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ABSTRACT: FoxOs and their post-translational modification by phosphorylation, acetylation, and methylation 

can affect epigenetic modifications and promote the expression of downstream target genes. Therefore, they 

ultimately affect cellular and biological functions during aging or occurrence of age-related diseases including 

cancer, diabetes, and kidney diseases.  As known for its key role in aging, FoxOs play various biological roles in 

the aging process by regulating reactive oxygen species, lipid accumulation, and inflammation. FoxOs regulated 

by PI3K/Akt pathway modulate the expression of various target genes encoding MnSOD, catalases, PPARγ, and 

IL-1β during aging, which are associated with age-related diseases. This review highlights the age-dependent 

differential regulatory mechanism of Akt/FoxOs axis in metabolic and non-metabolic organs. We demonstrated 

that age-dependent suppression of Akt increases the activity of FoxOs (Akt/FoxOs axis upregulation) in metabolic 

organs such as liver and muscle. This Akt/FoxOs axis could be modulated and reversed by antiaging paradigm 

calorie restriction (CR). In contrast, hyperinsulinemia-mediated PI3K/Akt activation inhibited FoxOs activity 

(Akt/FoxOs axis downregulation) leading to decrease of antioxidant genes expression in non-metabolic organs 

such as kidneys and lungs during aging. These phenomena are reversed by CR. The results of studies on the 

process of aging and CR indicate that the Akt/FoxOs axis plays a critical role in regulating metabolic homeostasis, 

redox stress, and inflammation in various organs during aging process. The benefical actions of CR on the 

Akt/FoxOs axis in metabolic and non-metabolic organs provide further insights into the molecular mechanisms 

of organ-differential roles of Akt/FoxOs axis during aging. 
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1. Introduction  

 

Aging causes detrimental changes at the molecular and 

cellular level that accumulate over time, and ultimately 

leads to deterioration of tissues and organs, leading to 

onset of age-related diseases and increased risk of 

morbidity and mortality [1]. The inflammatory response 

is associated with age-related diseases such as 

atherosclerosis, sarcopenia, Alzheimer’s disease, cancer, 

kidney diseases and fatty liver diseases. Furthermore, 

many studies have demonstrated that aging is closely 

related to the phosphatidylinositol-3-kinase (PI3K)/ 

protein kinase B (Akt) signaling pathway [2, 3]. Aging 

differentially expresses Akt-mediated Forkhead box O 

(FoxO) levels depending on metabolic- and non-

metabolic organs. 

The FoxOs protein family consists of FoxO1, FoxO3, 

FoxO4, and FoxO6, and these are structurally 

characterized by the presence of a forkhead box DNA 

binding domain [4]. FoxOs are expressed in ovary, 

  Volume 12, Number 7; 1713-1728, October 2021                       

http://dx.doi.org/10.14336/AD.2021.0225
mailto:hyjung@pusan.ac.kr
https://creativecommons.org/licenses/by/4.0/


Kim DH., et al                                                                      The roles of Akt/FoxO axis in various organs during aging 

Aging and Disease • Volume 12, Number 7, October 2021                                                                             1714 

 

prostate, skeletal muscle, brain, heart, lung, liver, 

pancreas, spleen, thymus, and testes [5-7]. Key roles of 

FoxOs transcription factors in induction of downstream 

target genes involved in regulation of cellular metabolic 

pathways in the cell cycle, cell death, and oxidative stress 

response have been reported [8]. Several studies suggest 

that FoxOs may modulate the aging process for initiation 

and progression of age-related diseases. However, little 

information is available on the organ-specific roles of 

FoxOs and their underlying action mechanisms. 

Phosphorylation of Akt inactivates FoxOs by inducing 

their shuttling from the nuclear fraction to the cytoplasm 

[8-10]. In contrast, suppressed Akt activity leads to 

elevated nuclear translocation and phosphorylation of 

FoxOs in aged liver [11]. Increased phosphorylation of 

FoxOs owing to the activated PI3K/Akt signaling in the 

aged kidney results in significant changes in insulin levels 

during the aging process along with other alterations. This 

observation can be attributed to various functions of 

FoxOs during aging, which is phosphorylated by Akt 

activation or inactivation in various aging organs. 

Often, the process of aging is associated with many 

chronic pathological conditions such as vascular diseases, 

diabetes mellitus, cancer, and metabolic syndrome [12]. 

The occurrence of diabetes and obesity is associated with 

insulin resistance [13], which leads to the downregulation 

of Akt and upregulation of FoxOs, eventually resulting in 

lipid accumulation in aged liver [11]. FoxOs proteins have 

various functions in age-associated diseases. For instance, 

regulation of protein homeostasis during aging 

progression directly affects the pathogenesis of neuro-

degenerative disorders [14-16]. However, protective 

effects mediated by FoxOs in the process of aging have 

not been well-documented. It is also unknown whether 

their signaling pathway and biological effects differ by 

tissues, disease conditions, or age. FoxOs play a pivotal 

role in diverse metabolic diseases including obesity, 

insulin resistance, hyperlipidemia, type 2 diabetes 

mellitus, and non-alcoholic fatty liver disease (NAFLD) 

[17]. Most of these conditions are age-related metabolic 

disorders that are rather associated with dietary factors 

than aging [18]. The aging process is accompanied by an 

inflammatory response and metabolic disorders [19]. In 

addition, insulin resistance is potentially caused by 

increased secretion of proinflammatory cytokines during 

aging [20]. Hyperinsulinemia-mediated Akt 

phosphorylation is increased in aged kidney but decreased 

in aged liver [21]. Subsequently, FoxOs, a well-known 

substrate of Akt, becomes suppressed in non-metabolic 

organs, whereas they are activated in metabolic organ 

during aging. We summarized the underlying 

mechanisms responsible for the association of aging with 

insulin resistance by defining the organ-specific function 

of the Akt/FoxOs axis in aging. 

Calorie restriction (CR) modulates stress responses at 

cellular as well as physiological levels and extends the 

lifespan of rodents [22]. Subsequently, many studies 

conducted in various species have shown that CR 

modulates the aging progression by regulating the 

numbers of signaling pathways [23]. Additionally, CR 

increases genomic stability by reversing DNA 

methylation changes that occur during aging [24]. The 

role of FoxOs transcription factors in CR was explored in 

various organs in the previous reports [25]. The aged mice 

(24-month-old) demonstrated higher levels of 

phosphorylated FoxO1 and NF-κB than young mice, and 

the PI3K/Akt pathway was upregulated during aged 

kidney. Furthermore, the involvement of FoxO3 in 

extending the lifespan during CR has been described in a 

mouse model by Shimokawa et al. [26].  

This review highlights the importance of the 

modifications of FoxOs associated with Akt in various 

organs such as metabolic organs as well as some in non-

metabolic organs. In addition, evidence of the role of the 

Akt/FoxOs axis as a bridge between various organs is 

presented, and organ-dependent alterations of Akt/FoxOs 

axis during the aging progression and CR have also been 

described. 

 

2. Differential roles of Akt/FoxOs axis in metabolic- 

and non-metabolic organs  

 

2.1 The function of Akt/FoxOs axis in metabolic 

organs  

 

FoxO1 is abundantly expressed in metabolic organs such 

as the liver, white and brown adipose tissues, skeletal 

muscle, pancreas, and hypothalamus. FoxO1 is a novel 

regulator of energy metabolism and is highly expressed in 

the skeletal muscle, which has been identified as a 

molecular target for insulin signaling modulation [27-29]. 

FoxO1 promotes glucose production in the liver along 

with the conversion of carbohydrate oxidation to lipid 

oxidation in fasting muscle [30]. In the fasting state, 

hepatic FoxOs [31] are activated owing to the decrease in 

Akt levels [32]. FoxOs mediates glucose metabolism by 

converting glucose to acetate for oxidation or to fatty 

acids [33]. FoxO1 maintains glucose homeostasis by 

increasing gluconeogenic gene expression in liver, 

thereby decreasing insulin secretion and insulin 

sensitivity [34]. Of all the FoxOs family isoforms, FoxO6 

is a critical mediator of the production of inflammatory 

cytokines, such as IL-1β in aged liver [35]. 

Telomere size and telomerase activity were 

significantly lower in the FoxO1-KO than those in WT in 

aged liver [36]. Circulating 17β-estradiol suppressed 

hepatic glucose production in hepatocytes of mice but 

failed in Liver-FoxO1-KO mice, suggesting that FoxO1 is 
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required for the inhibition of gluconeogenesis by 

circulating 17β-estradiols [37]. Additionally, FoxO3-KO 

mice, although viable, demonstrate infertility due to 

dysfunctional ovarian follicular development during 

aging [38] along with dysfunctional muscle regeneration 

[39]. FoxO3-KO mice downregulate MyoD transcription, 

a major factor involved in the regulation of myogenesis in 

myoblasts [39].  

The expression of FoxOs inhibits muscle fiber 

atrophy by inhibiting muscle atrophy F-box 

(MAFbx)/atrogin-1, muscle RING finger 1 (MuRF1), 

BNIP3, and cathepsin L mRNA associated with cancer 

cachexia and sepsis [40]. In addition, the induction of the 

Mad/Mxd protein facilitates the inhibition of the 

transcription of Myc target genes, which is required for 

cell cycle arrest against FoxO3 mediated by the PI3K/Akt 

signaling pathway [41]. Akt-induced FoxOs 

phosphorylation leads to nuclear exclusion and prevents 

atrophy [42]. In addition, Akt/FoxO1, 3/MuRF1 pathway 

was upregulated in muscle of old mice leading to 

sarcopenia [43]. 

FoxO1 suppresses adipogenesis, and FoxO1 

haploinsufficiency recovers the numbers and sizes of 

adipocytes in high-fat diet (HFD)-fed mice [44]. 

Inhibition of FoxO1 activity ameliorates glucose 

tolerance and insulin sensitivity and generates energy 

expenditure under the white adipose tissue of transgenic 

mice [45]. The inhibition of FoxO1 selectively enhances 

the expression of PPARγ1 and UCP1 genes that promote 

oxygen consumption and mitochondrial metabolism in 

brown adipose tissue. FoxO1 mediates anti-adipogenic 

actions in response to insulin signaling in the absence of 

insulin receptor, or insulin receptor substrate, or insulin 

targeting Akt in cells as well as dysregulated 

differentiation [46-48]. FoxO1 inhibits apoptosis by cell 

cycle arrest in the early phase of adipose cell 

differentiation and terminal differentiation via increased 

expression of cell cycle inhibitor p21. These observations 

indicate that FoxO1 demonstrates a dual role in both 

brown and white adipose tissue.  

 

2.2 The function of Akt/FoxOs axis in non-metabolic 

organs 

 

Diabetic nephropathy is associated with the inhibition of 

FoxOs, NADPH oxidases, and antioxidant enzymes, 

which contribute to its pathology [49, 50]. FoxO1 also 

suppresses redox stress, inhibits cell death, and regulates 

TGF-β signaling in keratinocytes. The role of FoxOs in 

the wound healing process differs significantly in the in 

vivo diabetic mouse model. FoxO1 exerts beneficial 

effects in the wound healing process in control mice [51]. 

FoxO1 modulates wound healing by increasing the 

expression of TGF-β1 and downstream target genes that 

are required for keratinocyte migration. In contrast, 

FoxO1 impairs wound healing in diabetic mice with high 

levels of oxidative stress. TNFα-driven FoxO1 activity is 

associated with higher levels of apoptosis and decreased 

fibroblast proliferation [52]. Moreover, FoxO3 

downregulation has also been implicated in the 

development of hyperplasia in kidney fibroblasts [53]. 

FoxO1 downregulation increased cellular accumulation 

of reactive oxygen species (ROS) in response to high 

levels of glucose in kidney cells [54]. However, increased 

levels of Beclin-1, Ulk1, Atg4b, Atg9a, and Bnip3 mRNA 

in the kidney of FoxO3 knockout mice with prolonged 

occlusion periods have also been demonstrated. The 

deletion of FoxO3 resulted in a dull autophagy reaction, 

characterized by lower levels of Atg protein that required 

for the initiation, nucleation, and elongation of vesicles 

involved in autophagy [55]. 

FoxOs are generally activated by relatively small 

changes in cellular redox levels. These differences are 

commonly observed in studies using transgenic mice [56]. 

However, the progression of cellular senescence 

contributes to aging [57, 58]. As FoxOs are known to be 

involved in the extension of lifespan, they are expected to 

reduce senescence. Skurk et al. [59] observed that insulin 

suppresses cardiac muscle atrophy by Akt-dependent 

inhibition of FoxO3 in the skeletal muscle. In addition, 

insulin significantly increases Akt phosphorylation in the 

lung tissue of lean rats, but not in obese mice, indicating 

that this tissue does not respond to insulin after 12 weeks 

of HFD [60]. Additionally, Akt expression and activation 

in the mouse skin increases with age [61]. Smoking 

inactivates FoxO3, which accelerates the aging of lung 

tissue during chronic obstructive pulmonary disease 

[62]. Cells with depletion of FoxO1 exhibited a change in 

the usage of metabolic substrates from free fatty acids to 

glucose, which is associated with decreasing lipid 

accumulation in the heart. Furthermore, keratinocyte-

specific FoxO1 deletion downregulates VEGFA gene 

expression in mucosal and skin wounds, which leads to 

decreased proliferation of endothelial cell and 

angiogenesis, re-epithelialization, and dysfunctional 

granulation [63]. Also, FoxO6 was decreased in aged skin 

exhibited an increase in melanogenesis, which promote 

transcription of antioxidant gene that prevented oxidative 

stress-induced melanogenesis [64]. 

As shown in Table 1, the Akt/FoxOs axis was 

upregulated in metabolically active organs including the 

muscles, liver, and adipose tissue, which was 

downregulated in metabolic inactive organs including the 

lungs, kidney, and skin. Furthermore, our results 

demonstrated that the Akt/FoxOs axis was upregulated in 

the liver during aging, while it was downregulated in the 

kidney and lungs in SD rats in an age-dependent manner 

(unshown data). We previously reported that Akt-induced 
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FoxO1 phosphorylation was reduced in the livers of aged 

rats, whereas it was increased in the kidney [65]. Different 

trends of changes in the Akt/FoxOs axis in metabolic and 

non-metabolic organs during aging are shown in Table 1 

[31, 32, 60-62, 66-73].  

 
Table 1. Changes in the Akt/FoxOs axis in various organs. 

 
 

Tissue Akt level Reference FoxOs level Reference 

Metabolic organs Adipose ↓ [66, 67] ↑ [68] 

Liver ↓ [32] ↑ [31] 

Muscle ↓ [69] ↑ [70] 

Non-metabolic organs Lung ↑ [60] ↓ [62] 

Kidney ↑ [71] ↓ [72] 

Skin ↑ [61] ↓ [73] 
 

 

The inhibited Akt activity leads to elevated nuclear 

activity of FoxOs in metabolic tissue such as the liver and 

muscle, whereas insulin-mediated Akt activation blunted 

FoxOs activation in the kidney and lungs during aging. 

Additionally, reduced growth factor signals activate 

FoxOs as the Akt-induced FoxOs inhibition axis is 

disturbed. However, the increase in ROS levels in cells 

induces the activation of FoxOs via specific mechanisms 

including the c-Jun N-terminal kinase (JNK) pathway 

[74] and extends the lifespan via mitohormesis in muscles 

[75]. Conversely, FoxOs activation modes do not always 

lead to the activation of the downstream signaling 

molecules. For example, Evans-Anderson et al. [76] 

demonstrated that the activation of FoxO4 by ROS and 

growth factor upregulates the expression of p21 or p27.  

FoxO1 inactivation of osteoblasts reduces osteoblast 

count, bone volume, and the rate of bone formation. In an 

experimental animal model, the phenotype of osteoblast 

leading to bone formation in FoxO1-KO mice can be 

attributed to a suppressed mechanism for antioxidant 

defense. Elevated ROS activates the p53 signaling 

pathway leading to cell cycle arrest and limited 

proliferation of osteoblast cells. N-acetyl cysteine in 

antioxidative optimal redox levels normalized osteoblast 

proliferation and bone formation process [77, 78]. The 

induction of osteoclast formation by parathyroid hormone 

and IL-1β was followed by an increase in superoxide 

levels, suggesting that ROS existence is required for 

osteoclast cell differentiation and resorption of bone in 

vitro [79]. Both M-CSF and RANKL increase ROS levels 

and enhance osteoclast formation and activation in 

osteoclast progenitors [80, 81]. The involvement of redox 

stress has been indicated in the disease-like bone 

resorption process associated with estrogen insufficiency 

[82]. Animal studies with conditional loss or gain of 

function of FoxOs mutants or mitochondrial catalase in 

osteoclast cells have demonstrated that FoxOs suppresses 

the differentiation process in osteoclast cells by 

stimulating catalase production resulting in the 

downregulation of H2O2 levels [83]. In addition, PPARα 

is activated by MHY908-mediated age-related 

inflammation via modulation of the ROS/Akt/FoxO1 axis 

in the kidney [84]. 

In mice and humans, the expression and nuclear 

localization of FoxO1 and FoxO3 in cartilage decrease at 

the margins of cartilage exposed to maximum body mass. 

This may be due to increased secretion of inflammation-

inducing cytokines [85]. However, knockdown of FoxO1 

and FoxO3 markedly reduced the concentrations of 

catalase, glutathione peroxidase 1, Sirt1, Beclin-1, and 

light chain 3 in human articular chondrocytes [86]. The 

results of this study indicate that aging chondrocyte cells 

inhibit antioxidants levels and promote susceptibility to 

cell death associated with ROS [87]. 

 

2.3 Changes of phenotypes of Akt/FoxOs axis with 

respect to organ specificity during aging  

 

FoxO1 plays a role in glucose production by insulin via 

metabolic pathways. This process primarily takes place in 

the liver to promote glucose generation from non-

carbohydrate substrates such as glycerol, lactate, and 

amino acids. As a life-sustaining process, glucose 

production acts as the sole fuel source for the brain, testes, 

and erythrocytes during a lengthened fasting period or 

exercise. Gluconeogenesis primarily occurs in the liver, 

with small amounts in the kidney [8, 88, 89]. Even though 

the regulatory role of FoxO1 in the gluconeogenesis-

associated gene transcription and expression is widely 

known, its potential regulatory role in hepatic lipid 

metabolism is not known. 

Age has a significant influence on the clinical 

characteristics of thyroid dysfunction (TD), i.e. 

hyperthyroidism and hypothyroidism, which cause under-

symptoms TD to appear frequently in the elderly [90-93]. 

As a result, hyperthyroidism or hypothyroidism may be 

wrongly diagnosed or symptoms may be mistakenly 

attributed to old age. These results are important for two 
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reasons: i) the prevalence of hyperthyroidism and 

hypothyroidism increases with age [94, 95], and ii) TD is 

more likely to generate harmful effects in an aged patient 

with comorbidities and symptoms including osteoporosis 

and coronary heart disease [95, 96]. Cardiac aging is 

characterized by reduced stress tolerance, as the 

expression of Sur2a, a critical subunit of ATP-sensitive 

potassium (KATP) channels, decreases with age, resulting 

in a decrease in the amounts of KATP channels in the 

sarcolemma between cardiac myocytes [97]. Additionally, 

cells that express p16Ink4a are key promoters of such 

characteristics of age-associated cardiac diseases [98]. 

 
Figure 1. Organ responses based on the Akt/FoxOs axis during aging. Impaired insulin signaling, insulin 

resistance induces metabolic changes called “aging metabolism” in metabolic organs during aging. The insulin 

resistance in metabolic organs and tissues such as the liver, muscles, and adipose tissues causes hyperinsulinemia 

accompanied by Akt inactivation, which increases FoxOs activity (Akt/FoxOs/PPARγ axis upregulation) leading to 

lipid accumulation. In contrast, the hyperinsulinemia induces Akt activation and inhibits FoxOs activity 

(Akt/FoxOs/MnSOD axis downregulation) leading to decreases the expression of FoxOs-dependent antioxidant genes 

such as MnSOD and catalase in non-metabolic organs including the kidneys and the lungs failing to suppress oxidative 

stress and age-related inflammation. However, CR modulates insulin resistance and hyperinsulinemia, and alleviates 

age-related inflammation. CR, Calorie restriction; MTP, Microsomal triacylglycerol transfer protein; SOD, Superoxide 

dismutase; ROS, Reactive oxygen species. 
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Chronic kidney disease is associated with energy 

balance, maximum aerobic exercise, as well as tissue 

glucose uptake [99, 100]. Overnutrition and obesity 

induce the expression of proinflammatory molecules, 

such as IL-1β, TNFα, and IL-12, which are related to 

diverse metabolic diseases [101]. Recently, our research 

indicated that the downregulation of the expression of 

enzymes involved in fatty acid oxidation and anti-

inflammatory activity of PPARα results in lipid 

accumulation and renal fibrosis during aging [102]. 

Indeed, elevated fatty acid can lead to physiological aging 

[103].  

Recent studies have demonstrated that FoxO4 is 

elevated in aging cells and sustains cell viability by 

inhibiting p53-mediated cell death. Suppressed 

interaction of FoxO4 and p53 transcription factors by the 

designed peptide FoxO4-DRI not only induced p53-

mediated cell apoptosis in senescent cells but also 

promoted fitness, increased amounts of fur, and kidney 

function in the chronologically aged mouse (XpdTTD/TTD) 

model [104]. Skin changes such as epidermal thinning as 

well as reduced dermal elasticity and subdermal fat 

increase the occurrence of stress trauma and skin infection 

[105].  

Aging mediates changes in the digestive process, 

liver, and endocrine systems in different ways. Liver mass 

decreases approximately 20-40% during aging, with 

reduced blood flow [106]. Serum albumin may be 

degraded, but typically does not change over time in liver 

chemistry [107]. Aged liver exhibits suppressed synthesis 

of clotting factor synthesized from vitamin K [108]. 

Metabolism changes affect the longevity of the 

experimental animal models, and translational targets can 

be implemented. Aging is characterized by insulin 

resistance and suppressed levels of circulating insulin‐like 

growth factor [109]. In addition, aging reduces β‐cell 

regeneration in pancreatic islet cells [110]. Metabolomics 

methods have distinguished potential longevity 

characteristics, such as the upregulation of circulating 

citric acid cycle mediators [111]. Several studies have 

demonstrated triglycerides (TG) as a nutrient of 

metabolically active organs that regulated immune and 

inflammatory effects in adipose tissue [112, 113]. 

However, inflammatory IL-1β activated by 

inflammasomes [114] induced lipid accumulation via 

inhibiting PPARα-mediated β-oxidation in the liver [115]. 

Such insulin resistance conditions stimulate 

hyperinsulinemia and subsequently activate inflammatory 

response by inducing Akt signaling pathway in non-

metabolic organs such as kidneys during aging (Fig. 1).  

Muscle mass and contractility may be suppressed, and 

muscle mobility may be limited during aging [116]. Age‐

associated reduction in muscle mass (sarcopenia) is 

accompanied by reduced muscle quality, as indicated by 

the infiltration of fat and connective tissue. Inhibition of 

MuRF1 and MAFbx function is reduced following the 

inhibition of muscle loss and subsequent attenuation of 

the pathology associated with muscular atrophy [117]. 

MuRF1 and MAFbx are expressed during Akt/FoxOs 

signaling in aged muscle [43]. The data from the current 

studies demonstrate aging-induced muscle degradation 

via elevation of the Akt/FoxOs axis in muscles.  

  

3. Age-related changes and target genes of FoxOs  

 

Drosophila melanogaster and Caenorhabditis elegans 

model species have been studied extensively in aging 

research. FoxOs activation mediates the lifespan 

extension due to reduced insulin/insulin-like growth 

factor-like signaling in worms, flies, yeast, and mice. This 

notable evolutionary preservation has also been observed 

in humans due to the association of specific genetic 

variations. 

Lack of FoxO3 affects lymph proliferation and 

inflammation in diverse tissues [118] and is also 

associated with age-associated infertility [45] and 

decreased number of neural stem cells [119]. Global 

deletion of FoxO4 exacerbates colitis in response to 

inflammatory stimuli [120]. The complete deletion of 

FoxO6 contributes to memory weakening. The correct 

synaptic number function regulates gene expression and 

results in sound neural connectivity [121]. FoxOs can 

accelerate aging via insulin signaling and have been 

hypothesized to affect longevity by reducing ROS 

generation and decelerating the extent of redox damage 

[122]. These findings indicate that FoxOs are involved in 

the progression of aging and age-associated disorders.  

Recent research studies have indicated that FoxOs 

control a variety of target genes located downstream that 

are responsible for cell cycle, cell death, and redox stress 

response [4,8]. One of the major effects of the regulation 

of FoxOs is phosphorylation by Akt by insulin, growth 

factors, and its consequential transfer from the nuclear 

fraction to the cytoplasm [8-10]. FoxO4 appears to 

suppress cellular oxidative stress levels by directly 

upregulating gene expression of manganese superoxide 

dismutase (MnSOD) and catalase in the kidney [123].  

Mammalian FoxOs promote hepatic glucose 

production during the starvation period [9, 124, 125], 

along with the inhibitory effects of insulin on glucose 

production in the liver. However, due to the lack of data 

on FoxOs, little is known about its regulatory role in 

metabolism or its effect in diabetic conditions. Some 

studies [126] demonstrated the overexpression of the 

constitutively active form of FoxO1 in the liver of 

metabolic organs facilitated the gene expression of 

lipogenic SREBP-1c and hepatic TG build-up. 

Furthermore, the regulatory action of FoxO1 was also 
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demonstrated in hepatic lipid metabolism during aging 

[11]. However, FoxO4 is the critical isoform that acts in 

FoxOs-mediated transcriptional regulation, which is the 

ground for skeletal muscle mass reduction in aging 

diaphragm anabolic syndrome. The Akt activation by the 

IGF-1 receptor leads to FoxO4 inactivation and the 

sequential inhibition of the expression of MAFbx/atrogin-

1 and MuRF1 genes [127]. Additionally, treatment with β-

hydroxy β-methylbutyrate, a metabolite of leucine that 

modulates muscular atrophy, suppressed dexamethasone-

induced muscle wasting by regulating FoxO1 

transcription factor and subsequent MuRF1 expression 

[128]. 

Available data demonstrate the intricate functions of 

the FoxOs transcription factors, for instance, under 

oxidative stress conditions where it not only acts as a 

positive or negative regulator of cellular function, but also 

as a cellular modulator of apoptosis, lipogenesis, and 

inflammation. As summarized in Table 2, accumulated 

evidence indicates that the FoxOs functions and the 

expression of their target genes were differential shown 

according to species and tissues, leading to changes in 

many physiological phenomena. 

 

Table 2. Functions of FoxOs and expression of target genes in various organs. 
 

Organs Function Genes 

Pancreatic β-cells Repression of β-cell proliferation PDX-1, NGN3, NKX61, 

CyclinD1 

Protection against oxidative stress MafA, NeuroD 

Liver Increase of gluconeogenesis in mice G6P, PEPCK, PGC-1a 

Reduced triglyceride levels in pigs, mice ApoCIII, MTP 

Adipose tissue Control of differentiation p21, PPARγ 

Hypothalamus Acute orexigenic effect Agrp, Npy 

Brain Protection against neuronal death Bim, Fas ligand 

Skeletal muscle Repression of differentiation Atrogin-1, MuRF1 

Induction of muscle atrophy MAFbx 

Vascular endothelial cells Regulation of endothelial stability Ang-2, sprouty2 

Smooth muscle cells Repression of differentiation Myocardin 

Kidney Protection of lipotoxicity and disease Bcl-2, Bax, MnSOD, Bim 

Testis Regulation of apoptosis HOX genes 

Heart Protection of heart against ischemia in 

mouse 

MnSOD, Catalase 

Inhibition of cardiac mass loss in rat Autophagy genes 

Thymus Regulation of lymphocyte homeostasis p27 

Control of Treg cell differentiation FoxP3 

Lung Regulation of lung tumor in mice p27 

Suppression of lung adenocarcinoma in 

humans 

GADD45 

 

 

4. Modulation of Akt-mediated FoxOs activity by CR 

for a better understanding of organ based-differential 

roles of Akt/FoxOs axis 

 

The ROS-mediated regulation of FoxOs may explain its 

distinct involvement in aging. FoxOs are generally 

activated by relatively minor alternations in cellular ROS 

levels and are inactivated with high ROS levels. These 

changes were clearly observed in transgenic mouse 

models [56]. Similarly, cellular senescence is a risk factor 

for aging [57, 58], and activation of FoxOs may extend 

lifespan through delaying aging process. 

Metabolism rates regulate the progression of aging in 

animals stems from the recognition of the critical link 

between energy metabolism and homeostasis 

maintenance. Increased energy expenditure expedites the 

aging process. It is well established that CR slows down 

the development of pathologies associated with aging its 

progression and prolongs lifespan [22, 129-131]. In C. 

elegans and Drosophila models, CR increases the lifespan 

independent of FoxOs regulation [132]. Previous studies 

on CR have demonstrated its efficacy against the aging 

progression and have identified several major regulatory 

signaling pathways [23]. Previous epigenetic studies have 

indicated that chromosomal or gene promoter regions 

corresponding to DNA methylation and histone 

modifications exert functional effects on aging [133]. CR 

epigenetically modulates the aging process [134] by 

methods such as mediating an increase in genomic 

stability by reversing age-associated histone acetylation 

and alterations in DNA methylation [24]. CR upregulates 

the expression of certain genes that are involved in cell 

cycle arrest, such as p21, DNA repair (i.e. Gadd45α), 

apoptosis (i.e. Bim), and the response to redox stress (i.e. 
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MnSOD) in metabolic organs such as the liver. CR 

promotes FoxO1 binding in the liver in response to 

glucose‐mediated insulin signal activation [135]. 

However, Edström et al. [136] demonstrated that unlike 

acute atrophy induced by CR, chronic atrophy caused by 

diseases, disuse or denervation leads to MAFbx/atrogin-1 

and MuRF1 downregulation in the skeletal muscle of 30-

month-old rats.  

The inhibition of insulin by CR interrupted age-

related FoxO6 and FoxO3 reduction by blocking the 

PI3K/Akt pathway in non-metabolic organs such as the 

kidney [137, 138]. Subsequently, several studies have 

supported that CR could slow the aging process in diverse 

species and regulated several regulatory signaling 

pathways [23]. Kim et al. [25] reported that FoxO1 was 

activated and NF-κB was inactivated by CR as observed 

in aged kidney tissues obtained from ad libitum fed rats 

and rats subjected to 40% CR.  

In a recent study, the activation of Akt under insulin 

signaling increased, resulting in an increased inactivation 

of phosphorylated FoxOs, whereas it was increased by CR 

in metabolic organs. In contrast, the activation of FoxO1 

via the inhibition of the PI3K/Akt pathway in non-

metabolic organs was suppressed by CR [13, 65, 84, 139]. 

These results suggest that the Akt/FoxOs axis 

demonstrates differential actions by organs. This reviews 

the important findings on the alterations of FoxOs in 

association with aging and explains its modulation by CR 

as a potential underlying mechanism affecting the 

progression of aging.  

  

5. Altered Akt/FoxOs signaling pathway in diabetic 

conditions and aging tissues  

 

In obese patients, excessive lipids accumulation in tissues 

other than adipose tissue adds to organ damage via 

adipogenic toxicity [140]. This toxic process is complex 

but can be described by the adipose tissue expandability 

hypothesis [141-143]. When the capacity of adipose tissue 

storage is exceeded, the lipid flux increases toward the 

non-adipose tissues, and lipids begin to accumulate in 

ectopic sites. Ectopic lipid deposits in different cell types, 

such as myocytes, hepatocytes, and β-cells, initiate 

adverse physiological effects such as insulin resistance 

and apoptosis. Recently, studies have demonstrated that 

the renal deposits and detrimental effects of lipids may 

lead to kidney pathology [144, 145]. In particular, 

saturated fatty acids lead to insulin resistance in podocytes 

that maintain the integrity of the glomerular filtration 

barrier in the normal kidney in non-metabolic organ [146], 

and in proximal tubular cells that lead to cellular 

dysfunction and cell death via apoptosis and necrosis 

[147]. 

The association of diabetes with dysfunctional 

mitochondrial respiratory system in the liver, heart, and 

kidney of diabetic animals has been demonstrated over 35 

years [148-154]. Despite this long history, little is known 

about mitochondrial dysfunction in diabetics or the 

mechanisms bridging primary metabolic dysfunction in 

insulin and blood glucose to metabolic diseases.  

Zhang et al. [155] demonstrated genetic and 

physiological evidence indicating that FoxO1 acts as a 

crucial transcription factor for the IRE as FoxO1 

inactivation reduced the transcription of genes encoding 

gluconeogenic enzymes (PEPCK and G6pc) and 

suppressed the blood glucose concentrations in the animal 

model. In contrast, inactivation of FoxO3 promoted the 

expression of genes encoding lipogenic enzymes, fatty 

acid synthase, and hydroxy-3-methylglutaryl-CoA 

reductase. Simultaneous inactivation of both FoxO1 and 

FoxO3 synergistically induced the expression of lipogenic 

enzymes including glucokinase (Gck) and further 

promoted the serum levels of TG, cholesterol, and lipid 

secretion and that might result in hepatosteatosis. 

Recently, Dong’s group highlighted the importance of 

FoxO6 dysregulation in the dual pathogenesis of fasting 

hyperglycemia and hyperlipidemia in diabetes [156]. 

Targeting the hepatic insulin/Akt/FoxO1 signaling 

pathway could be a strategy in impeding the progression 

of diabetes mellitus. High glucose-induced cell apoptosis 

in human kidney 2 (HK-2) cells acts by blocking the 

ROS-responsive Akt/FoxOs signaling pathway in diabetic 

nephropathy [157]. Several studies have demonstrated 

that Akt is associated with the expansion of the glomerular 

matrix [158], apoptosis in podocytes [159], and metastasis 

of mature tubular epithelial cells by mediating epithelial-

to-mesenchymal transition [160]. The Akt kinase exhibits 

an anti-apoptotic effect in HK-2 cells via post-

translational regulation of different signaling molecules, 

where FoxO3 acts as a critical downstream transcription 

factor [161].  

Akt-induced phosphorylation of FoxOs family 

isoforms, namely, FoxO1 and FoxO3, could promote 

translocation from the nucleus to the cytoplasm, and 

consequently inhibit the transcription of downstream 

target genes such as Bim and Fas-Ligand (Fas-L) that are 

involved in apoptosis [162]. Decreased phosphorylation 

of Akt and FoxOs family proteins is related to cellular 

apoptosis in high glucose-treated kidney cells [163, 164]. 

However, diabetes nephropathy can inhibit the expression 

of Fas ligand by increasing FoxO3 phosphorylation and 

transcriptional inactivation via stimulation of the 

PI3K/Akt pathway [164]. 

 

6. Discussion 

 

The potential regulatory roles of FoxOs family isoforms 

during the aging process and the effects of CR on FoxOs 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/podocyte
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fas-ligand
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activities provide an interesting insight into the 

participation of FoxOs in the aging process. Inhibition of 

FoxO1 affects age-associated insulin resistance and 

energy metabolism, particularly under normal dietary 

conditions. However, the pivotal role of FoxOs is 

observed only under CR conditions. 

FoxOs are controlled by a variety of growth factors 

and paracrine hormones, whose activity is securely 

regulated by post-translational modifications such as 

phosphorylation, acetylation, methylation, and 

ubiquitination, as well as physical interactions with 

different proteins and transcription factors. Additional 

studies on the post-translational modifications and 

protein-protein interactions will help elucidate how the 

FoxOs family isoforms lead to environmental stimuli that 

mediate the transcription and expression of specific genes 

and cellular functions to impede age-associated 

pathological conditions. This paper reviewed the 

regulatory roles of FoxOs family members during aging 

to provide strategic insight into potential intervention 

strategies for the promotion of health. 

Numbers of hypotheses have been suggested for 

aging in past decades, including the molecular 

inflammation hypothesis. Such a hypothesis involving 

molecular insulin resistance and inflammation is 

suggested based on the activity of key FoxOs and its 

downstream signaling pathway, which plays an important 

regulatory role in activating systemic inflammation 

during the aging process upon the induction of adiposity. 

Chronic inflammation caused by ectopic fat in obese 

conditions as well as liver and muscle lipid accumulation 

further deteriorate the insulin resistance conditions. 

Chronic inflammation prolongs an insulin resistant state, 

and the association between chronic inflammation and 

adiposity likely accelerates the aging process. However, 

redox stress, ER stress, and age-related metabolites impair 

insulin signaling via JNK, IKK, and PKC pathways in 

metabolically active organs, leading to insulin resistance, 

hyperinsulinemia, and hyperlipidemia through Akt/FoxOs 

axis upregulation, which we defined as “aging 

metabolism or senometabolism” meaning metabolic 

changes in aging process. The insulin resistance initiates 

the induction of hyperinsulinemia and enhances the 

expression of proinflammatory genes encoding for factors 

such as cytokines and chemokines via Akt/FoxOs axis 

downregulation and NF-κB activation, leading to age-

related inflammation (senoinflammation) in non-

metabolic organs (Fig. 1). Our previous study confirmed 

that FoxO6-mediated IL-1β is involved in hepatic 

inflammation and insulin resistance via TF/PAR2/Akt 

pathway in aging and diabetic liver [35]. 

The data presented in this review indicate that insulin 

resistance, change of Akt/FoxOs axis in metabolic organs 

such as the liver and muscles during aging leads to aging 

metabolism such as hyperinsulinemia, hyperlipidemia, 

and age-related metabolic changes. The hyperinsulinemia 

induces age-related senoinflammation via insulin-

dependent Akt activation leading to organ dysfunction in 

non-metabolic organs, namely, the kidneys and lungs. 

Elucidation of the molecular mechanisms in metabolic 

organs and non-metabolic organs based on the Akt/FoxOs 

axis and examination of the regulatory role of CR will 

provide insights for the development of potential anti-

aging interventions.  
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