogen content

(mg kg-1)

52 <100 �100 8.3198 0.008

12 Soil pH value 68 >8 6.5–8.0 �6.5 21.0101 0.0006

13 Mean annual temperature (˚C) 54 >15 10–15 <10 4.3849 0.1420

14 Precipitation (mm) 102 �800 400–800 <400 11.0903 0.016

15 Soil total nitrogen content (g

kg-1)

79 <1 �1 2.8911 0.1386

https://doi.org/10.1371/journal.pone.0231740.t001
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The weight (w) of each effect size was calculated as follows:

w ¼ 1=v ð5Þ

We calculated the mean effect size as:

lnðRÞ ¼

X
lnRi � wi
X

wi

ð6Þ

Where ln Ri and wi are the effect sizes and weights of the corresponding observations, respec-

tively. Thus, the 95% confidence interval (CI) of ln(R) was calculated as:

95%CI ¼ lnðRÞ � 1:96SElnðRÞ ð7Þ

where SElnðRÞ is the SE of lnR and was calculated as:

SElnðRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

X
wi

s

ð8Þ

To reflect the effect of crop residue return on yield more intuitively, ln(R) was converted to

Y, the magnitude of the increase in yield, and WUE [25]:

Yð%Þ ¼ ðExpðlnRÞ � 1Þ � 100% ð9Þ

If the upper and lower limits of the 95% confidence interval for Y were both greater than

zero, then it was concluded that crop residue return improved crop yield or WUE compared to

no-straw treatment. If both limits were< zero, then crop residue return was considered to have

decreased crop yield or WUE. If the 95% CI included zero, then it was concluded that there was

no difference in crop yield or WUE between the crop residue return and no-straw treatments.

Statistical analysis

Meta-analysis was performed using Metawin 2.1 software [27, 28]. The mean effect sizes were

evaluated with a random-effects model. The 95% CI for each mean effect size was estimated by

applying bootstrapping with 4999 iterations [27]. Mean effect sizes were considered signifi-

cantly different when the 95% CIs did not overlap, and the Gaussian distribution lines were

made using Origin 8.5 software. The images were processed using GraphPad Prim 6.0 software.

Results

Test of publication bias

Our dataset consisted of 193 comparisons of crop residue return versus no-straw treatments,

comprising 146 comparisons of yield and 47 of WUE. These comparisons were taken from 39

studies, 13 of which were published in English and 26 in Chinese. The frequency distributions

of the effect size were normal Gaussian distributions for the yield and WUE, suggesting that

the datasets were homogeneous (Fig 2 and S2 Table; [29]).

Impact of crop types and irrigation conditions

The impact of crop residue return on crop yield was significantly affected by crop type

(P< 0.05; Table 1, Fig 3a). The results for soybean, rape, and pea overlapped zero, suggesting

no significant effect of crop residue return on their yields. Wheat crops had the smallest

PLOS ONE Crop residue return affect crop yield and water use efficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0231740 April 27, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0231740


increase in yield associated with crop residue return (2.7%). The effects of crop residue return

on the yields of rice and corn crops were 5.3% and 8.0%, respectively (Fig 3a).

The effect of crop residue return on crop yield was also impacted by the irrigation strategy

(Table 1, Fig 3b). Without irrigation, crop residue return increased crop yield by 11.9%

Fig 2. Frequency distribution of effect sizes for yield (a), and WUE (b) responding to crop residue return

compared to no-straw. Solid lines are fitted normal (Gaussian) distributions of frequency data sets.

https://doi.org/10.1371/journal.pone.0231740.g002

Fig 3. Effect of crop residue return on crop yield for: (a) different crop types; (b) irrigation conditions; (c) irrigation water type. Error bars

represent the mean value ± 95% CI.

https://doi.org/10.1371/journal.pone.0231740.g003
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compared to no-straw. Crop residue return increased crop yields by 8.5% and 3.4% for paddy

and irrigated crops, respectively. The type of irrigation water used also significantly affected

the effect of crop residue return on crop yield (Table 1, Fig 3c). Crop residue return increased

the yields of crops irrigated with fresh water by 4.9%, whereas those of crops irrigated with

brackish water were reduced by 9.5% compared to no-straw.

Impacts of tillage and fertilizer conditions

The effect of crop residue return on crop yield varied with the type of farming system (Table 1,

Fig 4). For the different tillage measures, the order of yield increase associated with crop resi-

due return was: harrow plowing tillage (14.7%)> chisel plow tillage (9.9%) > rotary tillage

(6.0%) > mouldboard plowing tillage (5.5%). No difference in crop yield was recorded

between crop residue return and no-straw treatments under no-tillage.

The type of fertilizer also significantly affected the impact of crop residue return on crop

yield. Where no fertilizer was used, crop residue return had no effect on crop yield compared

with no-straw, but increases in crop yield were observed when crop residue return was used in

conjunction with fertilization by NK (20.0%), NP (7.2%), NPK (4.3%), and NPK+ organic fer-

tilizer (15.5%; Fig 4b).

Crop residue return increased yields by 6.5% for plow depths� 20 cm (Table 1, Fig 4c) but

no difference was recorded for depths < 20 cm. The amount of N fertilizer also significantly

affected the impact of crop residue return on yield (Table 1, Fig 4d). Without N fertilizer, crop

residue return had no impact on yield compared with no-straw, but at low rates of N applica-

tion (0–100 kg N ha-1), crop residue return increased crop yield by 10.8%, which was the high-

est level of improvement with the various rates of N fertilization. At medium (100–150 kg N

ha-1) and high (>150 kg N ha-1) rates, crop residue return increased yields by 6.3% and 5.1%,

respectively, compared to no-straw.

Fig 4. Effect of crop residue return on crop yield under different tillage types (a), depth of tillage (b), fertilizer

types (c), and amount of N fertilizer (d). Error bars represent the mean value ± 95% CI.

https://doi.org/10.1371/journal.pone.0231740.g004
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Impact of experimental duration, cropping system type, and climatic

conditions

The number of years over which crop residue return was practiced significantly affected the

effect of crop residue return on crop yield (Table 1, Fig 5a). The greatest increases in crop yield

were observed with experimental duration of crop residue return of 3–10 years (7.1%). No dif-

ference in crop yield was observed between treatments with experimental duration > 10 years.

An increase in yield of 5.4%, compared to no-straw, was observed for experiments where crop

residue return occurred for� 2 years (Table 1, Fig 5a).

The type of cropping system also significantly affected the yield increase associated with

crop residue return. The increase was 10.1% in cases with one crop per year and significantly

higher for cases with two crops a year (3.5%; Table 1, Fig 5b).

Although the between-group difference was not significant, crop residue return did

increase yield in cooler areas (Table 1, Fig 5c). Crop residue return increased yields by 9.5%

and 6.0% with annual rainfall of� 800 mm and 400–800 mm, respectively, compared to no-

straw. There was no difference when annual rainfall was < 400 mm (Table 1, Fig 5d).

Impact of soil properties

Soil properties, including soil organic matter, soil nitrogen content, and pH, had a significant

impact on the effect of crop residue return on crop yield (P< 0.05; Table 1, Fig 6). The

increase in yield associated with crop residue return was greatest in cases where the soil

organic matter content was > 15 g kg-1 (9.4%) and the least (3.5%) when it was low (�10 g kg-

1). Crop residue return increased yield by 4.2% when the soil organic matter content was 10–

15 g kg-1.

Fig 5. Effect of crop residue return on crop yield under different experimental duration (a) and cropping system

types (b), mean annual temperature (c), and precipitation (d). Error bars represent the mean value ± 95% CI.

https://doi.org/10.1371/journal.pone.0231740.g005
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The soil-available nitrogen content also significantly affected the increase in crop yield

induced by crop residue return (P< 0.05; Table 1). The higher increase in yield was observed

when the soil-available nitrogen content was� 100 mg kg-1 (10.3%) and the lowest increase in

yield (2.8%) was observed when the soil-available nitrogen content was< 100 mg kg-1. The

yield increase caused by crop residue return was not affected by the total nitrogen content of

different soils (Table 1). In contrast, the soil pH significantly affected the yield increase caused

by crop residue return (Table 1, Fig 6c). At pHs of 6.5–8, crop residue return had no effect on

yield compared with no-straw treatment, while at pH� 6.5 it increased yield by 11.2% and at

pH> 8 it increased yield by 8.9%.

Effect size of WUE and its influences

Crop residue return significantly increased WUE for corn (13.7%), and wheat (13.2%) com-

pared to no-straw (P< 0.05; S3 Table, Fig 7a). In contrast, no difference in WUE was recorded

between crop residue return and no-straw treatments for the different tillage types, fertilizer

types, experimental durations, or depths of tillage (S3 Table). The effect of crop residue return

on WUE was significantly affected by the amount of N fertilizer, soil organic matter, cropping

system, mean annual temperature, and irrigation conditions (S3 Table, Fig 7).

Fig 6. Effect of crop residue return on crop yield under different soil properties (i.e., a, soil organic matter; b, soil-

available nitrogen content; c, soil pH value). Error bars represent the mean value ± 95% CI.

https://doi.org/10.1371/journal.pone.0231740.g006
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The greatest increase in WUE caused by crop residue return was recorded for crops with

medium rates of N fertilizer application (100–150 kg ha-1), with a mean increase of 23.3%.

Increases in WUE caused by crop residue return were 25.5% for� 15 g kg-1, 19.2% for 10–15 g

kg-1, and 7.5% for� 10 g kg-1 soil organic matter. The increase in WUE induced by crop residue

return was greater at temperatures< 10 ˚C (19.9%) than at 10–15 ˚C (5.9%; S3 Table, Fig 7e).

Discussion

Effect size of crop residue return on crop yield

In this study, the impacts of crop residue return on crop yield and WUE were investigated

using a meta-analysis of studies from China and abroad that considered the effects of different

climatic conditions, tillage practices (tillage type and depth), crop types, cropping systems,

irrigation conditions, fertilizer application strategy (fertilizer types and amounts of N fertilizer

application), soil properties (soil organic matter, soil pH, and soil-available nitrogen content).

The results show that crop residue return significantly increased the average crop yield by

5.0% compared to no-straw treatment. The main reasons for the increase in crop yield caused

by crop residue return are: (i) it can increase soil porosity, reduce soil compaction and bulk

density [29], improve soil aeration and water status, and reduce water consumption [30]; (ii) it

increases the contents of organic matter, available nutrients, fulvic acid, and humic acid in the

soil, promotes the release of slow-acting potassium in the soil [31, 32], reduces the amount of

chemical fertilizers required [33], improves the soil environment [34], increases the leaf area of

plants, and promotes the transport of photosynthetic substances to the grain [35], thus

improving crop quality [36]; and (iii) crop residue is rich in organic matter, which can provide

abundant carbon sources for microorganisms in the soil, stimulate microbial activity, improve

soil fertility [37], promote the reproduction of earthworms [38], and increase the diversity of

soil arbuscular mycorrhizal fungi [39], ultimately increasing crop yield.

Factors affecting the effect size on crop yield

Crop types and irrigation conditions. The yield-increasing effects of crop residue return

differ according to the crop. Zhang [40] found that the return of wheat crop residue increased

Fig 7. Effect of crop residue return on WUE under different crop types (a), amount of N fertilizer (b), soil organic matter (c),

cropping systems (d), mean annual temperature (e), and irrigation condition (f). Error bars represent the mean value ± 95% CI.

https://doi.org/10.1371/journal.pone.0231740.g007
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the yield of soybeans more than that of wheat. Wang et al. [41] showed that crop residue return

increased soil moisture, lowered soil temperature, and provided cooling effects during the

early stages of soybean growth, which ultimately increased the soybean yield. Ji et al. [42]

reported that the magnitude of crop residue return on wheat yield was greater than that of

corn because of the soil environment before planting and the climatic conditions during

growth. Zhang et al. [43] also showed that crop residue return can significantly increase wheat

yield but has no effect on rice yield due to the different cultivation and climate conditions. Our

results indicate that the impact of crop residue return on crop yield is complex and variable.

With respect to irrigation, the results of the meta-analysis showed that increases in crop

yield due to residue return were greatest without irrigation. This might be because water is the

main factor limiting crop yields in drought conditions. The water type also affects the effect of

crop residue return on crop yield. A negative effect of crop residue return on crop yield was

observed under brackish irrigation. Similarly, Levy [44] and Zheng et al. [45] reported that

brackish water can decrease crop growth and yield, as salt damage makes it difficult for plant

roots to absorb water. However, Lu et al. [46] showed that applying brackish water increased

corn yield and WUE under high crop residue return conditions. Therefore, long-term studies

regarding the impacts of crop residue on crop yields under brackish irrigation are needed to

identify effective methods of such irrigation.

Tillage, fertilizer treatments, and soil properties. Soil with good physical properties can

promote the production of dry matter and crop yields. The results of our study showed that

the magnitude of increase in crop yields due to crop residue return varied according to the till-

age methods (harrow plowing, chisel plow tillage, rotary tillage, and no tillage) and ploughing

depths. The larger magnitude of increasing in crop yield was recorded for harrow plowing till-

age, and chisel plow tillage in related to other tillage treatments. Similarly, Other studies

showed that the main reasons proposed for the increased yield are that chisel plow tillage is

conducive to the formation of a crop-favoring structure in the ploughed layer, promotes soil

water infiltration, reduces soil bulk density, enhances rooting in the ploughing layer, enhances

soil moisture movement, and promotes the absorption of nutrients and water by crop roots

[47, 48, 49, 50, 51]. The results of Huang et al. [52] and Xu et al. [7] show that chisel plow till-

age in conjunction with crop residue return can improve crop yields by promoting the accu-

mulation and transfer of dry matter.

In addition, our results showed that no difference in crop yield was recorded between

crop residue return and no-straw treatments under no tillage. Our results are consistent with

Huang et al. [53]. However, some studies showed that crop residue return combined with no-

tillage methods decreased crop production, because soil temperatures were cooler, which

reduced emergence and crop growth, and increased soil compaction and micro-nutrient defi-

ciencies [54, 55]. Yadvinder-Singh et al. [56] also reported that the decomposition rates under

no tillage was lower than that of tillage treatment because of the reduction in residue-soil con-

tact, which ultimately reduced crop yield. In contrast, Zhou et al. [57] reported that crop resi-

due return could increase crop yield under no tillage mainly due to the improvement of soil

fertility. These differences in the effects of crop residue return under different tillage treatment

on crop yield suggest that further work is necessary to determine its impact on crop yields

with different soil tillage types and depths.

The most important factor that affects crop yield is the type and application rate of chemical

fertilizer. The results of this study show that the increases in yield associated with crop residue

return ranged from 2.0% to 20.0% for different fertilizer types. Huang et al. [58] showed that

crop residue return combined with nitrogen fertilization increased crop yield while, in con-

trast, yield was reduced when crop residue was returned without nitrogen fertilizer. The com-

bination of nitrogen fertilizer and crop residue return has been reported to significantly
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improve soil fertility and increase winter wheat yield by 7.5% [59]. The increase in crop yield

after a single cycle of crop residue return is not obvious, which might be related to subsequent

changes in soil hydrothermal conditions [60]. It was noted by Rathke et al. [61] that a supply

of soil nitrogen associated with crop residue return is the main factor limiting increases in

crop yield. Zhou et al. [57] also showed that crop residue return plus nitrogen fertilization can

increase the nitrogen-use efficiency and soil nitrogen content as nitrate, which indirectly

improves crop yield. In addition, our results showed that crop residue return is more beneficial

with low amounts of N (0–150 kg ha-1) than high amounts (>150 kg ha-1). Similarly, previous

meta-analyses regarding the effect of mulching on potato yields showed that the mean impacts

of crop residue return on potato yields were greater with low amounts of N than high amounts

[19]. Therefore, our results indicated that crop residue return was a recommended measure to

reduce the requirement of chemical fertilizer, which was benefit for the environment sustain-

able development.

Moreover, our results indicate that the magnitude of increase in crop yield was greater in

highly fertile soil (higher soil organic matter and soil-available nitrogen content) than in low-

fertility soil. Similarly, Limon-Ortega et al. [62] found that when soil fertility was low or when

the application of N fertilizer was unreasonable, crop residue return did not help crop growth.

In fact, it can have adverse effects and even lead to reduced yields; however, when soil fertility

is high or when N fertilizer is applied properly, crop residue return promotes crop growth and

increases yield. Tang et al. [63] also reported that crop residue return increased crop yield by

improving soil fertility on the Chengdu Plain of China. Crop residue return can improve crop

yields by increasing the use-efficiency of elements (e.g. N, P) via improvement in soil water uti-

lization, and promote the absorption of elements (e.g. N, P) by crops and the microbial com-

munity [64]. In addition, the magnitude of increasing in crop yield under crop residue return

was larger when the pH value�6.5, which indicated that crop residue return might be benefit

for the improvement of the acid soil. Our results suggest that appropriate consideration of soil

fertility and fertilizer application probably increases crop yields.

Experimental duration and climate conditions

The effect of crop residue return on crop yields was affected by the duration of the experiments

conducted in previous studies. The results show that crop residue return caused the highest

increases in crop yields in experiments conducted over 3–10 years. No difference in crop yield

was observed between crop residue return and no-straw treatments in experiments conducted

for> 10 years. Similarly, Zhao et al. [21] reported that crop residue return only increases crop

yields over the short-term (< 10 years) because the temporal dynamics of yield are more sensi-

tive to climatic conditions than to crop residue return itself. However, Xu et al. [7] showed

that crop residue return increased crop yields in winter wheat and summer maize after 11

years mainly due to the enhancement of soil organic carbon storage. Meanwhile, Song et al.

[65] showed that, compared with conventional tillage treatment, no-tillage with crop residue

return reduced rice and wheat yields by the third year, mainly because of a reduction in seed-

ling growth induced by using large amounts of straw at the beginning two years. Thus, the

impact of crop residue return on crop yield depended on the duration of the experiment. Fur-

thermore, our results suggest that yield response to crop residue return is quite variable and

the normal amount of crop residue that is returned to the field may sometimes need to be

reduced to increase crop productivity and the efficiency of the practice. However, this topic

needs further investigation.

The greatest magnitude of increase in crop yield was recorded with rainfall of� 800 mm.

In contrast, Wang et al. [66] reported that crop residue return could significantly increased
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wheat yield and rainfall storage as compared with no straw during the dry years, while it did

not increase wheat yield during years with>500 mm annual rainfall. Wicks et al. [67] noted

that crop residue return reduced wheat production in wet soil under rainy and cold climate

conditions. Crop residue return could reduce crop yield because of the reduction of soil tem-

perature in cool climates compared to no straw [68]. These differences might be due to the

reason: in the present study, the experiments with rainfall�800 mm were conducted in sub-

tropical monsoon climate, which might be benefit for the decomposition of crop residue rap-

idly [57, 69]. Previous study also showed that alternating dry and wet conditions promote

cycling between aerobic and anaerobic conditions, ultimately increased microbial diversity in

the soils and the decomposition of soil organic matter [70]. The results of our study indicate

that the effect of crop residue return on crop yield is affected by many factors such as rainfall.

However, more crop residue return studies regarding crop yield under different climate condi-

tions are needed to draw more representative conclusions.

WUE and its influences

Our results show that crop residue return significantly increases WUE by 14.8%, with pro-

nounced increases in WUE for corn and wheat crops. These results are consistent with those

of Chakraborty et al. [71], who showed that crop residue return enhanced wheat WUE in

India by 13%–25% compared to no-straw treatment. Similarly, crop residue return was

reported to conserve soil moisture and reduce the daily variation in soil temperature [64, 72],

which ultimately increase WUE. Crop residue return can improve WUE by enhancing crop

yield, conserving soil water storage, and reducing soil water losses during the whole growth

period under normal soil water and even slight drought conditions; however, it can also reduce

WUE, mainly by reducing crop yields due to competition with microorganisms for soil water

under drought conditions [73, 74].

In addition, the largest increases in WUE caused by crop residue return were recorded with

medium amounts of N fertilization, growth of one crop per year, high soil organic matter con-

tent (� 15 g kg-1), low mean annual temperature (< 10 ˚C), and irrigation. Therefore, a higher

crop yield might also contribute to enhanced WUE under the conditions considered in the

present study. Similarly, Li et al. [19] showed that the effects of residue return on potato WUE

varied according to the soil’s basic fertility, air temperature, and inorganic fertilizer conditions.

Thus, our results also indicate that the effect of crop residue return on WUE is affected by

many factors such as the amount of N fertilization, soil organic matter, and mean annual

temperature.

Limitations of the study

Increased yields due to crop residue return can contribute to food security. Because of the

limitations in the available data, this study only focused on yields at a few sites. The effects of

crop residue return on crop yields at different sites are expected to vary, which should not be

ignored. Thus, crop residue return needs to be analyzed at different spatial scales to better

identify its effects on crop yields and WUE. In addition, the data used in the present study

were only taken from studies that satisfied the five inclusion criteria, which may not represent

all relevant studies. A lack of certain meta-data (e.g., water types, fertilization methods, residue

management, previous crops, and soil properties) made it difficult to include those studies’

results in this meta-analysis. Thus, we recommend that more detailed and standardized

research regarding the effects of crop residue return on crop yields under various environmen-

tal and management conditions is conducted to obtain more comprehensive conclusions.
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Conclusions

The meta-analysis showed that crop yields increased by an average of 5.0% when crop residue

return was used, compared to no-straw treatment. The increases in yields attributed to crop

residue return were affected little by mean annual temperature and soil total N content. The

highest increases in yield occurred for cases with rainfall� 800 mm (9.5%), ploughing depths

of� 20 cm (6.5%), corn crops (8.0%), crops with a full year of ripening (10.1%), no irrigation

(11.9%), NK fertilizer (20.0%), low rates of N application (0–100 kg N ha-1; 10.8%), organic

matter contents� 15 g kg-1 (9.4%), effective nitrogen contents�100 mg kg-1 (10.3%), and

pH� 6.5 (11.2%). Moreover, our results suggest that crop residue return might increase crop

yields and WUE most effectively where one or more of the following factors are present: corn

crops, depth of tillage� 20 cm, medium rates of N fertilization (0–150 kg ha-1), growth of one

crop per year, high soil organic matter (� 15 g kg-1), and cold conditions (mean annual aver-

age temperature < 10 ˚C). Therefore, the effect of crop residue return on crop yield is related

to climatic conditions, fertilization management, crop types, and soil properties. The optimal

N amount, crop type, tillage type, and cropping system type for crop residue return were iden-

tified. Given the importance of global food security, greater attention should be paid to the

optimization of crop residue return methods based on the factors identified in this study.
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