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Simple Summary: Pancreatic cancer is the seventh leading cause of cancer related death worldwide.
In the United States, pancreatic cancer remains the fourth leading cause of cancer related death.
The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic
cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis
and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA
are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment
of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in
pancreatic cancer diagnosis, prognosis and targeted therapy.

Abstract: Pancreatic cancer is an aggressive malignance with high mortality. The lack of early
diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long
time being, the alterations in coding RNAs have been considered as major targets for diagnosis and
treatment of pancreatic cancer. However, with the advances in high-throughput next generation
of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different
cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding
RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the
regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies
have focused on the roles of ncRNAs in the development and progression of pancreatic cancer.
Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the
regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review,
we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis
and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these
ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help
to find new strategies for better treatment of pancreatic cancer.
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1. Introduction

Non-coding RNAs (ncRNAs) are short or long single strands of linear or circular RNA
molecules, which have no ability to be translated into proteins [1–4]. The most abundant
ncRNAs are ribosome RNA (rRNA) and transfer RNA (tRNA), which are critically involved
in the process of translation and serve as house-keeping gene. Other ncRNAs can be
categorized into long non-coding RNA (lncRNA) and small non-coding RNA according to
their length (Figure 1). Small non-coding RNAs are usually shorter than 200 nt (nucleotides)
and include microRNA (miRNA), small interfering RNA (siRNA), Piwi-interacting RNA
(piRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA) and guide RNA
(gRNA). Mechanistic studies have shown that these small ncRNAs play important roles
in the regulation of transcription, post-transcription, and translation [2–4]. lncRNAs are
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RNA molecules which have lengths exceeding 200 nt and are not translated into proteins.
One of the important functions of lncRNAs is epigenetic, transcriptional, and the post-
transcriptional regulation of gene expression [5]. In addition to these long and small
linear ncRNAs, there is another type of ncRNA molecule which forms a covalently closed
loop, and it is named circular RNA (circRNA). The size of circRNA can range from under
100 nucleotide to over 4 kilobases. Similar as miRNAs and lncRNAs, circRNAs have
recently received much attention in the field of cancer research because of their abilities to
regulate gene expression [6–8].
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2. Biogenesis and Functions of lncRNA, circRNA and piRNA
2.1. lncRNA

Among the ncRNAs discovered, miRNAs are the most intensively studied and
the roles of miRNAs in physiological and pathological regulations are extensively re-
ported [6,7,9]. However, lncRNAs are also widely investigated because aberrant expression
levels of lncRNAs are frequently found in various types of cancers [10–12]. H19 RNA was
the first reported lncRNA in mammalian genome [13], followed by other lncRNA such as
X-inactive-specific transcript [14]. In an earlier international collaborative study on mouse
cDNAs, it was found that 11,665 cDNA are new non-coding messages and these ncRNAs
represent a major component of the transcriptome [15]. From then on, lncRNAs were
recognized and more lncRNAs were found through high-throughput genome analysis.
Most lncRNAs are transcribed by RNA polymerase II, polyadenylated at 3′ end, spliced or
un-spliced and capped at 5′ end [12,16] (Figure 2). The sequences of lncRNAs are either
sense or antisense compared to protein-coding genes. The locations of lncRNA sequences
are within introns or intergenic regions of genes. lncRNAs have diverse cellular functions
including transcriptional regulation, epigenetic gene regulation, chromatin remodeling, cis
and trans gene expression, etc. [5,12,17,18]. Because of the diverse functions of lncRNAs,
the aberrant levels of lncRNAs in pathological status including cancers and inflammations
have received much attention in the field of cancer research [2,5,19].
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2.2. circRNA

circRNAs are a sub-group of ncRNAs and play significant roles in the regulation of
transcription and post-transcription [20,21]. The first report on circRNA was published
40 years ago [22]. In the report, viroids were recognized as covalently closed circular
RNA molecules. circRNAs are derived from pre-mRNAs; however, circRNAs lack the
ability as mRNA to translate to protein. circRNAs can be generated from exons, introns,
intergenic regions, 3′-UTR or 5′-UTR, but most circRNAs are derived from exons through
spliceosomal and other machineries [20–24] (Figure 3). The investigations on circRNA
production showed that RNA splicing such as exon skipping and back-splicing is im-
portant for circRNA creation [20–24]. The fragments of RNA created by RNA splicing
form a closed circular nucleotide structure connected by covalent bond (Figure 3). Be-
cause of the circular structure, circRNAs are more stable than linear mRNAs. With the
development of RNA-sequencing technology, new circRNAs have been discovered rapidly.
The mechanisms of circRNAs regulating cellular signaling could include interaction with
RNA binding proteins (RBPs), sponge with miRNAs, and competing with endogenous
RNAs or RNA splicing, leading to posttranscriptional regulation of gene expression and
protein translation [20,21,23]. In addition, most circRNAs are evolutionarily conserved and
stable [25]. Any alternations in the expression level of specific types of circRNAs could
reflect a pathological state. Therefore, circRNAs could be used as biomarkers for cancer
diagnosis and treatment, and are considered a hot topic in cancer research [7,8,26,27].
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interact with RNA binding protein (RBP), sponge with miRNAs and compete with mRNAs, leading
to regulation of gene expression and protein translation.

2.3. piRNAs

piRNAs are a class of short (about 21 to 35 nucleotides) single-stranded RNAs. They
interact with PIWI proteins to silence genetic elements such as transposons in the main-
tenance of genome stability and integrity [28–31]. Four PIWI proteins exist in humans:
PIWIL1 (also known as HIWI), PIWIL2 (also known as HILI), PIWIL3 (also known as
HIWI3), and PIWIL4 (as known as HIWI2) [32]. PIWI proteins play critical roles in the
control of cell proliferation, apoptosis, cell movement, and genomic stability [32]. In 2006,
piRNAs were first identified and named as “PIWI-interacting RNAs” in a mouse study on
PIWI proteins and genome stability [33]. From then on, more piRNAs were identified based
on their association with PIWI proteins and their biogenesis [34,35]. Two steps exist in the
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process of piRNA biogenesis [28]. First, a single-strand primary piRNA is transcripted
by RNA polymerase II (Pol II) from a specific genomic location known as piRNA clusters
(Figure 4). Through binding to a RNA-binding protein MAEL, the primary piRNA is
transported into cytoplasm where the primary piRNA undergoes 5′ and 3′-end modifi-
cation with MOV10L1 and Tdrkh [28,36,37], leading to increased stability and affinity to
PIWI protein [38]. Then, primary piRNAs go through a ping-pong cycle to guide PIWI
protein mediated cleavage of transcripts and create secondary piRNAs (Figure 4). The most
investigated function of piRNA is its suppression of transposable elements (TEs) through
association with PIWI proteins [28,39]. However, piRNAs could also regulate endogenous
gene expression in stem cells during development [40,41]. piRNA regulates mRNA mainly
through RNA degradation. piRNAs combined with MIWI (one of mouse PIWI proteins)
could target mRNAs with imperfect base pairing and induce mRNA degradation through
MIWI-dependent cleavage [42,43]. Although piRNAs play crucial roles in germ cells and
adult stem cells, growing evidences have shown that piRNA and PIWI proteins are in-
volved in tumorigenesis [44–47]. Recently, more investigations are focused on the roles of
piRNAs in cancer development and progression [45,48–51]. Because piRNAs regulate gene
expression and genome stability in stem cells, any deregulation of piRNAs could cause the
development of cancer stem cells and promote cancer progression.
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Figure 4. Biogenesis and functions of piRNAs. Primary piRNA is transcripted by RNA polymerase
II (Pol II) from piRNA genes. By binding to MAEL, the primary piRNA is transported into cytoplasm
where the primary piRNA undergoes 5′ and 3′-end modification and a ping-pong cycle to create
secondary piRNAs. piRNAs can regulate gene expression and genome stability in stem cells.

3. Major lncRNAs in Pancreatic Cancer

Because of the diverse biofunctions of lncRNAs, the roles of lncRNAs in pancreatic
cancers can be oncogenic or tumor suppressive. Among the growing number of lncRNAs
found in pancreatic cancers, in this section, we summarized some important lncRNAs
which play critical roles in pancreatic cancer (Table 1).
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Table 1. Major lncRNAs in pancreatic cancer.

lncRNA Role Functions Related Signaling Ref.

HOTAIR Oncogenic.
Up-regulated in cancer.

Promote proliferation and
drug resistance. EZH2, miR-34a. [52–57]

MALAT-1 Oncogenic.
Up-regulated in cancer.

Promote cell growth, migration,
invasion and metastasis.

Sox-2, EZH2, miR-216a,
miR-217, miR-200c,

Hippo-YAP.
[58–66]

H19 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation, tumor
growth and metastasis.

let-7, HMGA2, E2F,
miR-675, miR194. [67–72]

PVT1 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation,
migration, drug resistance.

p21, miR-448,
miR-20a-5p, ULK1,

miR519, HIF-1, YKT6,
RAB7, VAMP3.

[73–81]

HOTTIP Oncogenic.
Up-regulated in cancer.

Promote cell growth,
invasiveness and drug resistance.

Modulate stem cells.

HOXA9, miR-137,
HOXA13. [82–85]

GAS5 Tumor suppressive.
Down-regulated in cancer.

Reverse EMT, inhibit metastasis
and increase drug sensitivity.

CDK6,
miR-221/SOCS3,

miR-32, miR-181c.
[86–89]

MEG Tumor suppressive.
Down-regulated in cancer.

Inhibit cell proliferation,
migration and invasion. c-Met, PI3K/AKT. [90–94]

3.1. HOTAIR

lncRNA HOTAIR (HOX transcript antisense RNA) is an oncogene in pancreatic can-
cer [52]. It was found that a higher level of HOTAIR had strong associations with sus-
ceptibility of pancreatic cancer [52]. A high expression of HOTAIR was also associated
with proliferation and the metastasis of pancreatic cancers [55]. HOTAIR could tran-
scriptionally regulate the expression of hundreds of genes in both PRC2-dependent and
PRC2-independent manner in pancreatic cancer cells [53]. HOTAIR could also couple with
EZH2 to silence tumor suppressor miR-34a in pancreatic cancer cells, thereby inducing
cancer cell proliferation [54], suggesting the regulatory role of HOTAIR in EZH2/EMT
pathway. Moreover, studies showed that HOTAIR enhanced pancreatic cancer resistance
to gemcitabine and TNF-related apoptosis-inducing ligand, causing chemoresistance and
progression of pancreatic cancer [56,57]. In addition, HOTAIR could also regulate the
sensitivity of radiotherapy. Knockdown of HOTAIR enhanced the radiosensitivity of pan-
creatic cancer [95]. Furthermore, HOTAIR expression was associated with more aggressive
pancreatic cancer, suggesting its prognostic role in pancreatic cancer [53].

3.2. MALAT1

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) is highly con-
served and ubiquitously expressed lncRNA [96,97]. MALAT-1 was firstly discovered in
non-small cell lung cancer [96,97]. However, high expression of MALAT-1 has been found
in various cancer tissues including pancreatic cancer [63,98,99]; therefore, MALAT-1 is
considered as an oncogenic lncRNA. In pancreatic cancer, increased expression of MALAT-
1 promoted cell growth, migration, and invasion [59]. MALAT-1 also transcriptionally
regulated Sox-2 expression and enhanced stem cell-like phenotypes in pancreatic cancer
cells, suggesting its role in pancreatic stemness and tumorigenesis [60]. A study also
showed that MALAT-1 promoted aggressive pancreatic cancer proliferation and metastasis
via stimulation of autophagy [61]. MALAT-1 could also exert its oncogenic effects through
mediation of EZH2, miR-216a, miR-217, miR-200c, or Hippo-YAP signaling in pancreatic
cancers [58,62,64–66]. Therefore, MALAT1 regulates miRNAs, mRNAs, and proteins in
stemness and autophagy pathways in pancreatic cancer. Importantly, overexpression of
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MALAT-1 has been correlated with advanced tumor stages, metastasis, and poor survival
in pancreatic cancers [63,100].

3.3. GAS5

lncRNA growth arrest-specific 5 (GAS5) is a tumor suppressor found in various
cancers including pancreatic cancer [101,102]. In pancreatic cancer, downregulation of
GAS5 increased cell proliferation by regulating CDK6 transcriptionally, suggesting the
tumor suppressive role of GAS5 [89]. GAS5 also reversed EMT, inhibited metastasis and
increased the sensitivity of pancreatic cancer stem cells to gemcitabine through targeting
miR-221/SOCS3 signaling [88]. Thus, GAS5 has a role in the regulation of cell cycle and
EMT pathways. Studies also showed that GAS5 suppressed pancreatic cancer metastasis
and chemoresistance through epigenetic regulation of miR-32 or miR-181c [86,87]. All
findings demonstrate that GAS5 is a tumor suppressive lncRNA.

3.4. MEG3

MEG3 is another tumor suppressive lncRNA in cancers including pancreatic can-
cer [103]. The expression levels of MEG3 in both pancreatic cancer tissues and cells were
found to be much lower than that in normal tissues and cells [92]. Knockdown of MEG3
promoted pancreatic cancer cell proliferation, migration, and invasion [92] while overex-
pression of MEG3 suppressed pancreatic neuroendocrine tumor cell viability, invasion, and
migration [94]. The mechanisms underlying the tumor suppressive effects of MEG3 could
be mediated through epigenetic regulation of c-Met. MEG3 was found to bind to unique
genomic regions in and around c-Met gene and inhibit c-Met expression, leading to tumor
suppression [91,93]. In addition, MEG3 could also exert its anti-cancer effects on pancreatic
cancer by regulation of the PI3K/AKT signaling pathway [90]. Therefore, MEG3 affects
multiple cellular signaling in pancreatic cancer.

3.5. H19

H19 is an oncogenic lncRNA which antagonizes tumor suppressive let-7 [104]. In
pancreatic cancer, the expression of H19 was significantly increased and the overexpression
of H19 was correlated with histological grade and invasion of pancreatic cancer [68].
Knockdown of H19 in pancreatic cancer cells inhibited cell proliferation and tumor growth
with G0/G1 arrest and downregulation of E2F-1 transcription factor [68]. Knockdown of
H19 also inhibited metastasis of pancreatic cancer [72]. It was found that H19 promoted
pancreatic cancer cell invasion and migration by upregulation of HMGA2-mediated EMT
through antagonizing let-7 [67], demonstrating the critical role of H19/let-7/HMGA2/EMT
signaling axis in pancreatic cancer progression. In addition to the association of H19 with
let-7, H19 could also correlate with miR-675 or miR194 to modulate EMT, cell proliferation,
migration, and metastasis of pancreatic cancer [69–71], suggesting its role in the regulation
of the EMT pathway.

3.6. PVT1

PVT1 is an oncogenic lncRNA [105]. In pancreatic cancer, higher expression of PVT1
was found in cancer tissues, and the high expression of PVT1 was positively correlated
with poor survival of patients [73,76]. PVT1 promoted cell proliferation and migration
through transcriptional and epigenetic regulation of p21 and miR-448 [78,80]. PVT1 also
promoted autophagy and cell growth by regulating miR-20a-5p and ULK1 signaling, lead-
ing to the development of pancreatic cancer [74]. More importantly, PVT1 was identified
as a regulator of gemcitabine sensitivity [77,79,81]. Functional inactivation of PVT1 re-
sulted in the enhanced sensitivity to gemcitabine in pancreatic cancers [79]. In addition,
PVT1 also promoted pancreatic cancer development through regulation of miR519, HIF-1,
YKT6, RAB7, and VAMP3 [75,76], suggesting its diverse oncogenic effects with multiple
signaling regulation.
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3.7. HOTTIP

HOXA transcript at the distal tip (HOTTIP) is another oncogenic lncRNA [106]. HOT-
TIP is located at the 5′ end of HOXA cluster [106]. The expression of HOTTIP is increased
in pancreatic cancer [84]. It was found that ectopic HOTTIP expression promoted growth
and invasiveness in pancreatic ductal adenocarcinoma [84] and that HOTTIP modulated
pancreatic cancer stem cell properties by regulating HOXA9 epigenetically [82]. More
importantly, HOTTIP could also regulate drug resistance through regulation of miR-137
and HOXA13 [83,85], suggesting its role in HOXA pathway.

4. circRNAs in Pancreatic Cancer

In recent years, studies on circRNAs in cancer have become a hot topic in cancer research,
especially after advanced next-generation sequencing technology was developed [7,21,107].
However, compared to other types of cancers, research on circRNAs in pancreatic cancer is
still in its early stages. By conducting expression profiling of circRNAs using pancreatic cancer
tissues and further mechanistic studies, it was found that some circRNAs are oncogenic while
others are tumor suppressive in pancreatic cancers [108,109] (Table 2).

Table 2. Major circRNAs in pancreatic cancer.

circRNA Role in Pancreatic Cancer Functions Related miRNA
and Signaling Ref.

ciRS-7 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation
and invasion.

Sponge miR-7.
Regulate EGFR and STAT3. [110]

circEIF6 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation
and inhibit apoptosis.

Sponge miR-557. Regulate
SLC7A11 and PI3K/AKT. [111]

circFOXK2 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation,
migration and invasion.

Sponge miR-942. Regulate
ANK1, GDNF, PAX6, NUF2

and PDXK
[112]

circBFAR Oncogenic.
Up-regulated in cancer.

Promote cell proliferation
and motility.

Sponge miR-34b-5p.
Regulate MET/PI3K/Akt. [113]

circ-ASH2L Oncogenic.
Up-regulated in cancer.

Induce cell proliferation,
tumor invasion and

angiogenesis.

Sponge miR-34a.
Regulate Notch 1. [114]

circRHOT1 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation,
migration and invasion.

Sponge miR-125a, miR-330,
miR-26b and miR-382.

Regulate E2F3.
[115,116]

circRNA_100782 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation
and tumor growth.

Sponge miR-124.
Regulate IL6 and STAT3. [117]

hsa_circ_0071036 Oncogenic.
Up-regulated in cancer.

Promote cell proliferation,
invasion and tumor growth. Sponge miR-489. [118]

hsa_circ_0007534 Oncogenic.
Up-regulated in cancer. Inhibit apoptosis.

Sponge miR-625 and
miR-892b.

Regulate Bcl-2 and caspase-3.
[119]

circNFIB1 Tumor suppressor.
Down-regulated in cancer.

Inhibit lymph
node metastasis.

Sponge miR-486-5p.
Regulate PIK3R1 and

VEGF-C.
[120]

hsa_circ_001587 Tumor suppressor.
Down-regulated in cancer.

Inhibit cell proliferation,
migration, invasion
and angiogenesis.

Sponge miR-223.
Regulate SLC4A4, MMP-2,
MMP-9, MCM2 and VEGF.

[121]

4.1. circRNA Expression Profiling in Pancreatic Cancer

In 2015, a group of investigators reported for the first time the microarray analysis
of circRNA profiles in six pairs of pancreatic ductal adenocarcinoma and adjacent normal
tissues [108]. They further analyzed the circRNA expression profile and identified a class
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of circRNAs that was responsible for tumorigenesis of pancreatic cancer. The top five
up-regulated circRNAs in pancreatic cancers were hsa_circ_0072088, hsa_circ_0030235,
hsa_circ_0001946, hsa_circ_0060055 and hsa_circ_0005397 whereas the top five down-regulated
circRNAs were hsa_circ_0013587, hsa_circ_0075410, hsa_circ_0008768, hsa_circ_0080712, and
hsa_circ_0000257 [122]. GO enrichment and pathway analysis showed that the most
significantly altered circRNAs in pancreatic cancer were related to small GTPase regulator
activity, Ras GTPase binding, RNA binding, and VEGF signaling [122], which have been
known to be significantly altered in pancreatic cancer [123–125]. These findings suggest
that these circRNAs could be molecular targets for the treatment of pancreatic cancer.

In 2016, another group of investigators conducted a microarray analysis of circRNA
profiles in 20 pairs of pancreatic ductal adenocarcinoma and adjacent normal tissues and
deposited the data in GEO database (GEO79634) [109]. The top 10 differently expressed
circRNAs were identified in this study. Among them, five circRNAs (hsa_circ_102051,
hsa_circ_102619, hsa_circ_104270, hsa_circ_102049 and hsa_circ_104227) were up-regulated
while five circRNAs (hsa_circ_000167, hsa_circ_103809, hsa_circ_104700, hsa_circ_001846
and hsa_circ_102728) were down-regulated. They also found that a specific set of circRNAs
(hsa_circRNA_100435, hsa_circRNA_103076, hsa_circRNA_103309, hsa_circRNA_000780,
hsa_circRNA_101252, hsa_circRNA_102374, hsa_circRNA_104433, hsa_circRNA_104882,
hsa_circRNA_101717, hsa_circRNA_104084, hsa_circRNA_100646 and hsa_circRNA_102213)
could bind to miR-15a or miR-505 to modulate gene expression in pancreatic cancer [109].
miR-15a and miR-506 have been found to inhibit cell proliferation, EMT, and chemoresis-
tance in pancreatic cancer [126,127].

Because circRNAs can function as miRNA sponges, the above mentioned circRNA
profiling data from two sets of pancreatic tissues were further analyzed with miRNA
profiling data. In the study, circRNA and miRNA interactions were predicted between
differentially expressed circRNAs and miRNAs using computerized analysis [128]. A
total of 51 interactions between circRNAs and miRNAs were found. Further analysis
showed that mitogen-activated protein kinase, PI3K/AKT, and WNT/β-catenin signaling
pathways were associated with the development of pancreatic cancer [128].

In addition to the microarray technique used for circRNA profiling, high-throughput
circRNA-sequencing has also been utilized for circRNA expression profiling [129,130].
We have conducted a circRNA-sequencing experiment to obtain the circRNA expression
profiles before and after thymoquinone treatment in pancreatic cancer cells. By circRNA-
sequencing, we were able to identify circRNAs which were altered by thymoquinone, a
natural product with potential anti-cancer activity. Gene enrichment analysis showed that
the altered circRNAs were associated with binding of proteins, metal ions, nucleotide,
ATP, and RNAs, and correlated with Wnt and Hedgehog signaling pathways (Figure 5),
demonstrating the inhibitory effects of thymoquinone on pancreatic cancer. Another group
of investigators also utilized circRNA-sequencing to find novel mechanisms of a potential
anti-cancer drug nigericin in the treatment of pancreatic cancer [131]. From the profiling
data, they found that nigericin could regulate focal adhesion, TNF, MAPK, PI3K-Akt,
and HIF-1 signaling pathway, pyrimidine metabolism and purine metabolism through
modulation of circRNA-miRNA-mRNA network [131].

4.2. Oncogenic circRNAs
4.2.1. ciRS-7

ciRS-7 is an oncogenic circRNA which acts as a sponge of miR-7 [132]. A recent study
found that ciRS-7 expression was significantly higher in pancreatic cancer tissues compared
to adjacent pancreatic tissues [110]. Moreover, ciRS-7 expression was significantly increased
in the area of invasion and metastasis of pancreatic cancer. A mechanistic study showed
that knockdown of ciRS-7 inhibited the proliferation and invasion of pancreatic cancer cells
with up-regulation of miR-7 through releasing sponge and down-regulation of EGFR and
STAT3 pathways by miR-7 [110].
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4.2.2. CircEIF6

Oncogenic circRNA circEIF6 (hsa_circ_0060055) was found to be aberrantly up-
regulated in pancreatic tumor tissues and cells [111]. Silence of circEIF6 significantly
induced apoptosis and inhibited pancreatic cancer cell proliferation, migration, and in-
vasion [111]. A mechanistic study demonstrated that circEIF6 bond to miR-557 led to
the up-regulation of SLC7A11 and activation of PI3K/AKT signaling in pancreatic cancer
cells [111]. An animal study showed that knockdown of circEIF6 significantly suppressed
pancreatic tumor xenograft growth in vivo [111]. These findings suggest that circEIF6
exerts its oncogenic effects through miR-557/SLC7A11/PI3K/AKT signaling transduction.

4.2.3. CircFOXK2

circFOXK2 is an oncogenic circRNA in pancreatic cancer [112]. circFOXK2 was sig-
nificantly upregulated in pancreatic cancer cells and tissues, leading to increased cell
proliferation, migration, and invasion [112]. circFOXK2 acted as a sponge for miR-942,
causing the altered expression of downstream target ANK1, GDNF, and PAX6, which could
play an oncogenic effect in pancreatic cancer [133]. circFOXK2 also bonded to RNA-binding
protein YBX1 and hnRNPK, enhancing the expression of oncogenes NUF2 and PDXK. By
interactions with miR-942 and YBX1/hnRNPK, circFOXK2 promoted the progression of
pancreatic cancers [112].

4.2.4. circRNA_100782 and circ_001653

A study found that circRNA_100782 was significantly upregulated in pancreatic
cancers [117]. Inhibition of circRNA_100782 suppressed cell proliferation and colony for-
mation through downregulation of IL6R and STAT3, which are oncogenes in pancreatic
cancer [134]. Luciferase assay showed that miR-124 was a direct target of circRNA_100782.
An animal study showed that knockdown of circRNA_100782 inhibited pancreatic cancer
xenografts in nude mice [117]. Therefore, it is believed that circRNA_100782 exerts its onco-
genic effects through sponging miR-124 to activate IL6/STAT3 signaling [117]. Similarly,
circ_001653 was upregulated in pancreatic cancers [135]. Inhibition of hsa_circ_001653
by siRNA suppressed pancreatic cancer cell proliferation and invasion through sponging
miR-377, leading to the downregulation of oncogenic HOXC6 expression [135].

4.2.5. hsa_circ_0071036 and hsa_circ_0007534

Recent study showed that hsa_circ_0071036 plays important roles as oncogenic cir-
cRNA in tumorigenesis and progression of pancreatic cancers [118]. A mechanistic study
showed that hsa_circ_0071036 acted as an efficient sponge for tumor suppressive miR-
489 in pancreatic cancer. An in vivo animal study demonstrated that knockdown of
hsa_circ_0071036 significantly inhibited pancreatic cancer growth in mice [118]. Simi-
larly, hsa_circ_0007534 was also found to be up-regulated in pancreatic cancer tissues
and cells [119]. hsa_circ_0007534 could inhibit pancreatic cancer cell apoptotic death
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through modulation of Bcl-2/caspase-3 by sponging tumor suppressive miR-625 and
miR-892b [119].

4.2.6. circBFAR

circBFAR (hsa_circ_0009065) was found to be upregulated in pancreatic cancer tis-
sues [113]. Moreover, the high expression of circBFAR was correlated with high TNM stage
and poor prognosis of patients with pancreatic cancer. Mechanistic study showed that
circBFAR promoted expression of MET through sponging tumor suppressive miR-34b-5p,
leading to the activation of MET/PI3K/Akt signaling. Importantly, knockdown of cir-
cBFAR significantly suppressed pancreatic cancer cell proliferation and motility in vitro
and inhibited pancreatic tumor growth and metastasis in mouse model, demonstrating its
oncogenic function of circBFAR [113].

4.2.7. circ-ASH2L

circ-ASH2L was highly up-regulated in pancreatic cancer cells and tissues [114]. The
high expression of circ-ASHL was positively correlated with lymphatic invasion and TNM
stage. A mechanistic study showed that circ-ASH2L induced cell proliferation, tumor
invasion, and angiogenesis by sponging miR-34a, which is a tumor suppressive miRNA
that suppresses Notch 1. Therefore, by sponging miR-34a, circ-ASH2L enhanced the
expression of Notch1, one of the oncogenic signals, leading to tumor progression and poor
survival of patients with pancreatic cancer [114].

4.2.8. circRHOT1

circRHOT1 (hsa_circ_0005397) is highly expressed in pancreatic cancer and is mainly
located in the cytoplasm of pancreatic cancer cells [115,116]. Down-regulation of circRHOT1
suppressed pancreatic cell proliferation, invasion, and migration. The effects of circRHOT1
could be mediated through sponging miR-26b, miR-125a, miR-330, and miR-382, which
could be tumor suppressive miRNAs in pancreatic cancer [116]. A similar study also
showed that circRHOT1 served as a sponge and bond to miR-125a-3p, upregulating onco-
genic E2F3. Knockdown of circRHOT1 significantly suppressed pancreatic cancer cells
through the regulation miR-125a-3p/E2F3 axis [115]. These findings suggest the oncogenic
effects of circRHOT1.

4.3. Tumor Suppressive circRNAs
4.3.1. circNFIB1

circNFIB1 (hsa_circ_0086375) is a tumor suppressive circRNA in pancreatic can-
cer [120]. circNFIB1 is downregulated in pancreatic cancer tissues and negatively associated
with lymph node metastasis [120]. A study found that knockdown of circNFIB1 enhanced
lymph node metastasis of pancreatic cancer both in vitro and in vivo [120]. A mechanistic
study showed that circNFIB1 acted as an anti-cancer sponge of oncogenic miR-486-5p. By
binding to miR-486-5p, circNFIB1 induced expression of PIK3R1 and, in turn, inhibited the
expression of VEGF-C through inactivating PI3K/Akt signaling [120]. An animal study
confirmed that circNFIB1 regulated miR-486-5p/PIK3R1/VEGF-C signal axis, leading to
the inhibition of lymph node metastasis in pancreatic cancer [120].

4.3.2. hsa_circ_001587

hsa_circ_001587 is another tumor suppressive circRNA in pancreatic cancer [121]. The
expression of hsa_circ_001587 was significantly down-regulated in pancreatic cancer tissues
and cells [121]. Overexpression of hsa_circRNA_001587 significantly decreased abilities of
pancreatic cancer cell proliferation, migration, invasion, angiogenesis and tumorigenesis
through inhibition of oncogenic MMP-2, MMP-9, MCM2, and VEGF expression in pancre-
atic cancer [121]. Mechanistic studies showed that hsa_circRNA_001587 bond to oncogenic
miR-223 and, in turn, up-regulated SLC4A4 [121]. Therefore, the tumor suppressive ef-
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fects of hsa_circ_001587 is mediated through the regulation of miR-223/SLC4A4/MMP
signaling pathway.

4.3.3. hsa_circ_0001649

Similarly to other tumor suppressive circRNA, hsa_circ_0001649 was found to be
down-regulated in pancreatic cancer tissues and cells [136]. Moreover, the down-regulated
hsa_circ_0001649 was associated with the clinical tumor stage of the patients with pan-
creatic cancer [136]. Study found that overexpression of hsa_circ_0001649 induced apop-
totic cell death and inhibited cell proliferation and colony formation in pancreatic cancer
cells [136], suggesting the tumor suppressive effects of hsa_circ_0001649 in pancreatic
cancer. However, the mechanism underlying hsa_circ_0001649 as a tumor suppressive
remains unclear.

5. piRNA in Pancreatic Cancer

In recent years, more studies on the roles of piRNAs and PIWI proteins in the develop-
ment and progression of breast, lung, and gastric cancers have been reported [47,48,50,137,138].
Because piRNAs regulate gene expression and genome stability in stem cells [40,41], any
deregulation of piRNAs could cause the development of cancer stem cells and promote
cancer progression. A recent study showed that piRNA-651 promoted proliferation and
migration of breast cancer cells through epigenetic regulation of PTEN promoter inac-
tivation [48]. It was also found that piRNA-211106 could serve as tumor suppressor to
inhibit the progression of lung cancer and enhance the chemotherapy sensitivity of cancer
cells [49]. In gastric cancer, piRNA-823 was found to be significantly down-regulated
and induction of piRNA-823 inhibited cancer cell growth in vitro and in vivo [139]. These
results suggest the importance of piRNAs in cancer. However, the reported research on the
roles of piRNA and PIWI proteins in pancreatic cancer is limited.

5.1. Genotyping and piRNA Profiling in Pancreatic Cancer

In a recent study on the genetic mechanism of the co-effects of single nucleotide
polymorphisms (SNP) and piRNA in cancers, a group of investigators conducted expression
quantitative trait locus (eQTL) analysis using data including 10,997 samples across 33 cancer
types from The Cancer Genome Atlas (TCGA) [140]. They identified millions of SNP-
piRNA pairs in tumor and normal tissues. They also developed a database, piRNA-eQTL,
containing eQTL results with differential expression and survival analyses. From the
database, it was found that the expression level of piR-317 in pancreatic cancer tissues was
lower compared to normal tissue, suggesting its tumor suppressive effect of piR-317 [140].
The expression level of piR-1945036 was significantly up-regulated in pancreatic cancer
tissues. The patients with low piR-1945036 had longer survival than the patients with
higher piR-1945036 expression [140], suggesting the oncogenic effect of piR-1945036.

5.2. Exosome piRNAs in Pancreatic Cancer

Serum exosomes from liquid biopsy are a good source of samples that could be tested
for investigation of cell communications. Exosomes in blood circulation contain proteins
and RNAs including piRNAs, which could reflect the healthy or pathological conditions
of patients [141,142]. In a study on the analysis of exosomes, the exosomes from the
serum of healthy people, intraductal papillary mucosal neoplasms, and pancreatic cancer
were isolated and total RNAs from exosomes were extracted [141]. The total RNAs were
further analyzed by next generation sequencing. Sequencing analysis showed that piRNAs
including hsa-piR-52959, hsa-piR-53108, hsa-piR-30690, hsa-piR-54479, and hsa-piR-56621
were up-regulated in patients with pancreatic cancer compared to healthy people [141],
suggesting the oncogenic effects of these piRNA. Whereas, several piRNAs such as hsa-
piR-54888, hsa-piR-42185, hsa-piR-46410, hsa-piR-58897, and hsa-piR-43043 were down-
regulated in patients with pancreatic cancer [141], suggesting that these piRNAs could have
tumor suppressive functions. In addition, exosome hsa-piR-001311 and hsa-piR-016658
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were found to have abundant level differences between pancreatic cancer and controls [143].
However, the roles of these exosome piRNAs need further investigations.

5.3. piR-017061

Next-generation sequencing (NGS) has also been used in the analysis of pancreatic
cancer tissues. In a study using NGS, coding RNAs, lncRNAs, and small non-coding RNAs
including piRNAs in tissue samples from six pancreatic cancers and five pancreatic controls
were analyzed [144]. It was found that piR-017061, a piRNA located within the HBII-296A
snoRNA, was significantly downregulated in pancreatic cancer tissues [144]. This result
suggests that piR-017061 could be a tumor suppressive piRNA in pancreas. A recent report
by another group confirmed the tumor suppressive effects of piR-017061 [44]. They found
that the expression of piR-017061 was significantly downregulated in pancreatic cancer
tissues and cells. Functional analysis showed that piR-017061 suppressed the growth
of pancreatic cancer cell in vitro and in vivo [44]. A mechanistic study identified that
EFNA5 mRNA was a target of piR-017061 and that piR-017061 directly bond to EFNA5
mRNA mediated by PIWIL1, leading to the degradation of EFNA5 mRNA. Loss of EFNA5,
which had an oncogenic effect, inhibited the development and progression of pancreatic
cancer [44]. Therefore, targeting PIWI/piRNA-mediated EFNA5 gene regulation could be
a new strategy for the treatment of pancreatic cancer.

6. The Role of Non-Coding RNAs in the Diagnosis of Pancreatic Cancer

Several lncRNAs have their tissue-specific and cancer type-specific distribution, sug-
gesting that they can be used as diagnostic biomarkers [145–148]. Among them, PCA3
(Prostate Cancer Antigen 3) is the most well-recognized lncRNA which can be used for the
diagnosis of prostate cancer [148] and is approved by FDA. For diagnosis of pancreatic
cancer, no such FDA approved lncRNA-based diagnosis has been reported so far. However,
researches on the development of ncRNA testing as diagnosis or supplementary diagnostic
tools for pancreatic cancer have received much attention and revealed some novel markers
for pancreatic cancer [149–152].

6.1. SNHG15

SNHG15 is an lncRNA which plays critical roles in the development and progression of
various cancers through regulation of Akt/mTOR signaling [153,154]. It has been reported
as a prognostic marker in colorectal and liver cancers [155,156]. A study was focused on
the investigation of SNHG15 as potential diagnostic markers of pancreatic cancer. It was
found that the level of SNHG15 was significantly higher in both plasma and cancer tissues
from patients with pancreatic cancer [157]. Receiver operator characteristic (ROC) analysis,
which is usually used for determining diagnosis ability, showed that plasma SNHG15
could be a biomarker for distinguishing patients with pancreatic cancer from healthy
people [157]. Moreover, a high level of SNHG15 was also significantly correlated with
lymph node metastasis, higher tumor stage, and shorter overall survival [157], suggesting
that SNHG15 is a promising biomarker for the diagnosis and prognosis of pancreatic cancer.

6.2. ABHD11-AS1

Circulating lncRNA ABHD11-AS1 has also been identified as a biomarker for the
early detection of pancreatic cancer [151]. In a study on lncRNA, 11 pancreatic cancer
related lncRNAs were investigated to reveal their roles as diagnostic markers [151]. The
levels of these lncRNAs in plasma samples from 114 patients with pancreatic cancer,
97 patients with chronic pancreatitis, and 46 healthy controls were measured and ROC
analysis was conducted. It was found that among 11 lncRNAs, ABHD11-AS1 had the
best diagnostic performance for the diagnosis of pancreatic cancer [151]. Moreover, ROC
analysis suggested that ABHD11-AS1 could be a better biomarker than CEA, CA19-9,
and CA125 for early detection of pancreatic cancer. Furthermore, it was found that the
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combination of ABHD11-AS1 and CA19-9 was more efficient for the diagnosis of pancreatic
cancer [151], suggesting the importance of the new diagnostic marker ABHD11-AS1.

6.3. HULC

HULC is a lncRNA that promotes cancer cell EMT, invasion, and metastasis [158,159].
The roles of HULC as a biomarker in the diagnosis of pancreatic cancer have been inves-
tigated. The study found that extracellular vesicle encapsulated HULC in blood could
be a potential biomarker for the diagnosis of pancreatic cancer [150]. HULC level was
significantly higher in the patients with pancreatic cancer compared to healthy individ-
uals [150]. Further analysis showed that HULC in blood extracellular vesicle had good
predictive performance for diagnosis of pancreatic cancer. In addition, another separate
study using blood samples from 60 patients with pancreatic cancer and 60 patients with
benign pancreatic diseases showed that high expression of HULC in serum could be used
to distinguish patients with pancreatic cancer from patients with benign pancreatic dis-
eases [149]. Interestingly, HULC could serve as a serum biomarker for the diagnosis and
prognosis of gastric cancer [160]. These findings suggest that lncRNA HULC could be a
novel biomarker for the diagnosis and prognosis of pancreatic and gastric cancers.

6.4. UFC1

The lncRNA UFC1 has been known as an oncogenic lncRNA regulating EZH2 sig-
naling in cancer [161]. The role of serum UFC1 in the diagnosis of pancreatic cancer was
investigated. Compared to healthy subjects, the level of serum UFC1 in pancreatic cancer
patients was significantly higher [162]. ROC analysis showed that serum UFC1 levels could
effectively distinguish patients with pancreatic cancer from healthy subjects. Moreover,
the serum UFC1 level was correlated with lymph node metastasis, distant metastasis, and
clinical stage [162]. The patients with high level of UFC1 had shorter progression-free and
overall survival than those with a low level of UFC1 [162]. These results clearly suggest
that serum lncRNA UFC1 could be a novel biomarker for the diagnosis and prognosis of
pancreatic cancer.

6.5. circ_001569

circ_001569 is an oncogenic circRNA regulating PI3K/Akt and Wnt signaling [163].
High expression of circ_001569 have been found in colorectal and liver cancers [164–166]. To
find the diagnostic and prognostic values of circ_001569 in pancreatic cancer, the expression
levels of circ_001569 in plasma samples from 71 patients with pancreatic cancer and
71 healthy subjects were measured [167]. It was found that the level of plasma circ_001569
was significantly increased in patients with pancreatic cancer [167]. ROC analysis showed
that plasma circ_001569 could efficiently distinguish patients with pancreatic cancer from
healthy subjects. In addition, the high level of circ_001569 was positively associated with
lymph node metastasis, tumor stage, and invasion [167]. The pancreatic cancer patients
with a high level of circ_001569 had a poor prognosis. These observations suggest that
circ_001569 in plasma could be a promising biomarker for the diagnosis and prognosis of
pancreatic cancers.

6.6. circ-LDLRAD3

circ-LDLRAD3 is another circRNA which could be used for the diagnosis of pancreatic
cancer. In a study on circ-LDLRAD3, the expression levels of circ-LDLRAD3 in pancreatic
cancer and adjacent non-tumorous tissues, plasma samples from patients with pancreatic
cancer and plasma samples from healthy subjects were measured [168]. It was found
that the level of circ-LDLRAD3 was significantly increased in pancreatic cancer tissues
and plasma compared to normal tissues or plasma [168]. ROC analysis showed that
circ-LDLRAD3 alone could efficiently diagnose pancreatic cancer [168]. A combination
of circ-LDLRAD3 with CA19-9 had a much higher diagnostic sensitivity and specificity
for pancreatic cancer. In addition, the high level of circ-LDLRAD3 was also significantly
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correlated with invasion and metastasis pancreatic cancer [168]. These results demonstrate
that the level of circ-LDLRAD3 could be used as diagnostic and prognostic markers for
pancreatic cancer.

7. The Role of Non-Coding RNAs in the Therapy of Pancreatic Cancer

In the development of cancer therapy targeting ncRNAs, strategies for the delivery
of anti-ncRNA molecules include nanoparticle-packed siRNA delivery, LNA GapmeRs
delivery and exosome-based delivery [169–171]. Nanoparticle-packed siRNA has been
utilized to inhibit lncRNAs in clinical trial [169]. LNA GapmeRs delivery system has been
successfully used to inhibit lncRNA MALAT1 [170]. Studies have also confirmed that
exosome can deliver exogenous RNAs including siRNAs and other ncRNAs [171–174].
Therefore, exosome-based delivery of siRNAs and other ncRNAs could be another novel
strategy for the treatment of cancers.

ncRNAs also play important roles in drug resistance and the prognosis of pancreatic
cancer [175–178]. In the treatment of pancreatic cancer, ncRNAs could influence the
efficacy of cancer therapeutics including chemotherapy, radiotherapy, immunotherapy,
and other targeted therapy by regulation of cancer cell sensitivity to therapies. In addition,
some ncRNAs could be used for predicting the prognosis of pancreatic cancer patients
after treatment.

7.1. ncRNAs Regulated Drug Sensitivity in Pancreatic Cancer

Gemcitabine resistance is a major chemoresistance in the treatment of pancreatic cancer.
A study was conducted to find the difference of lncRNA profiles between gemcitabine
sensitive and resistant pancreatic cancer cells using genomic analysis [178]. By comparing
lncRNA profiles between gemcitabine sensitive and resistant cells, it was found that
4983 of 13,310 detected lncRNAs demonstrated more than 2-fold changes, suggesting that
lncRNA regulation is significantly involved in drug resistance in pancreatic cancer [178].
PVT1 is a lncRNA and significantly overexpressed in pancreatic cancer [79]. PVT1 has
been identified as a regulator of gemcitabine sensitivity. Study showed that functional
inactivation of PVT1 resulted in enhanced gemcitabine sensitivity whereas overexpression
of PVT1 enhanced resistance to gemcitabine in human pancreatic cancer [79]. Another
lncRNA HOTTIP is also significantly upregulated in human pancreatic cancer [83]. High
expression of HOTTIP in pancreatic cancer induced gemcitabine resistance while inhibition
of HOTTIP potentiated anticancer activity of gemcitabine in vitro and in vivo [83]. In
addition, linc-ROR is also a lncRNA which is up-regulated in pancreatic cancer [179].
Linc-ROR was also involved in the regulation of gemcitabine sensitivity in pancreatic
cancer [180]. Down-regulation of linc-ROR significantly sensitized pancreatic cancer cells
to gemcitabine whereas overexpression of linc-ROR significantly reduced the sensitivity
of pancreatic cancer cells to gemcitabine [180]. lncRNA MALAT-1 is also associated with
chemoresistance of pancreatic cancer [60]. A study showed that an elevated level of
MALAT-1 decreased sensitivity to gemcitabine in pancreatic cancer cells [60], suggesting
that down-regulation of MALAT-1 could increase the sensitivity of pancreatic cancer cells
to gemcitabine.

In addition to lncRNAs, circRNAs also regulate the sensitivity of pancreatic cancer
to gemcitabine [176,181]. A study showed that silencing two circRNAs (chr14:101402109-
101464448+ and chr4:52729603-52780244+) in gemcitabine resistant pancreatic cancer cells
restored sensitivity to gemcitabine, suggesting the role of these circRNAs in the regulation
of gemcitabine resistance [176]. By profiling circRNAs in gemcitabine resistant and sensitive
pancreatic cancer cells, it was found that circ_101672, circ_004077, and circ_003251 were
the top three upregulated circRNAs while circ_101543, circ_102747, and circ_000926 were
the top three down-regulated circRNAs in gemcitabine resistant pancreatic cancers [182],
suggesting that regulation of these circRNAs could restore the sensitivity of pancreatic
cancer cells to gemcitabine. CircHIPK3 is another circRNA up-regulated in gemcitabine
resistant pancreatic cancer cells and tumor tissues [181]. Knockdown of circHIPK3 in
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PANC-1-GEM and SW-1990-GEM gemcitabine resistant cells could significantly inhibit cell
proliferation, invasion, migration, and sensitize pancreatic cancer cells to gemcitabine [181].

Since ncRNAs play important roles in the chemoresistance of pancreatic cancer, ther-
apies targeting ncRNAs could reduce chemoresistance in pancreatic cancer. Therefore,
therapeutic strategy targeting ncRNAs could be designed as to block chemoresistance
related ncRNAs by siRNAs. Because the short nucleotides such as siRNAs are easy to be
degraded in vivo, novel efficient delivery systems are needed for successful delivery of
short nucleotides into target cells [183]. Recently, nanoparticle delivery systems have been
used for delivery of ncRNAs to pancreatic cancer cells and tumor microenvironments for
the treatment of pancreatic cancer [184,185].

7.2. ncRNAs for the Prognosis of Pancreatic Cancer

Recent studies have demonstrated that certain lncRNAs could be used for the prog-
nosis of pancreatic cancer [53,186,187]. A study on 80 patients with pancreatic cancer
showed that high expression of lncRNA AFAP1-AS1 and UCA1, and low expression of
ENSG00000218510 could predict poor overall survival and tumor progression in pancre-
atic cancer [186]. Similar results from another group also demonstrated that AFAP1-AS1
overexpression was associated with lymph node metastasis, perineural invasion, and poor
survival [187]. The study also confirmed that knockdown of AFAP1-AS1 led to the inhi-
bition of pancreatic cancer cell proliferation, migration, and invasion, demonstrating the
value of AFAP1-AS1 as a prognosis marker [187]. HOTAIR is another lncRNA which is
highly expressed in pancreatic cancer [55]. HOTAIR could be another prognostic markers
for pancreatic cancer. A study showed that patients with low HOTAIR expression had
significantly increased overall survival compared to patients with high HOTAIR expres-
sion [53]. As mention early, MALAT1 is another oncogenic lncRNA highly expressed in
pancreatic cancer [63]. Clinical studies demonstrated that MALAT1 was correlated with
clinical progression and unfavorable prognosis in pancreatic cancer and that patients with
higher expression of MALAT1 had a poorer disease free survival compared to patients with
low expression of MALAT1 [63,100]. In a study on lncRNA profiling analysis with clinical
data, it was found that the expression level of lncRNA BC008363 was significantly lower in
pancreatic cancer tissues compared to normal pancreatic tissues [175]. More importantly,
patients with high expression level of BC008363 had significantly better survival than those
with low expression level of BC00836 [175], suggesting its value as a prognostic marker.
In addition, oncogenic lncRNA PVT1 was found to be an independent prognostic factor
for poor overall survival in patients with pancreatic cancer [73]. Pancreatic cancer patients
with high expression of PVT1 had shorter overall survival times compared to those with
low expression of PVT1 [73].

In addition to lncRNAs, circRNAs could also function as prognostic markers. circ-
ADAM9 is an oncogenic circRNA [188]. In a study on 58 patients with pancreatic cancer,
high expression of circ-ADAM9 was found in pancreatic cancer tissues with advanced
clinical stage and lymph node metastasis [188]. More importantly, it was found that
pancreatic cancer patients with high expression of circ-ADAM9 had poorer survival rate
than those with low expression of circ-ADAM9 [188]. Another circRNA circ-LDLRAD3 was
shown to be overexpressed in pancreatic cancer tissues and cells [168,189]. Further analysis
showed that high expression of circ-LDLRAD3 was a marker indicating a poor prognosis
in patients with pancreatic cancer [189]. CircRNA circ_0030235 was also significantly
increased in pancreatic cancer tissues and cells compared to normal pancreatic tissues and
cells [177]. Clinical study found that overexpression of circ_0030235 in tumor samples was
associated with higher tumor stage and lymph node invasion [177]. Kaplan-Meier analysis
showed that high expression of circ_0030235 significantly predicted poor prognosis in
pancreatic cancer [177]. circRNA hsa_circ_0001649 could also serve as an independent
prognostic biomarker of pancreatic cancer [136]. Fisher’s exact test found that patients with
low expression of hsa_circ_0001649 had an advanced tumor stage and lower differentiation
grade [136]. Kaplan-Meier analysis showed that the patients with high expression of
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hsa_circ_0001649 had better 5-year overall survival [136], suggesting the prognostic value of
hsa_circ_0001649. In addition, testing circRNA in plasma samples to predict the prognosis
of patients with pancreatic cancer is a more convenient way in clinic. Studies found
that high level of circ-IARS or circ-PDE8A in plasma exosomes secreted by pancreatic
cancer indicated a poor overall survival of patients with pancreatic cancer [190,191]. These
findings on ncRNAs could help to design targeted therapeutic strategy more optimally to
better treat pancreatic cancers.

8. Conclusions

Pancreatic cancer is the seventh leading cause of cancer related deaths worldwide.
In the United States [192], pancreatic cancer remains the fourth leading cause of cancer
related death with an estimated 60,430 new cases and 48,220 deaths in 2021 in the United
States [193]. It is expected that pancreatic cancer will become the second leading cause
of cancer-related death by 2030 [194]. Both incidence and mortality rates for pancreatic
cancer have increased since 2000 in US [193]. There are no early screening biomarkers for
pancreatic cancer. Currently, CA19-9 is a biomarker for the diagnosis and prognosis of
pancreatic cancer. However, CA19-9 has limitation in the early diagnosis of this disease
because of its false positivity and nonspecific characteristics [195]. Therefore, there is an
urgent need to find novel and effective biomarkers for the diagnosis of pancreatic cancer.
Moreover, so far there are no specific or effective drugs to overcome chemoresistance for the
treatment of pancreatic cancer. Thus, finding novel therapeutic and prognostic biomarkers
is critically important for the improvement of cancer therapy for pancreatic cancer.

The recent studies described above indicate that ncRNAs including lncRNAs, circR-
NAs, and piRNAs play critical roles in the regulation of the development and progression
of pancreatic cancer. Therefore, these ncRNAs could be novel biomarkers for the diagnosis
and treatment of pancreatic cancer. For the diagnosis of pancreatic cancer, ncRNAs in
extracellular vesicles such as SNHG15, ABHD11-AS1, HULC, UFC1, circ_001569, and circ-
LDLRAD3 described above could serve as diagnostic biomarkers combined with CA19-9
in liquid biopsy for better diagnosis of pancreatic cancer. This non-invasive biopsy is more
convenient in clinic. For the treatment of pancreatic cancer, currently available studies have
shown that several ncRNAs have effects on the regulation of drug sensitivity in pancreatic
cancer. These ncRNAs include PVT1, HOTTIP, linc-ROR, MALAT-1, circHIPK3, circ_101672,
circ_004077, circ_003251, circ_101543, circ_102747, and circ_000926. Therefore, regulations
of these ncRNAs could increase pancreatic cancer cell sensitivity to conventional therapies
to achieve better treatment outcome. In addition, several ncRNAs such as AFAP1-AS1,
UCA1, HOTAIR, PVT1, MALAT-1, circ-ADAM9, BC008363, circ-LDLRAD3, circ-IARS, circ-
PDE8A, circ_0030235, and circ_0001649 have been associated with prognosis of pancreatic
cancer. Detection of these ncRNAs could predict the treatment outcome in pancreatic cancer.
Targeting ncRNAs by siRNA is main strategy for targeted therapy [172,173]. However,
easy degradation and difficult delivery of siRNA are challenges for ncRNA targeted ther-
apy. Nevertheless, using nanoparticle-packed siRNA, LNA GapmeRs, and exosome-based
delivery to protect siRNA and target oncogenic ncRNAs is on its way and will be tested in
pre-clinical and clinical studies. It is important to note that more molecular studies and
in vivo pre-clinical studies are needed before these strategies targeting ncRNAs could be
used in clinical practice.
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