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Abstract

Background

Malaria incidence is largely influenced by vector abundance. Among the many interconnec-

ted factors relating to malaria transmission, weather conditions such as rainfall and temper-

ature are known to create suitable environmental conditions that sustain reproduction and

propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions

vary across the country. Understanding the heterogeneity of malaria morbidity using data

sourced from a recently setup data repository for routine health facility data could support

planning.

Methods

Monthly aggregated confirmed uncomplicated malaria cases from the District Health

Information Management System and average monthly rainfall and temperature records

obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univari-

ate time series models were fitted to the malaria, rainfall and temperature data series. After

pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently,

transfer function models were developed for the relationship between malaria morbidity and

rainfall and temperature.

Results

Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks

once in the year and twice in both the Transitional forest and Coastal savannah, following

similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity

are delayed by a month in the Guinea savannah and Transitional Forest zones those of tem-

perature are delayed by two months in the Transitional forest zone. In the Coastal savannah
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however, incidence of malaria is significantly associated with two months lead in rainfall and

temperature.

Conclusion

Data captured on the District Health Information Management System has been used to dem-

onstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of

these variations could guide the deployment of interventions such as indoor residual spraying,

Seasonal Malaria Chemoprevention or vaccines to optimise effectiveness on zonal basis.

Background

Although significant progress has been made in studying the epidemiology of malaria in

Ghana, investigating the relationship between malaria morbidity, across different ecological

settings, using data from a single platform such as the District Health Information Manage-

ment System (DHIMS), still remains largely unexplored.

Malaria is endemic in Ghana and varies across the country [1]. Ghana is characterised

broadly by three ecological zones namely; the Guinea savannah zone which comprises the

regions of northern Ghana, the Transitional forest zone located along the middle belt of the

country and the Coastal savannah zone along the coast of the Atlantic Ocean [2–5]. Although

the prevalence of malaria is observed all year around, it is seasonal with high incidence in the

wet seasons [6].

In recent nationwide surveys, parasite prevalence among children 6–59 months old were

observed to be 20.6% in 2016 [7]. There were however regional variations along the different

ecological zones with relatively high parasite prevalence observed in the Transitional forest

zone compared to other zones [7]. Malaria morbidity still accounts for about 40.0% of all out-

patients attendance nationwide [8]. Although some successes have been made over the years

following implementation of different policy interventions, much still remains to be achieved

in the fight against malaria in Ghana [1].

Survival and prevalence of both the vector and parasite depend on various factors including

rainfall and temperature which vary significantly across Ghana [9–11]. These meteorological

variables have been shown to influence the transmission dynamics of malaria as they create

a favourable environment needed to sustain vector replication, parasite development and

human biting rates [12–14].

Understanding the diversity in the patterns and relationships between meteorological fac-

tors and incidence of malaria in Ghana, using readily available data on DHIMS, may be useful

information upon which appropriate intervention assessment tools can be based. Although

some studies have examined the relationship between rainfall, temperature and malaria mor-

bidity in Ghana, they were all on small scale at the district population level [15–17]. This

study therefore sought to explore and assess spatial and temporal heterogeneity of confirmed

uncomplicated malaria cases captured at all public health facilities across the three different

ecological settings in Ghana using time series analyses.

Study design

Secondary data for uncomplicated malaria morbidity captured into a data cloud through

DHIMS from 2008 to 2016 were analysed. Morbidity data were captured passively on daily basis

Spatio-temporal heterogeneity of malaria morbidity in Ghana
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in health facilities in all districts in Ghana. All patients presenting with suspected symptoms of

malaria were tested by microscopy or Rapid Diagnostic Tests kits (RDT) before being diagnosed

as a malaria case or not. In addition, meteorological data including monthly average rainfall and

temperature from 2008 to 2016 obtained from regional weather stations were used.

Study area and population

Ghana is located in the West African sub-region bordered by Togo to the east, Côte d’Ivoire to

the west, Burkina Faso to the north and the Gulf of Guinea and Atlantic Ocean to the south. In

2016, the population was estimated to be 28 million people [18]. The country occupies a land

size of about 238,540 km2 divided into ten administrative regions which are further divided

into 237 districts and municipalities [1, 19].

Based on the differences in vegetation, rainfall and temperature patterns recorded over the

years, the northern regions (Northern, Upper East and Upper West) of Ghana constitute the

Guinea savannah zone while the central regions (Ashanti, Brong-Ahafo, Eastern and mid-

Volta) constitute the Transitional forest zone. The Coastal savannah zone includes the Greater

Accra, Western and the Central regions. The Coastal savannah also includes the lower Volta

boarding the sea, Fig 1.

The Guinea savannah zone experiences a single wet season from June to October and a dry

season from November to May. The Transitional forest and Coastal savannah zones experi-

ence two wet seasons—major season from April to August and minor season from September

to November [9]. The distribution of rainfall in the Transitional forest and Coastal savannah

zones are therefore bimodal. The average peak values of rainfall however vary from the Transi-

tional forest to the Coastal savannah zones. The minor wet season peaks higher in the forest

zone compared to the coastal zone [9].

Data

Clinical data

Each region in the country has a regional hospital that serves as a referral facility. Due to the

decentralised nature of health services, lower level health care facilities such as the district hos-

pitals, health centres and clinics are available at the district and sub-district levels and commu-

nity health facilities such as the Community-based Health Planning and Services (CHPS)

exists in the various communities where higher health care facilities are non-existent. These

serve as the first points of call for presenting with any illness [1].

In all health facilities (government owned and private), daily morbidity and mortality rec-

ords are captured and aggregated by week and month into the District Health Information

Management System (DHIMS). These include both in and out-patient records of suspected

and confirmed malaria cases by the use of microscopy or RDT. Pregnant women attending

routine antenatal clinic are also tested for malaria and the results tallied and logged for capture

into the DHIMS.

The DHIMS data are anonymised and captured at the district level into a data repository

hosted online and made accessible at the regional and national levels. This system of data cap-

ture, was set up in 2007 and later revised and upgraded in 2012 [20].

Meteorological data

Meteorological data from 2008 to 2016 was obtained from the Ghana Meteorological Agency

(GMET) in Ghana. Monthly mean minimum and maximum temperature and rainfall from

eleven weather stations across all the regions were obtained.

Spatio-temporal heterogeneity of malaria morbidity in Ghana
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The meteorological data was further aggregated by zone to include the monthly average

rainfall in millimeters for all the weather stations within a given zone. Likewise, the monthly

mean temperature (minimum and maximum) was determined by month for each zone using

recordings from weather stations within their respective zones.

Methods

Seasonal, trend and residual(from seasonal and trend) components of the malaria case series

were investigated using locally estimated scatter plot smoothing (LOESS) decomposition

approach [21]. Subsequently, the relationship between confirmed malaria cases and these

meteorological factors namely, monthly mean rainfall (mm) and monthly mean temperature

(˚C) were investigated using time series methods.

To fit autoregressive time series models for the malaria caseloads series, the autocorrelation

function (ACF) and partial autocorrelation functions (PACF) of each stationary series were

Fig 1. Map of Ghana showing the administrative regions and ecological zones. (Data source: https://data.humdata.

org/dataset/ghana-administrative-boundaries).

https://doi.org/10.1371/journal.pone.0191707.g001
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inspected and tentative model parameters determined [22]. Because of the strong seasonal pat-

terns exhibited by all data series for incidence of malaria, rainfall and temperature, Seasonal

Autoregressive Integrated Moving Average (SARIMA) models were fitted to each series by

zone. Suitable SARIMA models were selected based upon the comparisons of the Akaike

Information Criterion (AIC), inspections of the ACF, normal Q-Q plots of residuals and the

Box-Ljung test for goodness of fit statistic of all competing models [22].

Determining significant lag terms at which rainfall or temperature that are correlated with

cases of malaria after pre-whitening involved inspection of the cross correlation function

(CCF) between the residuals of rainfall or temperature and the pre-whitened series of cases of

malaria.

Correlation of significant lag terms of rainfall or temperature on cases of malaria (on the

negative scale of the CCF as rainfall or temperature leads the incidence of malaria not the

other way round) were then extracted from stored values of the CCF.

Parameters of the Impulse response function representing the dynamic relationship

between malaria morbidity and meteorological variables were deduced from the cross correla-

tion function of the pre-whitened series of rainfall and temperature. Once the transfer function

was determined, an Autoregressive Moving Average (ARMA) model was then determined

from the ACF of the transfer function to represent the noise component of the model.

The final transfer function model together with the noise component were then estimated

using Ordinary Least Squares algorithm in keeping with the methodology proposed by

Box and Jenkins [23]. Associations between malaria morbidity and weather variables at 10%

level of significance were considered for inclusion in a multivariable model assessing the com-

bined effect of rainfall and temperature on malaria morbidity. In addition to the usual model

diagnostics, predictions from the formulated transfer function models were compared with

the observed malaria caseload series.

All data preparation and analyses were performed using Stata version 13.1 (StataCorp LP.,

College Station, Texas, USA) and R version 3.3.3 Patched Copyright (C) 2017. Analyses were

carried out separately for the Guinea savannah, Transitional forest and Coastal savannah

zones.

Results

Patterns of malaria morbidity, rainfall and temperature

Figs 2 and 3, shows case series for uncomplicated malaria for the three zones, average rainfall

and temperature patterns from 2008 to 2016. Though the seasonal patterns for the malaria

data series are not readily obvious in Figs 2 and 3 and S4–S6 Figs show detailed seasonality

and a general upward trend from 2008 to 2016 for all zones. Cases of uncomplicated malaria

tend to follow an annual pattern with a single peak in the Guinea savannah zone. The peak

period of malaria incidence in the savannah coincides with the peak period of the wet season

in the zone from May to October, Fig 3a.

From 2008 to 2016, monthly mean number of malaria cases recorded in the Guinea savan-

nah zone was 43,409 with a minimum of 2,471 and maximum of 163,520. Monthly average

incidence of uncomplicated malaria in this zone was 915/100,000 (using 2015 estimated popu-

lation of 4,742,689 from the DHIMS platform). While the monthly mean precipitation in the

zone was 82.2 mm with a minimum of 0.0 mm and a maximum of 299.4 mm, average monthly

temperature was 28.9˚C with the minimum and maximum average temperatures being 25.7˚C

and 33.1˚C for the period respectively (Table 1).

Relationship between average monthly temperature and incidence of malaria in the Guinea

savannah zone on the other hand seems to be in the reverse. While incidence of malaria is

Spatio-temporal heterogeneity of malaria morbidity in Ghana
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rising from May, average temperatures are declining, with the lowest temperature coinciding

with the peak of rainfall (Fig 3a).

In the Transitional forest zone, average number of cases of malaria recorded from 2008 to

2016 was 125,547 (Table 1) with average monthly incidence of 796/100,000 people (using 2015

estimated population of 15,762,783 from the DHIMS platform). The lowest and highest aver-

age recorded number of malaria cases were 12,124 and 284,428 respectively. Mean, minimum

and maximum rainfall recorded within the same period were 110.7 mm, 0.0 mm and 316.2

mm respectively. Also, as shown on Table 1, the mean, minimum and maximum temperatures

were 26.6˚C, 24.1˚C and 29.1˚C respectively.

Patterns of uncomplicated malaria in the Transitional forest zone as shown in Fig 3, indi-

cate two distinguishable peaks of malaria incidence mimicking rainfall patterns (middle panel

of Fig 2) in the zone. Seasonal patterns extracted after decomposing using LOESS as in S5 Fig

also show series for malaria cases shows a double peak.

The rise in number of cases of malaria starts a few months after the onset of the rains, peak

in the incidence of malaria follows closely after rainfall peaks, in both the first and second wet

seasons (Fig 3b).

Fig 2. (Top panel) Patterns of uncomplicated malaria morbidity, (Middle panel) average rainfall (mm) and (Lower panel) average temperature (˚C) by year for

the Guinea savannah, Transitional forest and Coastal savannah zones.

https://doi.org/10.1371/journal.pone.0191707.g002
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Fig 3. Patterns of aggregated cases of uncomplicated malaria for the (a) Guinea savannah, (b) Transitional forest,

(c) Coastal savannah by month for 2008 to 2016.

https://doi.org/10.1371/journal.pone.0191707.g003
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Similarly in the Coastal savannah zone, a doubly peaked pattern of malaria incidence was

observed (middle panel of Figs 2 and 3c and S6 Fig) with an average of 41,269 cases recorded

per month within the period (Table 1). The mean, minimum and maximum rainfall and tem-

perature recorded in the period 2008 to 2016 were 97.7 mm, 1.3 mm, 297.4 mm and 27.8˚C,

25.3˚C and 29.8˚C respectively, Table 1. Average monthly incidence was 553/100,000 people

(using 2015 estimated population of 7,466,490 from the DHIMS platform).

Notably, the major peak period for malaria incidence in the Transitional forest and the

Coastal savannah zones seem to occur in June (Figs 2, 3b and 3c). Additionally, recorded cases

of malaria in the Coastal savannah zone follow similar patterns as in the Transitional zone

although the number of cases during the second season in the Coastal savannah zone is rela-

tively lower (Figs 2, 3b and 3c). This difference may be due to the amount of rainfall received

and level of temperatures recorded in the respective zones (Figs 2 and 3). Another distinction

in the two zones is that, recorded temperatures are slightly higher in the Coastal savannah

zone compared to the Transitional forest zone (Figs 2 and 3).

In all three zones, the highest rainfall and the lowest temperatures were recorded in the

Transitional forest zone (Figs 2 and 3). In contrast, the Guinea savannah zone recorded the

least amount of total rainfall, has the shortest wet season, and seems to be relatively hotter on

the average (Figs 2 and 3a).

Since these weather indicators vary across zones, it may be more informative to investigate

these relationships on zonal basis in order to better understand the level of dependencies

between incidence of malaria, rainfall and temperature.

S1–S3 Figs also show patterns of confirmed severe malaria cases, diagnosed malaria among

pregnant women and malaria attributable deaths in all zones. These categories of diagnosed

malaria cases, largely follow similar patterns as for the relationship between uncomplicated

malaria cases, rainfall and temperature in the various zones although with relatively fewer

cases as shown.

Autoregressive Integrated Moving Average models

The malaria caseload, as well as rainfall and temperature data series from the Guinea savannah

were found to have stable variance after testing for unit roots using the Augmented Dicker-

Fuller test. A univariate model, SARIMA (2, 0, 1) (1, 0, 0)12, was selected for the malaria cases

after inspecting the ACF and PACF. Model selection was based on the lowest AIC reported

through a grid search by the Auto ARIMA algorithm from the forest package. Similar models

were fitted to the malaria caseloads data series in the Transitional forest and Coastal savannah

zones. However, the morbidity series from these zones required non-seasonally differencing to

stabilize the variance whereas variance stabilisation was not required for rainfall and tempera-

ture data. In the Transitional forest zone, SARIMA (1,1,1)(0,0,2)12, was the best model with

the lowest AIC for malaria morbidity whiles SARIMA (0,1,2)(0,0,1)12 was selected for malaria

caseloads for the Coastal savannah zone.

Table 1. Summary statistics of data series for Guinea savannah, Transitional forest and Coastal savannah zones.

Summary Cases of uncomplicated malaria (n) Average rainfall (mm) Average temperature (˚C)

Guinea

savannah

Transitional

forest

Coastal

savannah

Guinea

savannah

Transitional

forest

Coastal

savannah

Guinea

savannah

Transitional

forest

Coastal

savannah

Minimum 2471 12124 8185 0.0 0.0 1.3 25.7 24.1 25.3

Median 38917 116958 34410 68.1 104.1 90.3 28.5 26.5 28.0

Mean 43409 125547 41269 82.2 110.7 97.7 28.9 26.6 27.8

Maximum 163520 284428 128228 299.3 316.2 297.4 33.1 29.1 29.8

https://doi.org/10.1371/journal.pone.0191707.t001
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These models though limited in application in terms of their usage for making inputs to

planning and investigating the impact of malaria interventions, provide some useful insights

into the patterns of morbidity of malaria across the country.

Cross correlation analysis

The correlation coefficients between the raw malaria caseloads, rainfall and temperature in the

Guinea savannah zone, without pre-whitening, were 35.0% and 30.0% at lags 1 and 2 with

rainfall respectively and -30.0%,-34.0% and -21.0% at lags 0, 1 and 2 with temperature respec-

tively. Those for the Transitional forest were 37.0% and 34.0% at lags 0 and 1 with rainfall

respectively and 29.0% and 28.0% at lags 2 and 3 with temperature respectively. Similarly for

the Coastal savannah, the correlation between rainfall and malaria morbidity was 25.0% and

-22.0% at lags 1 and 2 and 20.0% and 25.0% at lags 1 and 2 with temperature respectively.

From the CCF between pre-whitened series of cases of malaria and rainfall and cases of

malaria and temperature, it was observed that the only significant correlations remaining

between rainfall, temperature and malaria morbidity occurred at a one month lag respectively

in the Guinea savannah.

In the Transitional forest zone, the correlation between rainfall and cases of malaria, after

pre-whitening that remained significant were those at lag zero and at one month. With regards

to temperature, significant correlations were observed at a two month lag. Similarly for the

Coastal savannah zone, remaining significant cross correlations observed from the CCF after

pre-whitening malaria caseloads versus rainfall and temperature were at lags one and two

months for rainfall and at two months lag with temperature respectively.

In all the zones, increasing rainfall and lowering temperatures preceded the onset of the rise

of malaria incidence and timing of the rise in malaria incidence is well defined following the

observations made from these analyses.

In the Guinea savannah as well as in the Coastal savannah zones, rainfall leads incidence of

malaria by a month whereas in the forest zone, the lead time between rainfall and incidence of

malaria is less than a month perhaps due to persistence in rainfall almost all year round.

Transfer functions

As shown on S1 and S3 Tables, results of the CCF between malaria morbidity rainfall and tem-

perature separately were used to determine the impulse response function for the relationship

between malaria caseloads and weather variability.

Univariate models for cases of malaria and rainfall in the Guinea savannah show morbidity

lags rainfall and temperature significantly (at 10% level of significance) by one month, S1

Table. In the multivariable model including both rainfall and temperature, temperature

remained significantly associated but not rainfall (Table 2 and S1 Table). The random seasonal

and non-seasonal error terms however remained highly significant. This may suggest that, the

components of the unobserved factors include both seasonal and non-seasonal variables that

are contributing significantly to the variability in malaria morbidity.

In contrast, the univariate models between cases of malaria and rainfall and temperature in

the Transitional forest zone show, the delay effect of rainfall on malaria morbidity includes

weeks up to a month whereas for temperature the delay is two months. The combined delay

effect of rainfall and temperature on malaria morbidity indicates rainfall leads by one month

and for temperature the lead is by two months, both being significantly associated with malaria

morbidity caseloads (Table 2 and S2 Table).

Even though the patterns of morbidity and meteorological variables look similar comparing

the Transitional forest zone and the Coastal savannah zones, the delay effects of rainfall vary

Spatio-temporal heterogeneity of malaria morbidity in Ghana
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slightly. Effect of rainfall in the previous two months significantly influences the incidence of

malaria in the Coastal savannah. The effect of temperature in the Coastal savannah is however

similar to its observed effect in the Transitional forest zone. These relationships remained sig-

nificant even in the combined multivariable model of rainfall and temperature and malaria

morbidity, Table 2, S2 and S3 Tables.

Notwithstanding the seasonal component of the random error term not being significant,

for both model estimates in the Transitional forest and Coastal savannah zones, the non-sea-

sonal random terms were significant. As explained earlier, this may indicate some unobserved

non-seasonal factors significantly explain the variability in malaria morbidity apart from tem-

perature and rainfall (Table 2, S2 and S3 Tables).

Transfer function models for the relationship between malaria caseloads as the dependent

outcome variable and rainfall and temperature as the independent input variables were devel-

oped and represented by the Eqs 1, 2 and 3 below. These are,

Casest ¼ 153855:6þ 26:8B � Rainfallt � 3962:4B � Tempt þ
1

ð1 � 0:8BÞð1 � 0:7B12Þ
Nt ð1Þ

for the Guinea savannah,

ð1 � BÞCasest ¼

� 144687:4þ 66:9B � Rainfallt þ 5198:1B2 � Tempt þ
1

ð1 � 0:2B2 þ 0:3B3Þð1 � 0:1B12Þ
Nt ð2Þ

for the Transitional forest and

ð1 � BÞCasest ¼

� 30719:4þ ð35:1þ 37:2BÞB � Rainfallt þ 1143:5B2 � Tempt þ
1

ð1þ 0:3Bþ 0:3B2Þ
Nt ð3Þ

Table 2. Time series multivariable regression estimates of the relationship between average monthly rainfall, temperature and cases of malaria confirmed by zone.

Variables Guinea Savannah Transitional Forest Coastal Savannah

Coefficients (95% CI) p-value Coefficients (95% CI) p-value Coefficients (95% CI) p-value

Rainfall

Lag0� - - - - - -

Lag1� 26.77 (-18.75,72.28) 0.249 66.90 (15.48,118.34) 0.011 35.12 (1.06,69.19) 0.043

Lag2� - - - - -37.16 (-68.93,-5.40) 0.022

Temperature

Lag0� - - - - - -

Lag1� -3962.43 (-8146.65,231.79) 0.064 - - - -

Lag2� - - 5198.12 (1882.49,8513.75) 0.002 1143.47 (-206.97,2493.92) 0.097

ARMA��

AR(1) 0.82 (0.74,0.89) <0.001 - - -0.25 (-0.50,0.002) 0.052

AR(2) - - -0.16 (-0.34,0.02) 0.082 -0.29 (-0.48,-0.10) 0.003

AR(3) - - -0.25 (-0.42,-0.08) 0.004 - -

SARMA���

SAR(1) 0.65 (0.45,0.85) <0.001 0.13 (-0.07, 0.34) 0.199 - -

Intercept 153855.60 (39883.43,267827.9) 0.008 -144687.40 (-232669.88, -56704.82) 0.001 -30719.38 (-68424.81,6989.05) 0.110

Sigma 11573.52 (10336.88,12810.15) <0.001 18928.17 (16899.22,20957.13) <0.001 7355.74 (6692.89,8018.59) <0.001

� Lag0, Lag1, Lag2: Refer to elapsed times in months (0, 1, 2) for malaria incidence with respect to rainfall and temperature

�� ARMA: Autoregressive (AR) and Moving average (MA)

��� SARMA: Seasonal Autoregressive (AR) and Moving average (MA)

https://doi.org/10.1371/journal.pone.0191707.t002
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for the Coastal savannah zones respectively. Where the backshift operator Bk = Xt−k and

Nt ~ N(0,1) i.e. white noise.

Model predications of malaria morbidity using Eqs (1), (2) and (3), including inspection of

the model residuals, Q-Q plots provided assurance of model adequacy. The proportion of vari-

ability in the malaria caseloads series accounted for by the fitted models estimated from the

coefficient of determination (R-squared) for each model were 86.1%,93.2% and 92.6% respec-

tively for the Guinea savannah, Transitional forest and Coastal savannah models. Fig 4 shows a

comparison of the estimated and observed number of cases of malaria by zone.

Discussion

This study has shown the dynamic features of malaria morbidity using data captured on the

DHIMS repository. Notably, the results show distinguishable patterns which correlate with the

weather phenomenon in various zones of Ghana. With respect to weather dynamics, these

results corroborate some of the findings of some studies investigating variability of meteoro-

logical factors across Ghana [9, 16]. Results of spatial and temporal relationships between

malaria morbidity and weather variability, using data from the DHIMS platform at the zonal

level for the entire country is being reported for the first time, making these findings unique

Fig 4. Predicated versus observed uncomplicated malaria cases by zone.

https://doi.org/10.1371/journal.pone.0191707.g004
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even though a few localised studies have been conducted to investigate the relationship

between rainfall and malaria morbidity [15–17].

For example, a study in two districts located in the Transitional forest zone in Ghana found

that, the lag time between malaria incidence and rainfall ranged from one to nine weeks [16].

These findings are partially consistent with results of an association of a one month lag with

rainfall in the univariable transfer function model for the Transitional zone of this study, S2

Table. The observed inconsistency in findings could have been due to differences in the mod-

els fitted. In our study, the unobserved residuals were modelled as autoregressive terms

whereas the earlier study [16] in Agogo and Konongo did not model the residual error.

Another study investigating the correlations between monthly rainfall and temperature on

malaria caseloads observed that, up to two months delay of rainfall was significantly correlated

with recorded malaria caseloads in a community (Ejura) located in the Transitional forest

zone while mean monthly maximum temperature was correlated with a range of lag time of

less than a month to four months in the same community [15]. Similarly, the study found a

zero to two month range lag correlation between maximum temperature and malaria case-

loads but not rainfall in another community (Winneba) in the Coastal savannah zone [15]. In

contrast, results from the Transitional forest zone of our study observed two significant corre-

lations between lag zero and one month with rainfall and malaria incidence and a two months

lag of temperature correlation with incidence of malaria respectively. However in the Coastal

savannah, the observed significant lagged correlations between incidence of malaria and rain-

fall were one and two months and two months with temperature respectively. These discrepan-

cies in findings could have resulted from the different analytical approaches adopted, for

instance pre-whitening the data series, before assessing the cross correlation in our study. Sim-

ilarly, another study using district level health facility malaria incidence data from 2008 to

2011 did not find significant associations between incidence of malaria and rainfall but a three

month lag correlation with temperature in the Amenfi West district which is situated in the

Transitional forest zone [17]. This finding is also not consistent with results of correlations

found between the pre-whitened malaria incidence and temperature data series of our study in

the Transitional forest zone.

As observed in this study, some significant correlations between the raw data series without

pre-whitening disappeared after pre-whitening was applied. This may suggest spurious rela-

tionships were observed without pre-whitening as noted by a study conducted in Sri Lanka

[24]. Some of the findings in this study were also found to be closely consistent with findings

from other studies where less than or up to a month lag in rainfall was found to be related to

malaria morbidity caseloads [24, 25].

Though the morbidity data series across all the zones, S4–S6 Figs, seem to suggest an

increasing trend (after decomposing the series using LOESS) in malaria morbidity in the coun-

try, these observed trends are not necessarily attributable to increasing number of new malaria

cases or general worsening of the disease burden. The reasons for the observed increasing

trend could be due to the gradual improvement of the DHIMS data capturing platform which

was set up in 2007 [1, 20]. Prior to DHIMS and its subsequent upgrading in 2012, the roll out

and scaling up of Community-based health planning and services (CHPS) and the systematic

increase in the testing rate for malaria diagnoses could have played a significant role in reach-

ing out to a wider population requiring health care who are accurately diagnosed for malaria

[26–28]. These trends notwithstanding, the seasonal characteristics of malaria morbidity

remain, though with lower records in earlier years as shown in Fig 2 and S4–S6 Figs. The

observed increasing trend may be an indicator of a steady increase in the reporting levels of

malaria cases across the country which increases the reliability of data from the DHIMS for
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prediction of the burden of malaria in the country without having to conduct new field studies

using limited resources.

The seeming discrepancy between the prevalence and incidence of malaria between the two

zones may be explained by the high malaria prevalence in previous years before 2016 in the

Guinea savannah zone compared to the other zones. In the 2016 survey among children 6–59

months of age, prevalence of malaria parasite was estimated to be 20.6% nationwide. The prev-

alence was however 20.4% in the Guinea savannah and 24.3% in the Transitional forest zone

respectively in the same year. Prior to 2016, prevalence among children in the same age group

have always been estimated to be higher in the Guinea Savannah compared to other zones. For

instance in 2011, the average parasite prevalence in the Guinea savannah was 47.8% compared

to 24.6% and 24.2% in the Transitional forest and Coastal savannah zones respectively [29].

Given the high prevalence in the Guinea savannah in previous years, and the higher estimated

average incidence of malaria in all age groups from 2008 to 2016, it is not unexpected that, the

Guinea savannah seem to have recorded higher incidence rates compared to other zones.

The relationship between malaria morbidity and meteorological factors are complex and

though the observed relationship may not be directly causal, these findings with regards to

rainfall and temperature are plausible given the length of time it takes for parasite development

in the human host until clinical illness is reported [13]. While meteorological factors may not

be the only factors responsible for the observed relationships, understanding the impact of

other similarly important factors may require a more complex modelling approach. For

instance, factors such as availability of health facilities, the health seeking behavior of members

of the community, socio-economic levels of households, presence of irrigated farm lands and

large community dams and dugouts could influence transmission dynamics and therefore the

length of time before clinical cases are seen at the health facilities. Prevalence of malaria in the

country is all year round, even in the Guinea savannah zone where the unfavourable weather

conditions of the dry season for both mosquitoes and parasite development prevail, the many

irrigated and non-irrigated farm lands and dams may be serving as breeding grounds for infec-

tious vectors [14, 19]. These factors and many others, such as immigration from higher into

low endemic areas, could form part of the unobserved variables accounting for the significance

of the noise component in the models.

With this background, the findings here could serve as a guide planning for appropriate

interventions to avert seasonal epidemics particularly where seasonality of morbidity has been

shown to be significant. This could be done by implementing interventions that target breed-

ing sites in the dry season to reduce or clear the vector population and the parasite reservoir in

the human host by mass drug administration, for example and if possible, before the onset of

the rainy season [30].

While transfer function models may be better than the univariate models in terms of being

able to incorporate a couple of dependencies for predictions of morbidity, they may not be

flexible enough to accommodate more complex underlying mechanisms of the disease. Never-

theless, the impulse response functions maybe supportive in developing more elaborate mathe-

matical models.

Going forward, formulating a dynamic mathematical model not only for predictions of dis-

ease incidence but also for investigating the impact of malaria interventions such as indoor

residual spraying, potential new malaria vaccines or drugs such as the RTSS [31] or a potential

single dose antimalarial drug such as the MMV390048 [32] on the incidence of malaria mor-

bidity in each zone, may be supportive in providing the needed information for planning, cost

effectiveness analysis and target setting. This will support in addressing some of the challenges

in malaria control in Ghana highlighted by the NMCP [33].
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These models should be able to take into account the coverage levels of the interventions

currently being deployed as well as the health seeking behaviour, the density of functioning

health infrastructure in various districts and other factors that may relate to malaria incidence

in Ghana while also accounting for the varying patterns of morbidity.

Conclusion

The data captured on the DHIMS from 2008 to 2016 has been used to demonstrate spatial and

temporal heterogeneity of malaria morbidity across ecological zones in Ghana. Additionally,

relationships between malaria morbidity and rainfall and malaria morbidity temperature

together with the combined effects of both weather variables in the three different zones were

explored. Particularly those of the Guinea savannah have been investigated for the first time

and the dynamical models and other analytical approaches used seem appropriate and the

results obtained robust. Timing of these variations could guide deployment of interventions

and treatment strategies such as indoor residual spraying and Seasonal Malaria Chemopreven-

tion or vaccines to optimise effectiveness. A more elaborate modelling approach that allows

for more dependencies of malaria morbidity dynamics to be incorporated may provide a plat-

form to investigate the impact of such intervention strategies using this data. It is important to

note, that the increasing trends of captured morbidity cases at the health facilities seems to

indicator that, some positive achievements have been made in recent years in improving both

health care coverage levels and data reliability.
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