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Abstract

Current methods of identifying positively selected regions in the genome are limited in two key ways: the underlying models cannot ac-
count for the timing of adaptive events and the comparison between models of selective sweeps and sequence data is generally made via
simple summaries of genetic diversity. Here, we develop a tractable method of describing the effect of positive selection on the genealogi-
cal histories in the surrounding genome, explicitly modeling both the timing and context of an adaptive event. In addition, our framework
allows us to go beyond analyzing polymorphism data via the site frequency spectrum or summaries thereof and instead leverage informa-
tion contained in patterns of linked variants. Tests on both simulations and a human data example, as well as a comparison to
SweepFinder2, show that even with very small sample sizes, our analytic framework has higher power to identify old selective sweeps and
to correctly infer both the time and strength of selection. Finally, we derived the marginal distribution of genealogical branch lengths at a
locus affected by selection acting at a linked site. This provides a much-needed link between our analytic understanding of the effects of
sweeps on sequence variation and recent advances in simulation and heuristic inference procedures that allow researchers to examine the
sequence of genealogical histories along the genome.
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Introduction
The variation we observe in genome sequence data is the result
of the combined demographic and selective forces acting in the
evolutionary history of a population. While demography shapes
genetic variation uniformly throughout the genome, natural se-
lection has localized effects on genetic variation near the targets
of past selection. Recombination attenuates the strength of this
effect with increasing distances from any selected site (Maynard
Smith and Haigh 1974). Despite this key difference, distinguishing
the signatures of natural selection from those of demography in
genomic variation remains a significant challenge.

Substantial effort has been made to describe the effect of posi-
tive selection on the genealogical history at linked neutral sites
and to develop methods to detect the footprint of adaptive evolu-
tion in genomic data [for an overview, see Hejase et al. (2020a)].
Here, we focus on the class of parametric model-based methods
that identify the signature of hard selective sweeps as a local dis-
tortion of ancestry caused by genetic hitchhiking [for a survey of
such methods, see Pavlidis and Alachiotis (2017)]. When a new
adaptive mutation sweeps through a population, the hitchhiking
of linked neutral variation leads to a local reduction in genetic di-
versity (Maynard Smith and Haigh 1974) and generates a statisti-
cally detectable footprint in the site frequency spectrum (SFS;
Kim and Stephan 2002). This forms the basis for a number of
composite likelihood methods to detect selective sweeps such as

SweepFinder (Nielsen et al. 2005), SweepFinder2 (DeGiorgio et al.
2016), SweeD (Pavlidis et al. 2013), and for adaptive introgression
sweeps, VolcanoFinder (Setter et al. 2020).

However, many of these methods are limited in at least three
fundamental ways. Firstly, their focus on summaries of average
diversity and divergence discards relevant information in the co-
occurrence of closely linked variants. Secondly, assuming equi-
librium population dynamics has been shown to increase both
false-positive and false-negative error rates (Crisci et al. 2013).
Finally, current sweep-scanning approaches assume that the
population has been sampled at the time of fixation of the benefi-
cial mutation, leading to a decrease in power to detect increas-
ingly old sweeps. Given these limitations, it remains an open
question how much additional information about past selective
sweeps is contained in sequence variation.

Approximating sweeps
Since the introduction of the hitchhiking model (Maynard Smith
and Haigh 1974), many approximations for the effect of a selec-
tive sweep have been developed using the coalescent framework
of Kingman (1982), Hudson (1983), and Tajima (1983). Here, the
fixation of a new beneficial mutation has the effect of genetically
structuring the ancestry at linked neutral loci (Kaplan et al. 1989;
Stephan et al. 1992; Barton et al. 2004). During the sweep, coales-
cence can only occur among lineages on the same genetic back-
ground as the selected locus, while recombination may move
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lineages from the selected onto a neutral genetic background.
However, analytic expressions to quantify these effects are only
possible with further simplifications of the model. The genome
scanning methods mentioned above are based on the star-like
approximation for the selective sweep (Barton 1998, 2000; Durrett
and Schweinsberg 2005; Berg and Coop 2015), which is relatively
accurate, yet computationally tractable for thousands of samples
(Pavlidis et al. 2013). We can view the star-like approximation as
follows: assuming selection is strong (Nes� 1), fixation of the
beneficial mutation happens nearly instantaneously on the coa-
lescent time scale. Lineages either recombine out of the sweep in-
dividually or coalesce in a single multiple-merger event at the
origin of the beneficial mutation. However, this assumption fails
either when selection is weak or at intermediate recombination
distances from the selective target when selection is strong, and
this leads to biased parameter estimates (Barton 1998; Santiago
and Caballero 2005; Hartfield and Bataillon 2020; Setter et al.
2020; Charlesworth 2020). More accurate approximations for the
effect of selective sweeps on genealogies have been developed
(Bossert and Pfaffelhuber 2013), which, although more cumber-
some mathematically, may avoid biases in parameter estimates
and genome scans. The initial growth of a beneficial mutation
behaves like a supercritical branching process (Kaplan et al. 1989;
Evans and O’Connell 1994; Barton 1998). Conditioned on fixation,
the stochastic increase in frequency is well-approximated by a
pure-birth or Yule process. The structured coalescent that
describes the genealogy at a linked neutral locus is then well-ap-
proximated by marking the lineages in the Yule tree by recombi-
nation events (Schweinsberg and Durrett 2005; Etheridge et al.
2006; Pfaffelhuber et al. 2006). Thus, in contrast to the star-like
approximation, lineages on the selected background are assumed
to coalesce pairwise during the sweep and can later recombine
out of the sweep. Modeling and simulating the sweep phase as a
time interval during which the coalescent is governed by the Yule
process (Hermisson and Pfaffelhuber 2008) is possible for reason-
ably strong selection; however, analytic results are possible only
for a sample of two. We will refer to this as the full Yule approxi-
mation. An alternative approach, which extends to larger sam-
ples (tens of individuals), is to use the Yule process to derive
better approximations for a model that assumes that the sweep
is instantaneous (on the coalescent time scale; Etheridge et al.
2006; Bossert and Pfaffelhuber 2013). The sampling formulae de-
rived by Bossert and Pfaffelhuber (2013) assume that a sweep par-
titions lineages at a linked neutral locus into three families:
nonrecombining lineages, early recombining lineages, and late
recombinant lineages. We will refer to this as the instantaneous
Yule approximation. Like the star-like approximation, the instan-
taneous Yule approximation is an instantaneous partitioning of
the sample, but it allows for up to two multiple-merger events
(Pfaffelhuber et al. 2006).

Overview
The motivation of the present study is to develop a full analytic
description of the effect of a hard selective sweep that occurred
at an arbitrary time in the past on the distribution of genealogies
at nearby neutral sites and to explore how this can be used to im-
prove likelihood-based inference. We use forwards simulations
throughout to quantify the robustness and accuracy of our ana-
lytic predictions and to assess the power of our method.

The paper is structured as follows: First, we briefly summarize
approximate models of selective sweeps and show how a hard se-
lective sweep occurring at an arbitrary time in the past can be
embedded in the generating function (GF) for the distribution of

the genealogy introduced by Lohse et al. (2011). The GF provides a

recursive description of the full genealogy of a sample for a gen-

eral class of structured coalescent processes with discrete events.

While previous applications of the GF have focused on models of

demographic history (Bunnefeld et al. 2015; Lohse et al. 2016),

here, we use the GF framework to describe the genealogy at a

neutral locus associated with a hard sweep occurring at a given

time in the past.
Secondly, we use the GF to derive (and rederive) analytic pre-

dictions for the effect of a sweep on mean genetic diversity, the

SFS, and the probability of genealogical topologies in the vicinity

of a sweep target. In addition, we obtain the marginal distribu-

tions of the length of branches with i descendants among the

sample (i-Ton branches) that underlie the SFS, and we compute

the probability distribution of blockwise configurations of

completely linked mutations (the blockwise SFS or bSFS) in the

region of the genome affected by the selective sweep.
Finally, to connect these results to sequence data, we de-

velop a simple composite likelihood framework based on the

bSFS and assess the power and accuracy of our method to

jointly estimate the sweep time and the strength of selection,

comparing the performance of our method to that of

SweepFinder2 (DeGiorgio et al. 2016). We also apply our method

to the known sweep of the C/T(-13910) (rs4988235) mutation of

the MCM6 gene that underlies lactase persistence in European

populations and discuss the bioinformatic challenges faced

when using blockwise data for inference.

Materials and methods
Evolutionary history
We consider n lineages sampled from a panmictic population of

Ne diploid individuals that evolves according to a Wright–Fisher

model. We initially assume that each lineage is uniquely labeled,

i.e., the data are polarized relative to an outgroup and each haplo-

type is fully phased (we relax these assumptions when consider-

ing inference). In Figure 1, we uniquely label the lineages

ancestral to each sampled individual a; b; c; d; e; and f. A coales-

cence event may then generate, e.g., branch type bc which is an-

cestral to lineages b and c.
We measure time pastward from sampling (T0 ¼ 0) in units of

2Ne generations, i.e., on the coalescent time scale. We consider a

single selective sweep of a de novo beneficial (and codominant)

mutation with selection coefficient s that swept to fixation at a

discrete time point Ta in the past. We define Ta as the time inter-

val between fixation of the beneficial mutation and the time of

sampling so that Ta � T0 ¼ 0.
In the full model, the beneficial mutation sweeps through the

population following a stochastic frequency trajectory X½t� satis-

fying X½T� ¼ 1 for T � Ta and for some T0 > Ta; X½T0� ¼ 1
2Ne

and

X½T > T0� ¼ 0. That is, the beneficial mutation arises as a single

new mutation in a randomly chosen background at time T0.
This frequency trajectory structures the coalescent process at

linked neutral sites (Durrett and Schweinsberg 2004).

Coalescence occurs only between lineages that share the state at

the selected site. Lineage pairs currently associated with the ben-

eficial (conversely, ancestral) allele may coalesce at rate 1
2NeX½t� (re-

spectively, 1
2Neð1�X½t�Þ), while any single such lineages may

recombine out of (i.e., into, forwards in time) the sweep at rate

rð1� X½t�Þ per generation (respectively, rX½t�). Here, r is the rate of

recombination between the selected and the neutral site.
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Describing the coalescent using GFs
The ancestry of a sample can be described by the pairwise coales-

cence of lineages until the common ancestor is reached
(Kingman 1982; Hudson 1983; Tajima 1983), and the time be-

tween these events is exponentially distributed. Any two lineages

coalesce independently at rate 1 (in units of 2Ne generations), so

when k lineages remain in our sample, the waiting time to the

next coalescent event is ( k
2

). Each next step is conditionally inde-

pendent of the last, so the total time it takes to reach the com-

mon ancestor tmrca is distributed as the sum of the interevent

time distributions of the process. Deriving the distribution of tmrca

directly is not trivial and requires repeated integration, but it is

easy to obtain if we describe the process using a GF. By using GFs,
the distribution of the sum of independent random variables sim-

ply becomes the product of their respective GFs. By describing the

distribution of random variables as a sum or integral transform,

GFs provide a useful analytical tool for understanding random

variables. In the GF, each variable in the time domain (tx) is asso-

ciated with a corresponding “dummy” variable (xx) in the new do-

main of the transform.
The GF approach as described in Lohse et al. (2011) uses the

Laplace transform of the interevent times in the coalescent his-

tory. The Laplace transform is a natural choice and has a simple

interpretation: it is the probability that the associated random

event happens before the occurrence of some catastrophe with an
exponentially distributed waiting time (Råde 1972). In coalescent

terms, we can interpret the catastrophe as mutations occurring

along the branches in the genealogy. Therefore, the Laplace

transform of the distribution of genealogical branches is itself the

probability of not seeing any mutations along the genealogy, i.e.,

the probability of identity in state for the sampled lineages (Lohse

et al. 2011). Associating each ancestral branch type with a unique

dummy variable gives the GF for the distribution of all branch

types. Because of its simple form, the GF can be obtained through

a straightforward recursion that accounts for all possible sequen-

ces of events (and thereby, all possible topologies). Taking the in-
verse Laplace transform with respect to any particular set of

dummy variables, we recover the joint probability distribution of

the corresponding branch lengths.
Following the notations of Lohse et al. (2011), Hermisson and

Pfaffelhuber (2008), and Barton et al. (2004), we label a sample of

n lineages as a set fa; b; c . . .g and define the coalescence of the

sample as a process that takes values in the set of partitions of

fa; b; c . . .g. The process starts with the set of sampled lineages

X ¼ ffag; fbg; fcg . . .g and ends when all lineages coalesce,

X ¼ ffa; b; c; . . .gg.
When describing the neutral coalescent, each term in the GF

will consist of n–1 factors, each corresponding to the coalescence

of two distinct lineages. In our set-notation, we represent each

such coalescent event by the removal of lineages i and j from the

indexed set X and replacing them with a single lineage represent-

ing their common ancestor, giving rise to a set Xi;j with

jXi;jj ¼ jXj � 1. The function U mathematically describes all possi-

ble events given a set of lineages, allowing us to define the recur-

sion to obtain the neutral GF as

U½X� :¼ 1
jXj
2

� �
þ
P

x2X xx

�
X

1� i< j� jXj
U½Xi;j�

; (1)

where the sum over 1 � i < j � jXj represents the set of possible

pairwise coalescent events among the X lineages and the dummy

variable terms xx are summed over all lineages x present in X.

When jXj ¼ 1; U½X� ¼ 1 and the recursion ends.

Embedding sweeps in the Kingman coalescent
For times T < Ta, i.e., more recently than the selective sweep

occurs, the ancestry of the sample X is described by the Kingman

coalescent (Kingman 1982).
Although the sweep is a discrete event, following Lohse et al.

(2011), we initially treat the sweep as a competing exponential

process occurring at rate d backward in time. This allows us to

obtain through recursion the GF for the distribution of branch

lengths in the genealogical history. By taking the inverse Laplace

transform of the GF divided by d, we recover the GF parameter-

ized by the discrete time when the beneficial mutation reaches

fixation Ta.

U½X; d� :¼ 1
jXj
2

� �
þ dþ

P
x2X xx

�ð
P

1� i< j� jXj U½Xi;j; d� þ d � U�½X�Þ
(2)

U� represents the recursive term for the effect of the adaptive

event on the genealogy of our sample. Throughout the paper, we

use the superscript � to distinguish functions corresponding to

models of selection from those of the neutral model, i.e., those

without a superscript. Here, we focus on two different instanta-

neous sweep approximations: the star-like approximation and

the instantaneous Yule approximation. Both of these approxima-

tions describe the impact of a sweep as a partitioning of the ex-

tant lineages. As such, these instantaneous events do not add

length to any of the branches and thus U�½X� ¼ U½X0� (see equation

1) with X0 a partition of X as described by either approximation.

Note that U� no longer depends on d, so that the sweep may only

occur once in the genealogical history. Also note that each term

of the GF will now contain at most n factors.

Figure 1 Model. The effect of an old selective sweep at time Ta on a
sample of six lineages fa; b; c; d; e; fg at a nearby neutral site. Tracing the
genealogy pastward, we first observe a neutral coalescence of the b and c
lineages. The second event is the selective sweep, which occurs quickly
on the time scale of coalescent events. This induces what appears to be a
multiple-merger coalescence of d, e, and f (as in the star-like
approximation). On closer inspection, we see the stochastic frequency
trajectory of the adaptive mutation (shown in red) that structures the
coalescent during the sweep. Here, the a and bc lineages recombine out
of the sweep, and although the events occur in rapid succession, the
remaining lineages do indeed coalesce pairwise. Prior to the sweep,
neutral coalescence of the remaining lineages continues until a common
ancestor is found.
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The star-like approximation
In the star-like approximation, the neutral lineages sampled at a
locus d bases from the adaptive mutation independently recom-
bine out of the sweep (i.e., they escape) with probability
Pe ¼ 1� e�a. The parameter a measures the strength of the sweep
relative to the total rate of recombination between the neutral
and selected site: a ¼ r�d

s ln½2Nes�, where r is the per-base recombi-
nation rate, Ne is the (diploid) population size, and s is the hetero-
zygous advantage of the beneficial mutation. From another
perspective, the duration of a selective sweep (the time to fixa-
tion) is approximately tfix ¼ 2ln½2Nes�=s (in generations), and the
probability that no recombination occurs during this interval, e�a,
depends on the total rate of recombination during the sweep
through a ¼ r � d � tfix=2. The nonrecombinant lineages that do
not “escape” the sweep coalesce instantaneously to the origin of
the beneficial mutation (Barton 1998, 2000; Durrett and
Schweinsberg 2005). This approximation thus partitions n extant
lineages into two sets, either of which may be empty, with one
representing the set of m lineages that escape the sweep and the
other the multiple merger of the n–m remaining lineages . The
probability of observing such an event will be denoted by Pm;n, i.e.,
the probability that m out of n lineages escape the sweep.

The instantaneous Yule approximation
This sampling formula considers a partition into three sets and is
based on the Yule approximation (Etheridge et al. 2006; Bossert
and Pfaffelhuber 2013). Provided 2Nes is sufficiently large, the tra-
jectory X½t� of a beneficial mutation under (strong) selection can
be more closely approximated by considering a pure-birth pro-
cess with binary splits at rate 2Nes (Schweinsberg and Durrett
2005). Forward in time, this Yule process describes the ancestry
of all lineages descending from the beneficial mutation present
at the end of the sweep (i.e., those with an infinite line of descent).
Note that this process is stopped once there are 4Nes lineages,
given that each lineage has a probability 2s of having an infinite
line of descent. Genealogies under hitchhiking at neutral sites, at
a recombination distance r � d from the sweep site, can then be
described by marking the Yule tree along its branches with re-
combination events occurring at rate 2Ne � r � d. Now, letting X

represent the set of lineages present at time Ta, we can define a
labeled partition induced by the Yule process that governs the co-
alescent during the sweep. This partition consists of three fami-
lies:

1) jLj ¼ l late recombinant singletons: single lineages that have
recombined away from the beneficial background.

2) A single family of early recombinants of size jEj ¼ e: a family
of lineages that recombines away after coalescing.

3) A single nonrecombinant family of size jNj ¼ jXj � jLj � jEj: a
family of lineages that is identical by descent to the founder
of the sweep (along a distance of at least d).

Simulations
The full model is implemented as a Wright–Fisher simulation us-
ing SLiM3.3 (Haller and Messer 2019) and msprime (Kelleher et al.
2016). Samples are extracted at a fixed number of generations af-
ter the sweep completes. Sequences are always 1 Mb in length,
with the site under selection in the center. We assume a popula-
tion with Ne ¼ 10; 000; r ¼ 1e�7 and l ¼ 1:25e�7 throughout, and
simulate samples of varying size (n 2 ½4; 12; 20�), sweep times
(Ta 2 ½0:1; 0:5; 1:0; 2:0�), and two different strength of selection
(s¼ 0.05 or 0.005).

Power analysis
We assess the power to identify sweeps and the accuracy to infer
sweep parameters (Ta and s) using a composite likelihood (CL)
scheme based on the bSFS [see Lohse et al. (2016) and Results].
Neutral variation for each of the B=2 blocks of fixed length l on ei-
ther side of a putative sweep target can be summarized as a vec-
tor k by counting the mutation types occurring in that block. By
taking derivatives of the GF with respect to the corresponding
dummy variables xx as derived in equation (30) of Bahlo and
Griffiths (2001), probabilities for all vectors k can be obtained.
Blocks immediately to the right and left of the sweep target have
an average distance l=2. Although we may sample a larger num-
ber of individuals n, analytic results for the bSFS are limited to
smaller sample sizes. In the CL framework, we accommodate this
by considering all possible subsamples of size x (we use x¼ 4
throughout). Let P½kij� be the probability of observing a blockwise
mutation configuration k at distance i � l� l=2 in subsample j,

1 � j � ð n
x
Þ. Summing over all ð n

x
Þ subsamples of n, we can de-

fine the following CL for the sweep model,

lnCLsðh;Ta; sÞ ¼
XB

i¼1

X
n
x

� �

j¼1

lnP½kij�: (3)

Given an analogous likelihood under neutrality lnCL0ðhÞ the
support for a sweep (at time Ta and of strength s) can be mea-
sured as:

DlnCL ¼ lnCLsðh;Ta; sÞ � lnCL0ðhÞ: (4)

We fit both models to 1000 simulated replicates with a benefi-
cial mutation as well as to 10,000 neutral simulations. To allow
comparison, we repeat the analysis on the same data using
SweepFinder2 (DeGiorgio et al. 2016). To measure power, we con-
struct ROC curves: DlnCL values for true (hard sweep) and false
(neutral) replicates are jointly ranked in descending order, after
which, for each element, both the fraction of false and true posi-
tives are determined. Note that we do not perform a sweep scan
but rather assume that the position of the selective target is
known.

Rather than evaluating all equations for each combination of
parameter values (h;Ta; s;Ne; r), we construct an interpolation
function (third-degree polynomial) for each mutation configura-
tion, from a grid of pre-evaluated mutation configuration proba-
bilities in Mathematica (version 12). Evaluating a polynomial
rather than the exact analytical expression reduces computation
time significantly. For each replicate, inference consists of two
steps: we first estimate h, using all blocks that are sufficiently far
away from the sweep site (a > 12). We then obtain joint estimates
of Ta and s conditional on h. Parameter optimization is conducted
on a grid (h;Ta; s) allowing us to precompute all bSFS configura-
tions, and run the optimization for all simulation replicates on a
laptop.

Results
Time erodes the footprint of adaptive evolution
In this section, we examine how the expected footprint of adap-
tive evolution is affected by Ta, the time since the selective sweep.
We first show results for pairwise genetic diversity (n¼ 2) and
then extend this to the SFS (n¼ 9). A detailed analysis as well as
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an illustration of our approach is provided in Supplementary S1
Notebook. Note that throughout we use the superscript � to de-
note GFs and distributions for coalescent histories with a sweep
event.

Pairwise genetic diversity
For illustration, we first derive the GF for the distribution of
branch lengths in a sample of two (haploid) lineages. In this case,
the two branches a and b are equivalent, and their sum is twice
the time to the most recent common ancestor (tmrcaÞ. By
substituting xa þ xb ! xmrca ¼ x, we obtain the GF for tmrca. Under
the neutral model, the GF is simply the Laplace transform of an
exponentially distributed random variable with mean 1

/ ¼ 1
1þ x

:

Using the star-like approximation of a selective sweep, the
recursion for the GF with parameter d results in:

/�½x; d� ¼ 1
1þ dþ x

þ dP0;2

1þ dþ x

þ dP1;2

1þ dþ x
� 1
1þ x

þ dP2;2

1þ dþ x
� 1
1þ x

:

The summed terms represent the possible sequences of
events in the genealogical history of the sample and Pi;j repre-
sents the probability that i out of j lineages escape the sweep. The
first term corresponds to neutral coalescence before the sweep;
the second, to coalescence during the sweep. In the remaining
terms, one or both lineages escape the sweep and subsequently
coalesce under the standard neutral coalescent. Since we have
defined the GF for a model with exponentially distributed sweep
times /�½x; d� ¼

Ð1
0 de�Tad/�½x;Ta�dTa. Taking the inverse Laplace

transform of /�½x; d�=d gives us the GF for the distribution of
branch lengths as a function of the time since the sweep Ta:

/�½x;Ta� ¼ e�Tað1þxÞP0;2

þ 1
1þ x

�
�
ð1� e�Tað1þxÞÞ þ e�Tað1þxÞð1� P0;2Þ

�
:

In the limit as x! 0; /� becomes a sum of terms, each repre-
senting the probability of a particular genealogical history (Lohse
et al. 2011). Neutral coalescence occurs before the sweep with
probability 1� e�Ta . Given that it does not (with prob. e�Ta ), coa-
lescence may happen during the sweep with probability P0;2, or
neutrally after the sweep with probability ð1� P0;2Þ. The expected
time to the most recent common ancestor E½tmrca� is obtained by
taking minus the derivative of the GF with respect to x and then
taking the limit as x! 0 (Lohse et al. 2011). In the neutral case,
E½tmrca� ¼ 1, and for the sweep scenario, substituting
P0;2 ¼ e�2a; E½tmrca� ¼ 1� e�Ta P0;2 ¼ 1� e�Ta�2a.

When Ta ¼ 0, i.e., the population is sampled at the time of fixa-
tion, we recover the classic valley of diversity caused by a selec-
tive sweep (Maynard Smith and Haigh 1974; Kaplan et al. 1989;
Figure 2A). By comparison, older sweeps have a reduced effect on
E½tmrca�. Forwards in time, this amounts to the recovery of genetic
diversity that was lost due to hitchhiking in the selective sweep.
From a coalescent viewpoint, the genealogy is unaffected by se-
lection if coalescence occurs before the sweep.

Distribution of tmrca

The effect old sweeps have on the genealogy can be seen more
clearly in the full distribution of tmrca: under the neutral model,

tmrca is exponentially distributed with rate 1. The probability den-
sity (PDF) and cumulative density functions (CDF) are therefore
f ½t� ¼ e�t and F½t� ¼ 1� e�t, respectively. Under the selection
model, we obtain the PDF by inverting the GF with respect to x

(Lohse et al. 2011). We may integrate the PDF with respect to t to
obtain the CDF or alternatively, we may divide the GF by x and
then take the inverse Laplace transform. For this model, we ob-
tain the PDF (f �) and CDF (F�) for tmrca at a neutral locus linked to
the adaptive mutation:

f �½t� ¼
e�t 0 � t < Ta

e�tð1� P0;2Þ þ P0;2e�Ta t ¼ Ta

e�tð1� P0;2Þ t > Ta

8<
:

F�½t� ¼ 1� e�t t < Ta

1� e�tð1� P0;2Þ t � Ta

�

.
As expected, for times t < Ta, the PDF matches the neutral

case, f �½t� ¼ f ½t�, since the sweep cannot affect the genealogy dur-
ing that period (Figure 2B). Since we assume that the sweep indu-
ces an instantaneous coalescent event, there is a point mass of
size e�Ta P0;2 ¼ e�Ta�2a at t ¼ Ta. Indeed, at the sweep center, all co-
alescence occurs before or during the sweep t � Ta. At greater
distances from the sweep center, the point mass diminishes in
size. For t > Ta, only lineages that escaped the sweep may subse-
quently coalesce, and they do so neutrally. Thus, the probability
density matches the neutral case scaled by the probability that
one or both lineages escape, f �½t� ¼ e�tð1� P0;2Þ ¼ f ½t�ð1� P0;2Þ.
Indeed, Figure 2 shows that, although the location of the disconti-
nuity shifts as the time since the sweep increases, the probability
density for t > Ta is determined only by the distance from the
sweep center, a ¼ r�d

s ln 2Nes½ �.

Figure 2 The signature of old sweeps, star-like approximation. (A) The
effect of a sweep on the expected time to the most recent common
ancestor (tmrca) as a function of the distance from the sweep center
(a ¼ r

s ln 2Nes½ �) and the time since the sweep Ta. (B) The distribution (PDF)
of tmrca at the sweep center, a ¼ 0 and at distance a ¼ 0:25. (C) The SFS
for a sample of n¼ 9 individuals.
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The SFS
For moderate sample sizes, we can obtain the expected SFS as a
function of both the distance from the sweep center a and Ta the
time since the sweep. Distinguishing branches by the number of
descendants, e.g., xa;b ! x2, the set of xi, 1 � i � n� 1 corre-
sponds to the length of the branches with i descendants among
the sample (i-Tons). The expected marginal lengths of i-Ton
branches E½ti� can be obtained by differentiating the GF with re-
spect to xi, analogous to E½tmrca� described above for n¼ 2.

Normalizing by
Pn�1

i¼1 E½ti� yields the expected frequency of

mutations belonging to each i-Ton class. Figure 2C shows the SFS
for a sample of n¼ 9, at different distances from the sweep center
and for increasingly old sweeps. As for the expected pairwise ge-
netic diversity, the effect of older sweeps on the SFS is dampened.
However, the relative effect differs between i-Ton classes and
depends on both Ta and a. At the sweep center, a¼ 0, we observe
a prominent excess in the proportion of singleton lineages. In
contrast, outside the sweep center, a ¼ 0:25, we see an excess of
both intermediate and high-frequency polymorphisms as the age
of the sweep increases.

Beyond the mean—leveraging joint branch length
information
Pairwise and/or average measures of sequence variation such as
the SFS are drastic summaries. In order to fully capture the foot-
print of selective sweeps on linked neutral sequence variation,
we would ideally like to compute the probability of haplotypic
variation flanking a selective target. Unfortunately, this requires
including recombination (including breakpoint locations) explic-
itly in the GF recursion which quickly becomes intractable. In the
following, we focus on blocks of nonrecombining sequence and
consider the effect of sweeps on three quantities of interest: the
probability of genealogical topologies, the marginal distribution
of i-Ton branches, and, following Lohse et al. (2016), the bSFS, the
blockwise configuration of i-Ton counts.

The probability of genealogical topologies
The probability of seeing any particular topology can be found by
evaluating the limit at infinity for the x corresponding to
branches that are incompatible with it (and evaluating all other x

at zero). Under the star-like approximation and for n¼ 4, this
results in five different topologies, three of which are induced by

multiple mergers. For the sake of simplicity, we can distinguish
between three topology classes defined by the root node: genealo-
gies with a symmetric or asymmetric bipartition at the root and
genealogies without any bi-partition (Pstar; Figure 3).

Psym ¼
1
3
ð1� 2e�6Tað1� e3TaÞ � 2P0;3 � e�6TaðP0;4 þ P1;4ÞÞ

Pasym ¼
1
3
ð2þ 2e�6Tað1� e3TaÞ � 2P0;3 � e�6Tað2P0;4 � P1;4ÞÞ

Pstar ¼ e�6TaP0;4:

Dissecting the three terms in Psym and Pasym, the first term rep-
resents the probability of seeing (a)symmetric trees under the
standard neutral coalescent. Only multiple mergers of three (sec-
ond term) or four (third term) lineages will affect this probability.

The marginal distribution of i-Ton branches
The marginal distribution (PDF) of i-Ton branches, i.e., the genea-
logical branches underlying the SFS (Figure 2C), can be obtained
by inverting the GF with respect to xi. The resulting expressions
are cumbersome and are provided in Supplementary S1
Notebook for a sample size of four, which we investigate below.

For the case of n¼ 4 and assuming neutrality, only two topolo-
gies are possible: the first coalescence event always generates a
doubleton lineage, while the second may either generate a sec-
ond doubleton lineage, resulting in a symmetric topology with
probability Psym ¼ 1=3, or a tripleton lineage, resulting in an asym-
metric topology with probability Pasym ¼ 2=3. Thus, the marginal
PDF of tripleton branches f ½t3� contains a point-mass at t3 ¼ 0 of
size 1/3, while the PDF for t1 and t2 contain no discontinuities
(Supplementary Figure S1A).

In contrast, in the vicinity of a selective sweep, we observe
multiple removable discontinuities in all three marginal PDFs
(Figure 4). The PDFs can be rewritten as piece-wise continuous
functions combining a continuous distribution of coalescence
times with point masses corresponding to either the absence of a
particular branch type or a burst of coalescence caused by the
sweep. Given that each class of i-Ton branches consists of multi-
ple genealogical branches, these distributions are more intricate
than for the pairwise pairwise case (f ½t2� above) and are discussed
further in Supplementary S1 Notebook for the case of n¼ 4.

In general, for a sample of size n, the discontinuities present in
the branch length distribution of each i-Ton type are determined
by the total number of such i-Ton branches present during the
interevent times of the coalescent process during which the se-
lective sweep occurs. For example, there are always n singleton
branches present initially, and the first coalescent event reduces
this to n–2. There exists one topology in which the number of sin-
gleton branches is reduced by one in each subsequent interval.
Therefore, the PDF of singletons has a total of n–1 discontinuities
at t ¼ fðnÞTa; ðn� 2ÞTa; ðn� 3ÞTa; . . . ;Tag. For i> 1, there is always
a point mass at t¼ 0 due to the possibility that the first event is
coalescence of all lineages during the sweep. The possible multi-
plicity of the (i> 1)-Ton classes is determined by the ways to de-
compose n into smaller-valued integers and thus the number of
discontinuities for i> 1 is bn=ic þ 1.

Finally, we note that the star-like approximation used for the
analysis provides relatively accurate predictions. In comparison
to simulations, the accuracy improves only slightly using the
Yule approximation (Supplementary Figure S1). For both approxi-
mations, the model underestimates the time since the sweep oc-
curred, i.e., the location of the point-mass Ta. In our model, we
assume that the duration of the sweep (on the coalescent scale)

Figure 3 Probability of genealogical topologies for n¼ 4, star-like
approximation. The probability of a genealogy with an asymmetric (light
gray), symmetric (black), or star-shaped (dark gray) root node is shown
for Ta ¼ 0 (full), 0.5 (dashed), 1.0 (dotted), with increasing distance from
the sweep center (left to right).

6 | GENETICS, 2021, Vol. 219, No. 2



tfix=ð2NeÞ is negligible. In reality, the burst of coalescence occurs

at the beginning of the sweep, and including this extra time in

our model (substituting Ta þ tfix for Ta) largely accounts for the

bias.

The bSFS
Above, we used the GF to obtain the SFS by deriving the expected

length of i-Ton branches. An alternative and less drastic sum-

mary of sequence variation is the bSFS, the vector of SFS counts

in short blocks (Bunnefeld et al. 2015). To be able to leverage to-

pology information, we will focus on (sub)samples of n¼ 4. In this

case, the bSFS is a vector of counts for three i-Ton types k ¼
fk1; k2; k3g where ki 2 f0; 1 . . . ; kmax þ 1g. For example, a muta-

tional configuration of (0, 0, 1) represents a block with only one

tripleton mutation. Note that we use kmax þ 1 to bin all mutation

configurations with more than kmax mutations of type i. If we re-

strict the bSFS to a maximum of kmax ¼ 2 mutations per i-Ton

type, we distinguish ðkmax þ 2Þ3 ¼ 64 unique bSFS configurations

(given that both the absence of a particular mutation type ki ¼ 0

and seeing > kmax mutations also define bSFS configurations).
Assuming no recombination within blocks, the bSFS can be

obtained from the GF by taking successive derivatives with re-

spect to the xi [see eq. (1) in Lohse et al. (2011) for details].

Comparing the analytic expectation for the bSFS P½k� to simula-

tions (Figure 5) highlights both the accuracy of the star-like ap-

proximation (for n¼ 4) and the robustness of the bSFS to

intrablock recombination, provided blocks are short (here a re-

combination rate of r ¼ 10�7, l¼ 100 bases).

Power to infer old sweeps
We can use the analytic result for the bSFS obtained above to

jointly estimate the sweep time and the strength of selection in a

CL framework (summing lnL across both blocks and subsamples

of x¼ 4, see Materials and Methods). In the following, we quantify

the power (and bias) of characterizing sweeps using the star-like

Figure 4 Marginal i-Ton branch length distributions for n¼ 4. Analytic predictions under the neutral model (A) and the approximate selection models (B)
are compared to the corresponding distribution obtained from 10,000 simulation replicates overlaid as a histogram. The Yule approximation is indicated
by solid lines while the dashed lines indicate the star-like approximation. Results for singleton, doubleton, and tripleton branch lengths are shown in
blue, green, and red, respectively. The top row shows two distances from the sweep center a 	 f0:14; 0:069g and Ta ¼ 0:1. Analogous results for an older
sweep at Ta ¼ 0:25 are shown in the bottom row. Time is measured in units of 2Ne generations. Here, Ne ¼ 10; 000, s¼ 0.05, and r ¼ 10�7. Note that the
location and size of each point mass (e.g., the tripleton point mass at time t¼ 0) is reflected in the CDF rather than the PDF (Supplementary Figure S1).

Figure 5 The bSFS for n¼ 4 and Ta ¼ 0:1. The expected probabilities of bSFS configurations given by the star-like approximation (logscale) against their
observed frequencies in 10,000 simulation replicates. Each dot corresponds to a unique bSFS configuration. Counts left and right of the selected site are
added together. Each dot in the scatter plot represents a unique bSFS-configuration, counting the number of (singletons, doubletons, and tripletons).
Red: ð; ; kÞ, green: ð;k; 0Þ, blue: ðk; 0; 0Þ, black: (0,0,0) with k � 1, and any integer. The dotted line marks the minimal detectable frequency for the
simulations. The rightmost figure shows the total probability of observing blocks within each of these categories (sweep center at a ¼ 0:0).
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approximation and test to what extent the instantaneous Yule
approximation improves these estimates.

With strong selection (s¼ 0.05), the power to infer Ta and a is
high, even for fairly old sweeps (Ta ¼ 1:0), especially with samples
of n � 12 (Figure 6). Even for small sample sizes (n¼ 4), we get de-
cent estimates of the sweep parameters (Figure 7). Increasing

sample size (for a fixed subsample size of x¼ 4) reduces muta-
tional sampling noise but only increases power to estimate
parameters to a limited extent (Supplementary Figure S2). The
power to correctly infer sweep parameters decreases with in-
creasing age of the sweep (Ta). This is unsurprising, given that the
number of lineages that enter the sweep, and hence the informa-
tion about the sweep, declines with increasing Ta.

When selection is weak (s¼ 0.005), power drops off quickly for
sweeps that are older than Ta ¼ 0:5, especially for small samples
(n¼ 4). The heatmap reveals that, irrespective of sample size,
sweep parameters become nonidentifiable when selection is
weak (Figure 7 and Supplementary Figure S3). Two effects are at
play here: firstly, for weak selection, the assumption that sweeps
happen instantaneously becomes problematic, as the duration of
the sweep will be approximately 0.1. The fact that we estimate
the time to the completion of the sweep using an approximation
that assumes an instantaneous burst of coalescence at the onset
will tend to bias estimates (towards higher Ta values) when the
duration of the sweep is on the same order of magnitude as the
time since completion (Ta � 0:5). Secondly, when the model
becomes nonidentifiable, we see the estimates for a fraction of
the replicates veer off toward either larger s or smaller Ta.
Presumably, this is a consequence of the stochasticity of the coa-
lescent which inherently limits the ability to detect a single weak
sweep that affects only a small region of the genome. Depending
on the particular realization of the neutral coalescent for the lin-
eages remaining at this region, weak sweeps of intermediate age
appear to be difficult to distinguish from much older and harder
sweeps. We suspect that this is an inherent limitation of the sig-
nal in the data that cannot be overcome by adding more samples
when the subsample size is kept small.

Figure 6 ROC curve, star-like approximation. Plotting the rate of true
positives against the rate of false negatives shows how much power we
have to distinguish genomic regions that underwent a hard sweep from
neutral replicates. As expected, power depends on the time since the
sweep [Ta ¼ 0:1 (green), 0.5 (lighter green), 1.0 (light brown), and 2.0 (dark
brown)], the strength of selection (left s¼ 0.05, right s¼ 0.005) and
sample size n¼ 4 (full line), 12 (dashed).

Figure 7 Heatmaps. Parameter estimates of the gridded optimization using the star-like approximation across simulations using a sample of n¼ 4
lineages. The top and bottom rows show strong and weak selection, respectively. The panels show the accuracy of our parameter estimates for
simulation data with increasingly older sweeps (Ta ¼ 0:1; 0:5; 1:0; 2:0 from left to right). Within the panels, each square represents a parameter
combination in the test grid. The number inside each square shows the percentage of replicates (> 4:5%) associated with a particular parameter
combination, with darker shading corresponding to a higher density. The true simulated parameter combination is highlighted by a pink square. (A)
Strong selection, s¼ 0.05 and (B) weak selection, s¼ 0.005.
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By contrasting ROC curves between a model with Ta ¼ 0 and a
model where Ta is free to vary, we can assess how much better
the data fit an old sweep (Supplementary Figure S4). As expected,
forcing Ta ¼ 0 (a standard assumption of sweep scans), works
well for recent sweeps but breaks down for older ones, i.e., power
drops off in the same way previously reported for SFS-based
methods (Racimo et al. 2014; Setter et al. 2020). However, when in-
cluding the sweep time as a parameter, old sweeps become de-
tectable with high power as long as they are strong.

Comparing the heatmaps and ROC curves under the star-like
and the instantaneous Yule approximations (Supplementary
Figures S5–S7) reveals very little difference between the two
approximations in terms of accuracy and power. Root mean
square errors for the estimates are nearly identical across a range
of Ta estimates. We also find that old sweeps are similarly noni-
dentifiable under both approximations when selection is weak
suggesting that the power to infer selection is inherently limited
in this case.

Comparison to SweepFinder2
Analyzing the same set of simulations for SFS data using
SweepFinder2, we clearly see that diagnosing sweeps using the
bSFS has greater power across all parameter combinations
(Supplementary Figures S8 and S10). SweepFinder2 only has
power to detect strong sweeps when Ta � 0:1 and when n � 12.
This increase in power is not only due to our ability to fit an addi-
tional parameter (Supplementary Figure S4). Using the bSFS
clearly also allows us to extract more information from a limited
number of samples (Supplementary Figure S9).

Sweeps in the lactase gene region
We applied our method to estimate the timing and strength of se-
lection acting on the C/T(-13910) (rs4988235) mutation in the
MCM6 gene. This mutation, which is at high frequency in north-
ern European populations (Enattah et al. 2002), is associated with
lactose metabolism in adulthood (Järvelä 2005) and has strong
support for a hard selective sweep (Bersaglieri et al. 2004; Coelho
et al. 2005; Mathieson and Mathieson 2018; Speidel et al. 2019;
Stern et al. 2019; Mathieson 2020). We used phase-3 data from the
1000 genomes project (The 1000 Genomes Project Consortium
2015), restricting our analysis to the European (CEU) samples and
the 4-Mb region centered on the sweep target. Because the sweep
is partial, we subsampled further, using only individuals that are
homozygous for the causal variant. We obtained the bSFS for
nonoverlapping 1000-bp blocks along the genome, including all
sites but only considering variation at biallelic SNPs. The scaled
mutation rate is estimated using the GF for a neutral coalescent
history.

Analyzing bSFS variation 1 Mb on either side of the causal vari-
ant, we observe strong support for a hard selective sweep at
rs4988235 with maximum CL estimates of s¼ 0.086 and Ta ¼ 0:0
for the strength and timing of the sweep. This estimate of s is
substantially higher than previous estimates. Inspection of test
sites at 50-kb intervals in the flanking region of the genome (see
Supplementary Figure S11) reveals apparently different signals
on either side of the causal variant: while there is strong support
for the neutral model (s! 0 and Ta > 2) upstream, a large
(	350kb) region downstream of rs498823 shows support for a se-
lective sweep. These apparently conflicting results are an artifact
of our simplifying assumption of a single estimated scaled muta-
tion rate h ¼ 0:44 (and selective neutrality) for the entire region,
which ignores the fact that the downstream region is gene rich
and so under strong selective constraint. Because the bSFS is

highly sensitive to the scaled mutation rate, the neutral model
poorly fits the data in this region. However, a model of strong
positive selection can at least partially account for the low diver-
sity observed, leading to inflated likelihood ratio scores. If we
limit estimation of sweep parameters to the largely intergenic re-
gion upstream of rs498823 (see Discussion), we obtain a lower esti-
mate of s¼ 0.037, which is more in line with previous studies
(Mathieson and Mathieson 2018; Stern et al. 2019).

Discussion
We have shown how the effect of selective sweeps on nearby ge-
nealogies can be incorporated into the recursive description of
the genealogical histories of a sample (Lohse et al. 2011). Much
like a population bottleneck which can also be approximated as a
multiple merger event (Bunnefeld et al. 2015), a selective sweep
can be viewed as a discrete event that affects the genealogical
history of a sample of neutral lineages (Kaplan et al. 1989).
However, unlike bottlenecks, selective sweeps have a local effect
on neutral variation in the genome (Galtier et al. 2000), lead to to-
pologically unbalanced genealogies, and are therefore distin-
guishable.

While it is straightforward to recover previous analytic results
for the expected loss of pairwise genetic diversity around sweep
targets (Maynard Smith and Haigh 1974; Kaplan et al. 1989) and
the SFS using the GF framework, our motivation was to extend
analyses beyond expected coalescent times and pairwise sam-
ples. What we gain by embedding selective sweep approxima-
tions in the GF framework is a complete analytic description of
the effects of genetic hitchhiking on the distribution of genealo-
gies. Crucially, the strength and age of selective sweeps distort
genealogies at nearby neutral sites in distinct ways. While these
two aspects of past selective events are hard to disentangle from
the expected reduction in genetic diversity, we show that they
can be jointly estimated using richer summaries of sequence var-
iation that capture information contained in the distribution of
genealogies. Specifically, we show that for a single strong selec-
tive sweep, the bSFS has reasonable power to jointly infer both
parameters even for a sample of n¼ 4 lineages. Being able to
maximize the information contained in small samples not only
provides an obvious avenue for CL inference but also increases
the power of comparative population genetic analyses, which are
still limited by the lack of large resequence data sets for most
taxa.

While our test on simulated data shows that, at least in princi-
ple, a sweep scan based on the bSFS has greater power than
SweepFinder2, our exploration of the lactase sweep in humans
illustrates that further work is required to apply such scans to
real data. The fundamental difficulty is that our assumption that
sequence variation is only ever indirectly affected by sweeps is at
odds with the reality of selective constraints acting on coding and
regulatory sequence. Thus in practice, justifying the assumption
that blockwise variation around sweeps is selectively neutral and
statistically exchangeable requires careful filtering decisions on
the data. Alternatively, one can try and incorporate independent
prior knowledge about selective constraint and mutation rate
heterogeneity (Huber et al. 2016), e.g., from background selection
maps (Mcvicker et al. 2009) to model variation in h among blocks.

Model extensions and limitations
Star-like vs Yule
Throughout this paper, we have focused on two sweep approxi-
mations. While the instantaneous Yule approximation is a more
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accurate description of a hard sweep than the star-like approxi-
mation, we find very little difference in terms of power and accu-
racy between both sampling formulae in the case of a classic
hard sweep. However, it may be unsurprising that ignoring the
possibility of a family of early recombining lineages has little im-
pact given that the (sub)sample size we considered is small
(Pfaffelhuber et al. 2006).

Different types of selection
Although there has been much interest in differentiating the sig-
natures of soft and hard sweeps (Hejase et al. 2020b), previous an-
alytic work has shown that old hard sweeps are difficult to
distinguish from soft sweeps given that both cause a partial re-
duction in genetic diversity (Hermisson and Pennings 2005;
Pennings and Hermisson 2006a, 2006b). While recent soft sweeps
can be distinguished by conspicuous patterns in haplotype data
(Ferrer-Admetlla et al. 2014), these associations break down rela-
tively quickly, and an old soft sweep may be indistinguishable
from a (slightly older) hard sweep (Schrider et al. 2015; Zheng and
Wiehe 2019). Despite this, machine-learning methods appear ca-
pable of classifying different histories of selection (Hejase et al.
2020b). By incorporating models of soft selective sweeps
(Hermisson and Pfaffelhuber 2008) into the GF framework, it
should be possible to identify the characteristics signatures of
these selective processes in the branch length distributions and/
or gene tree topologies.

We focus on the effects of a single hard sweep. An alternative
is to capture the aggregate effects of positive selection on pat-
terns of neutral diversity throughout the genome (Juric et al. 2016;
Booker et al. 2017). While the signal of any particular sweep is in-
herently limited (given the stochasticity of both the coalescent
and the trajectories of selected alleles), one would expect there to
be much more information about positive selection when aggre-
gating signatures across the genome. Given that, for mathemati-
cal convenience, our starting point has been to assume a model
in which the waiting time to a sweep is exponentially distributed
with rate d (see equation 2), the current description also yields
the recursion for the GF under a model of recurrent sweeps.
However, in order to obtain results for a biologically plausible
and general model of recurrent sweeps at uniformly distributed
selective targets, one would have to integrate over both sweep
locations and the distribution of fitness effects (Stephan et al.
1992).

Joint inference of demographic history and selection
The majority of theoretical results for selective sweeps to date
have assumed that there is no population structure and that,
with the exception of a focal sweep, the population is at equilib-
rium: the adaptive mutation arises de novo in an otherwise neu-
tral panmictic population of constant size. In reality, of course,
natural populations are not at equilibrium (Brandvain and
Wright 2016) and it remains challenging to jointly infer past de-
mography and selective events (Li et al. 2012). The most success-
ful approaches to date extend the approximate diffusion model
of Kimura (1955) to describe the population-level allele frequency
spectrum under nonequilibrium dynamics. However, solving the
diffusion equation can be difficult. Zivkovi�c and Stephan (2011)
obtain analytic results for histories of varying population size,
but in combination with positive selection, only numeric solu-
tions are possible (Williamson et al. 2005), except for very simplis-
tic demographic histories (Evans et al. 2007). Crucially, these
predictions are primarily used to infer the effects of direct selec-
tion by comparing allele frequency spectra among different

classes of mutations (e.g., coding vs noncoding). While this ap-
proach can provide demographically explicit predictions for the
background SFS in sweep-scanning methods (Pavlidis et al. 2013;
Johri et al. 2020), results to-date are again limited to the SFS and
to very recent sweeps (Ta ¼ 0).

Even simple changes in demography, e.g., bottleneck in popu-
lation size, strongly affect the power of sweep detection methods
(Galtier et al. 2000; Jensen et al. 2005; Teshima et al. 2006; Stephan
2019). With the GF approach, however, it is possible to model
complex and dynamic demographic histories. Because we treat
the sweep as a discrete event, it too can be incorporated into gen-
eral models of demography. Population structure adds further
complications for detecting sweeps. For example, the
VolcanoFinder method to infer adaptive introgression after sec-
ondary contact must assume complete lineage sorting, and as a
consequence, its power to detect introgression sweeps is limited
to highly divergent populations (Setter et al. 2020). The GF method
fully accounts for the sorting of lineages, and in this context,
would permit the inference of adaptive introgression even from a
recently diverged donor population.

Toward more powerful inference of selection
The motivation for our analytic work is to improve the ability to
make inferences about selection. We have explored one possible
approach, a CL framework based on the bSFS for estimating
parameters of individuals sweeps in some detail. However, there
are several other promising avenues for developing inference.

Our results for the effect of sweeps on genealogical branches
may prove to be powerful in the context of recent methods that
infer the ARG and/or tree sequences (with or without branch
length information) from phased data, such as ARGweaver
(Rasmussen et al. 2014), RENTþ (Mirzaei and Wu 2017), tsinfer
(Kelleher et al. 2019), and RELATE (Speidel et al. 2019). In principle,
the GF framework allows to connect a sequence of marginal trees
inferred by these methods to explicit models of population struc-
ture and past selection.

One direction of further research could be to directly use the
topology information contained in inferred tree sequences. This
should also allow us to extend the calculation of the GF to larger
sample sizes. Several summary statistics have been developed to
diagnose the effect of sweeps on genealogical topologies (Li and
Wiehe 2013; Yang et al. 2018). This research is motivated by the
fact that statistics like root imbalance are invariant to population
size changes. But, as far as as we are aware, results for the effect
of sweeps on the distribution of topologies are lacking and could
be used to improve sweep scans. For example, the probability of
asymmetric topology (i.e., a bipartition of f3, 1g in a sample of
n¼ 4) follows a nonmonotonic pattern around sweep targets.
Analogous signals have been exploited to distinguish adaptive in-
trogression sweeps from classic sweeps (Setter et al. 2020).

A final approach would be to compute the joint probabilities
of the mutational configuration/branch lengths of a tree and its
span. Leaving out the mutational information used to infer the
tree sequences, inference would be based directly on the distribu-
tion of marginal genealogies, including the distribution of coales-
cence times (Weissman and Hallatschek 2017). While a full
model of recombination, i.e., allowing for an arbitrary number of
recombination breakpoints in a sequence, seems infeasible, it
should be possible to condition the GF on there being no recombi-
nation in a stretch of sequence of a given length. Abandoning the
idea of nonrecombining blocks of a fixed length would thus allow
us to incorporate LD information in the sweep inference.
Although the direct inspection of the marginal trees that
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represent the genealogical history of a sample is an exciting pros-

pect, we still require the statistical tools to exploit the informa-

tion they contain about the evolutionary process efficiently.

Data availability
The supporting figures as well as all notebooks and code used to

generate and analyze the presented data can be found at https://

github.com/GertjanBisschop/SweepsInTime.
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