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There has been growing interest in the statistics community to develop

methods for inferring transmission pathways of infectious pathogens from

molecular sequence data. For many datasets, the computational challenge

lies in the huge dimension of the missing data. Here, we introduce an impor-

tance sampling scheme in which the transmission trees and phylogenies of

pathogens are both sampled from reasonable importance distributions, alle-

viating the inference. Using this approach, arbitrary models of transmission

could be considered, contrary to many earlier proposed methods. We illus-

trate the scheme by analysing transmissions of Streptococcus pneumoniae from

household to household within a refugee camp, using data in which only a

fraction of hosts is observed, but which is still rich enough to unravel the

within-household transmission dynamics and pairs of households between

whom transmission is plausible. We observe that while probability of

direct transmission is low even for the most prominent cases of transmission,

still those pairs of households are geographically much closer to each other

than expected under random proximity.
1. Introduction
Infectious pathogens lead their lives at the brink of a contradiction: the infection

itself typically harms the host, yet the pathogen is somewhat reliant on the

well-being of the host, at least on its capability to transmit the infection further.

When studying pathogen populations from the perspective of transmission,

one is faced with a diversity of different strategies for the pathogen to persist

through transmission: vector-borne, air-borne, aggressive, asymptomatic, seasonal

and endemic, to name a few. Owing to the complicated modes of transmission, and

the pathogen and host heterogeneity, there can exist large variation in the number of

secondary infections an infected individual produces [1]. Understanding this

heterogeneity yields apprehension about the ecological and evolutionary dynamics

and constraints of the pathogen populations.

Molecular sequence data from pathogen populations have recently become

increasingly available, bringing new opportunities for the statistical analysis of

the processes of transmission. Sequence data allow for fitting transmission

models to time-series data [2], or estimating the effective reproduction ratios

of the pathogen population in the past [3]. Appropriate analysis can disentangle

the time of the peak of the epidemic [4], identify differences between trans-

mission clusters [5] or quantify the underlying contact patterns of the hosts [6].

One particular type of analysis of transmissions is to study the actual trans-

mission trees (i.e. the progression of the transmissions from host to host; see

§2b). Recently, Ypma et al. [7] and Morelli et al. [8] have proposed statistical infer-

ence frameworks for transmission trees, based on joint analysis of data on
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symptom times and genotypic data of the pathogenic isolates.

These methods have been further extended by taking the

within-host evolution of the pathogen into account [9], and

developing tools for analysis when a big fraction of hosts

was unobserved that are able to take the depletion of suscep-

tible hosts into account in a mechanistic way [4,5]. Generally,

the number of units contributing to an epidemic is large,

and many of the hosts that contributed to the spread remain

unobserved. For instance, Blum & Tran [10] predict the total

size of HIV epidemic in Cuba to be 42 000 by the year 2015

and only 40% of the cases to be detected by the screening

system. An explicit data augmentation scheme [11] provides

a solution for the statistical inference of transmission links in

the case of missing data. However, constructing an effective

proposal density for the unobserved data remains a challenge,

and if not done properly may lead to biased results, as

observed for instance in a study by Aandahly et al. [12].

Many of the earlier proposed methods for transmission trees

are based on MCMC methods and thus require efficient proposal

densities for the unobserved data. In these situations, the quality

of the approximations might trade off with the complexity of the

considered model. As an alternative, we present a framework

inspired by importance sampling that allows for considering

arbitrarily complex transmission models, the only requirement

being that transmission trees are easy to sample under it. This

approach is particularly suitable for situations in which some fea-

tures of the transmission process are known a priori and the aim is

to use that knowledge for the inferences. As an example of our

framework, we study transmissions of the mostly asymptomatic

bacterium Streptococcus pneumoniae from one household to

another in a refugee camp. A dynamical model was used as an

importance distribution for transmission trees, when condition-

ing on the data on genotypes of the isolates. For the refugee

camp data, we predict that the probability of direct transmission

highly depends on the assumptions on the observation process,

but is often less than 0.3 even for genetically and temporally

closely related pairs of isolates.
2. Material and methods
(a) Data
(i) Study design
There exist over 90 serotypic strains of S. pneumoniae, a bacterium

that colonizes the human nasopharynx. While the colonization

is often asymptomatic, children and elderly people especially

are susceptible to pneumococcal diseases, such as pneumonia

or meningitis. The data we analyse here come from a study on

pneumococcal carriage among infants and their mothers living

in a long-term refugee camp, Mae La, situated in northwest

Thailand. For these data, 250 mother–infant pairs were recruited

to be sampled regarding their pneumococcal colonization status

each month over 2 years. Furthermore, the colonizing strains of an

additional 750 infants were screened during the presence of

clinically diagnosed pneumonia. In total, 6747 pneumococci were

isolated from all the 11 829 swabs taken and the whole genomes

of 3085 isolates were sequenced. For full details and references to

the original data, see [13]; for exploratory analysis of it, see [14].

(ii) Parsimonious phylogenetic trees
Using the method described by Croucher et al. [15] and the sequence

information available, we generated parsimonious maximum-

likelihood trees in which the branch lengths can be interpreted as

accumulations of new single nucleotide polymorphisms (SNPs).
The trees were parsimonious in the sense that they required least

mutations to be assumed. In addition, only those SNPs that have a

negligible probability of being due to recombination were considered

in the construction. For details on removing recombination, see [13].

(iii) Longitudinal observations from households
The data can be rearranged into observations from different house-

holds. Those mother–infant pairs that were sampled monthly

yield longitudinal observations on the colonization dynamics

within the whole household they live in. In §2 in the electronic sup-

plementary material, we show a few examples of such longitudinal

observations from households. The observations from households

are partial, as not all the household members were screened, and

the exact household sizes are unknown. However, there are gen-

eral demographic data available about the camp in [16], which

can be used for modelling purposes.

(iv) Plausible transmission pairs and transmission clusters
For our study, we assume that if the same serotype was observed to

colonize mother and infant in consecutive sampling times, there

was a direct transmission between them. Using these training

examples, we construct a classifier for pairs of observations

in different households that classifies the transmission to be plausible

between the two households. Using this classifier and parsimony

tree of the isolates, we cluster data into smaller sets of data, so

that the pairs of isolates that indicate a plausible transmission

between the two households are clustered together. In addition,

the isolates within clusters can be assumed to have emerged from

small separate epidemics within the camp, and thus can also be

analysed separately. We describe the details of the classifier and

the data partitioning in the electronic supplementary material.

(b) Importance sampling of transmission trees
We use the term transmission tree to refer to a graph that is a com-

plete description of an epidemic. It contains information on the

exact time span and the source of infection for each host, apart

from the first infected individual. For a mathematical definition

of a transmission tree, see [17]. We start from the assumption

that it is possible to construct a sampling distribution for trans-

mission trees that captures a priori known relevant features of

the transmission process. We denote this distribution with G(.),
and the trees sampled from it by Z (table 1 summarizes all the

notation used in this article).

Consider data collected in time interval [ts, te] according to a

known observation process. Assume the data consist of k isolates,

with genotypes g, observed at times t in different hosts. Assume

also that it is possible to sample from the posterior distribution of

the genealogies of the observed isolates conditional on g and t.

Denote this distribution with L(.), and realization from it by T.

The sampling scheme we propose is importance sampling

using two importance distributions, L(.) and G(.). First, T is

sampled fromL(.). This defines the time origin for Z that is sampled

subsequently from G(.). Z is initiated at the time to most recent

common ancestor (TMRCA) of the isolates in T. Finally, the impor-

tance weight of the proposed Z is calculated by evaluating the

probability of temporal observations and the genotypes.

Our main focus is on posterior inference about transmission

trees given data and a model for both sequence evolution and trans-

mission. A direct inference approach based on standard Bayesian

MCMC computation is very difficult owing to model complexity

and the large underlying space of unobserved events that would

need to be explicitly simulated. Vague prior distributions do further

escalate this challenge. Therefore, we develop an alternative

approach where a sensible importance distribution is used to

sample both transmission trees and genealogies to reach an

approximation of the target distribution. The motivation for

taking this route to posterior approximation is that both genealogies



Table 1. The most important notations and concepts used in the article.

Z transmission tree

G(.) proposal distribution for sampling transmission trees,

i.e. Z � G(.)

T the genealogy of the considered isolates in a transmission

cluster; here T is a matrix that describes the time to

most recent common ancestor for all the pairs of

considered isolates

TZ a matrix describing for two different infectees the time of

coalescence along the transmission tree

L(.) proposal distribution for sampling the genealogy of the

isolates (i.e. T � L(.)) we use the posterior

distribution of T as L(.)

SZ(k) a set all the different sequences of k branches of tree Z,

each extant during the follow-up

x a particular combination of branches, i.e. x [ SZ(k)

C(.) posterior predictive distribution for the time span of

infectiousness for a household; in our application this

corresponds to the distribution for the branch lengths

for transmission trees Z

r the rate at which infectious households infect each other
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and transmission trees are easy to sample and the data already

define to a considerable degree what characteristics they must have.

(i) The importance weight of Z
For evaluating the likelihood of observations for a proposed Z,

we consider all different vectors of length k in which the elements

correspond to different branches of Z that were extant during the

follow-up [ts, te]. We denote this set by SZ(k), and the elements of

this set with x. Furthermore, we denote with fk ¼ O(Z )g the

event that a total of k branches were observed from tree Z
during the follow-up. In addition, fx, tjZ )g denotes the event

in which exactly the branches x were observed exactly at times

t from Z. Finally, with fgjx, t, Zg, we denote the event that the

isolates collected at times t from branches x of the tree Z
would have genotypes as in g.

Because G(.) can be regarded as the prior distribution for Z,

the target of our inference is the posterior distribution

P(Zjt, g) ¼ c � P(t, gjZ)G(Z), where c is a constant. The impor-

tance weight, w(Z ), of proposed tree Z is the ratio of the

probability of Z under target distribution to the probability of

Z under the proposal distribution. Because G(.) is also the propo-

sal distribution, and c does not depend on Z, the importance

weight can be defined as the likelihood P(t, gjZ ). The likelihood

factorizes in terms of SZ(k)

w(Z) ¼ P(t, gjZ)

/ P({k ¼ O(Z)})
X

x[SZ(k)

P({x, tjZ}jk ¼ O(Z))P({gjx, t, Z}),

(2:1)

where P(fx, tjZgjk ¼ O(Z)) is the conditional probability of

observing branches x at times t from Z, conditional that k
branches were observed from Z during the follow-up. If (2.1)

was intractable, the observation process can be simulated several

times on Z, and the resulting ‘pseudo-observations’ can be com-

pared with actual data, as done in the methods of approximate

Bayesian computation [18]. Conditional on a given tree Z, sets
of branches have specific weights, given by

w(x, Z) ¼ P({x, tjZ}jk ¼ O(Z))P({gjx, t, Z}): (2:2)

(ii) The sampling scheme
The proposed sampling scheme is the following:

(1) Sample a genealogy T for the isolates from L(.).

(2) Sample a transmission tree Z from G(.) initiated at the earliest

coalescence time in T. Information on branches born after the

end of the follow-up te can be disregarded.

(3) Allocate importance weights w(x, Z ) to sets of branches for

all x[SZ(k) as defined in equation (2.2).

(4) Allocate an importance weight for the sampled tree

w(Z) ¼ P({k ¼ O(Z)})
X

x[SZ(k)

w(x, Z): (2:3)

We illustrate the proposed sampling scheme in figure 1. Above

steps 1–4 are repeated until sufficiently many transmission trees

with considerable importance weights are obtained. After the

sampling, the obtained importance weights, w(Z), are normalized,

and the transmission trees are resampled according to the weights.

Subsequently, for each resampled transmission tree, a vector

x[SZ(k) is sampled with a probability proportional to w(x,Z).

Then, the distribution of the number of transmission links between

the sampled x in the corresponding trees corresponds to the pos-

terior distribution of transmission links between the actual hosts

in the data.
(iii) Constructing G (.) for the refugee camp data
For the Mae La data, we were interested in studying trans-

missions from household to another. To obtain a sampling

distribution G(.) for household-to-household transmission trees,

we first fitted a transmission model for within-household trans-
mission dynamics, similar to [18], and to longitudinal serotypic

observations from households. The model assumes that house-

hold members face a constant infection pressure from the

community, but transmissions between the household members

occur as in a stochastic multi-strain susceptible–infectious–

susceptible (SIS) model, with competition between the strains.

We allowed the adults to have different susceptibility and rate

of clearance than the infants, which corresponds to the immunity

that is gained with age. The description of the model and the fit-

ting procedure together with the results are provided in the

electronic supplementary material. The posterior distribution of

the parameters of the within-household transmission process

induces a posterior predictive distribution of the time period

an infection circulates within a household, denoted with C(.).

We assume that each household is equally infectious as long

as at least one household member is infectious. At the meta-

population level, we assume the population of households is

well mixed and pneumococcal population is at its endemic equi-

librium, which is supported by the exploratory analysis of the

data (see electronic supplementary material) [14]. Therefore,

each infected household is expected to infect on average one

other household. This assumption, together with the distribution

for the infectious periods, allows us to solve the rate r at which a

household infects other households from the equationð
t

rtC(t)dt ¼ 1: (2:4)

Information on r together with the distribution C(.) yields G(.),

from which it is easy to sample as shown in the electronic

supplementary material. We also show in the electronic sup-

plementary material, figure S4 that there is not significant

seasonality in colonization, which validates our assumption on

constant r.
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Figure 1. Our framework begins by (1) sampling the unknown coalescence times of isolates from their posterior L(.), and mapping them to the same time axis
with the observation times of isolates. In (2), transmission tree is proposed from G(.) and initiated at TMRCA of all the isolates that were sampled previously. For
calculating the importance weight of transmission tree, we evaluate the likelihood that under the observation model the resulting observations are consistent with
both the genealogy and observation times (3). By repeating steps (1), (2) and (3), a weighted sample of transmission trees is obtained for isolates A, B and C. In the
illustrated transmission trees, horizontal lines denote infectious periods within one host, and vertical lines denote new infections from that host. In (3), we have
illustrated potential outcomes of the observation process by marking the observed infections in orange. Some of such observations would be incompatible with
information in step (1) and lead to a likelihood of zero of being observed. For instance, the ‘pseudo-observations’ in the middle panel at top would yield zero
contribution to the importance weight, because none of the orange lines were alive at observation time B. Similarly, the bottom example in the left panel is
inconsistent with observations, because it is impossible allocate the labels A, B and C to the orange branches so that each branch would be alive at the correspond-
ing observation time and the lineages of isolates B and C could coalesce at the required time (denoted by the red dot). Finally, the rightmost transmission tree will
be assigned zero weight, because there are no extant infections at the observation time C.
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(iv) The alternative observation models
To assess the importance weight in steps 3 and 4 of the sampling,

one needs to define an observation model for data collection,

defining the probabilities for events fk ¼ O(Z )g and fx, tjZ )g.
This observation model should mimic the process under which

data were collected, and incorporate features such as whether

infections (i.e. branches) were observed independently of each

other, whether there were some intensive sampling periods,

and whether infections are more likely to be observed within a

certain phase of infection.

In addition, a model for genotypes within transmission trees

that defines probabilities of events fgjx,t,Zg is needed. In our appli-

cation, we set the time origin by sampling a genealogy T from L(.)

before proposing Z from G(.). In addition, instead of considering
P(fgjx, t, Zg) in the calculation of likelihood in (2.1), we evaluate

P(fTjx, t, Zg) for the currently sampled T. To see that this is appro-

priate, let P(gjT) denote the likelihood of observed genotypes given

the genealogy T of the isolates. Then, assuming that g is con-

ditionally independent of other information given T, we may

write
P

TP(gjT)P(Tjt, x, Z) as the likelihood of genotypes given a

transmission tree Z and the observed t, x. Assuming a constant

prior on the genealogies and noting that P(gjT) is proportional to

the posterior P(Tjg), we may effectively approximate the likelihood

calculation by simulating genealogies T from the posterior P(Tjg)

and evaluating P(Tjt, x, Z) for them. Alternatively, one could also

consider the probabilities of events fgjx, t, Zg directly.

In our application, for T, we consider only the coalescence

times of for all the isolates in the data (i.e. T(i,j ) defines the
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TMRCA for isolates i and j). To define P(Tjx, t, Z ), we thus

specify a model that defines for every pair i, j of branches of in

the tree Z the probability of coalescence at time T(i,j ). We

denote with TZ a matrix that is obtained from a transmission

tree Z, which defines for every two infected individuals the

time in the past when their lineages along the transmission tree

coalesce to a single host. For instance, if TZ(x(i), x( j )) , T(x(i),
x( j )), then P(fTjx, t, Zg) ¼ 0. In general, P(fTjx, t, Zg) would

depend on within-host population sizes of the pathogen and

the possible transmission bottlenecks.

We call sets of branches x of Z consistent with data and T if

for every pair of branches in i, j[x it holds that TZ(i, j ) . Ti,j

and if for every observation time in the data t(i) the corres-

ponding branch i of Z is extant at t(i). For each set of branches

that is not consistent with data and T, it will always hold that

w(x, Z) ¼ 0. How the consistent sets of branches are further

weighted against each other depends on the further assumptions

made on the observation process.

The data considered here were not collected according to a

specific process, as the genotypes of isolates were sequenced

selectively and also the swabs were collected both routinely

and occasionally from diseased children. To study the robustness

of our conclusions, we considered the following six alternative

models for observations:

— Model 1. Infections are observed independently of each other

with a probability p. The actual time they are observed is uni-

formly distributed over the time of infectiousness.

— Model 2. Infections are observed independently of each other

with a probability p. The actual time an infection is observed

is uniformly distributed over the time of infectiousness, if the

infection period was shorter than one month. If the infection

period was longer than a month, the time of observation has

a truncated gamma distribution centred at the 30 days from

the beginning of the infection. Thus, long infection periods

are more probably observed at the beginning of the infectious

period.

— Model 3. Infections are observed independently of each other,

but the probability of an infection being observed is pro-

portional to the length of the infectious period. The actual

time they are observed is uniformly distributed over the

time of infectiousness.

— Model 4. Observations are collected as in model 1, but

P(fTjx,t,Zg) is defined so that genotypic lineages, once in

the same host, are more likely to coalesce during the infection

period of the host than to remain as separate lineages that

were both transmitted from the source of infection.

— Model 5. In this model, data are collected as in model 3, but

the transmission bottlenecks are penalized as in model 4.

— Model 6. Data are collected as in model 2, and the trans-

mission bottlenecks are penalized as in model 4.

In the electronic supplementary material, we show how the elements

of the importance weights in equation (2.3) can be calculated under

each of the six models above.

3. Results
To illustrate the framework presented here, we implemented

the presented scheme on observations considering the most

prevalent serotypes. The data were clustered as described in

the electronic supplementary material. This resulted in 53

separate data clusters with a total of 103 pairs of households

among whom transmission was considered plausible. Each

data cluster was analysed independently of the others using

the framework described above. In our application, we

assumed the topology of the genealogy to be fixed for each

cluster and given by the parsimony tree, and sampled only
the coalescence times from the posterior. In the electronic

supplementary material, we show how we sample from the

posterior distribution of T, conditional on the parsimonious

phylogenetic tree. Assuming fixed genealogy might produce

overconfident results considering transmission links, when

data clusters of more than two isolates are considered. There-

fore, the topology could also be considered uncertain, and the

genealogies could be sampled using, for instance, standard

bootstrap techniques.

(a) From within-household dynamics to between-
household transmission trees G(.)

The estimated within-household dynamics indicate frequent

transmissions between the family members. For a susceptible

infant, it is approximately 4.5 times more probable to be

infected from any infectious family member per day than

from the community outside the household. Because the

infections could circulate within the household for very variable

amounts of time, the posterior predictive distribution for the

lengths of infectious periods C(.) is predicted to be highly

skewed, having a 95% credibility interval (CI) of [1, 345] days,

whereas the posterior mean is 62 days. The rate r at which

infectious households infect each other was estimated to

be r ¼ 0.016 per day. Combining the inferences about the

lengths of the infectious periods for households and the rate

of infecting other households, we predict that approximately

53% of the infected households infect no other household,

but still 11% of the infected households will infect four or

more other households. The mean generation time interval

for the household-to-household transmissions is predicted to

be 92 days, with 95% CI being [2, 352] days. In figure 3, several

examples of transmission trees sampled from G(.) are shown.

The statistical properties of G(.) are shown in detail in the

electronic supplementary material, figure S3.

(b) The predicted transmission links
In figure 2, we show for 10 hypothetical pairs of observations

and for six different observation models the posterior distri-

bution of the number of transmission links. All these cases

were treated as independent of the rest of the data, thus belong-

ing to clusters consisting of two isolates only. As expected,

small differences in genomes or between the observation

times indicate lesser transmission links between the cases.

However, observation model strongly influences the predic-

tions: even for cases A and G, which a priori appear likely to

be due to direct transmission based on their small genotypic

and temporal distance, the probability of direct transmission

can vary from 0.2 to 0.8, depending on the assumed obser-

vation model. Most direct transmissions are predicted

between the cases under model 3, in which the longer infec-

tions are more prone to be observed. Under this model, the

observations in the data are more likely from relatively long

infectious periods and thus also more likely have produced

several secondary infections, therefore the number of second-

ary infections produced by an infection is correlating with

the probability of an infection to be observed. On the other

hand, inclusion of transmission bottlenecks in the observation

model, as in models 4–6, decreases the probability of direct

transmission for all the data collection models.

In figure 3, we show 12 transmission trees sampled from

the posterior distribution for case G in previous figure 2,
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Figure 2. Histogram approximations to the posterior predictive distribution for transmission links. Each column corresponds to a different case of isolates and each
row to a different observation model. Below each histogram, we show the estimated probability of direct transmission ( p) and the posterior mean for transmission
links (a).

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20141324

6

conditional on observation model 4. This is a pair of isolates

collected 100 days apart from each other and who have one

different SNP. In figure 4, we show for the same trees as in

figure 3 the tree topology of the subtree that connects

branches alive at the observation times to their MRCA.

From these figures 3 and 4, we can assess what sort of trees

acquire large importance weights. If a transmission tree has

too few branches in total, the likelihood of observing two

branches is low, as in case (k), whereas if the tree has numer-

ous branches during the follow-up, we would expect to see

more than two branches, as in case (a). Conditional on a cer-

tain total size of the tree, larger weights are obtained when

there exist several different pairs of branches, for which the

first one is extant at the first observation time (red marks in

figure 4) and the second at the second observation time

(blue marks in figure 4). The trees getting large weights are

thus the ones that have several branches at the times of obser-

vations but which go extinct soon after that, but such trees do

not have high probability in our branching process model for

transmission trees. Still, as the observation model 4 penalizes

for transmission bottlenecks, transmission trees such as (g)

and (l) obtain lower weights. This is because a randomly

sampled consistent pair of observations might coalesce after

several transmissions along the transmission tree, as seen

from figure 4.

In figure 5, we summarize the predictions considering the

actual Mae La data averaged over the six observation models.
In the electronic supplementary material, figures S8 and S9,

we show for the different observation models the probabilities

of direct transmission and the average number of transmission

links predicted by the separate models. For many pairs of

isolates with close temporal proximity and almost identical gen-

otypes, the probability of direct transmission is only around 0.2,

but the majority of them are linked through fewer than four

transmission links. We also see that there exists a lot of variation

in predictions between fairly similar pairs of observations. This

emphasizes the relevance of the different sources of information,

because the pairwise temporal and genotypic distances between

pairs of isolates alone are not sufficient for the inferences.

Indeed, while the majority of data were clustered into clusters

of size 2, in bigger clusters, the information content is different.

In addition, the actual times of observations matter. For

instance, two observations close to the end of the follow-up

could be due to a recent rapidly expanding epidemic, whereas

this is not as likely for observations in the beginning of the

follow-up, because if the epidemic had a rapid expansion, we

would expect to observe more isolates from this epidemic

later during the follow-up.
(c) Interpreting the results
Our results indicate that finding many certain cases of direct

transmission is highly unlikely when the carrier population is

sparsely sampled, even when the genotype information as
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Figure 3. An illustration of the posterior distribution of transmission trees for a pair of isolates having two-SNP distance of one and being observed 100 days apart
from each other. The normalized weights of the 12 sampled trees are shown above each tree. We also show the number of branches alive at the first and second
observation time (A) and the total number of branches born during the follow-up (B). In each panel, time origin was set to the time of the most recent common
ancestor. Relative to that, vertical green lines mark the start and the end of the follow-up, and the lines and spheres in magenta show the branches alive at the two
observation times.
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Figure 4. The topology of the subtree tree connecting the branches alive at observation times, for the same trees as shown in figure 3. We show the branches alive
at first observation time in red, at both observation times in magenta and at the second observation time in blue.
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such would indicate close relatedness. However, identify-

ing hosts among whom only a few transmission events

have occurred can also bring insights about transmissions.
As we had the GPS coordinates of the locations of resi-

dence for most of the hosts in the data, we studied the

geographical distance of the households who were predicted
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Figure 5. (a) The posterior predictive probability of direct transmission and (b) the posterior mean for predicted transmission links for the pairs of households in the
data among whom transmission was considered plausible.
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to be closely related in the transmission tree. We studied the

pairs of households for which the posterior mean number of

transmission links was lowest. For all six observation

models, the closest ranked pairs of households in terms of

transmission links also had on average much closer geo-

graphical proximity to each other than would be expected

by chance. For instance, when considering the posterior

mean of links averaged over the six observation models,

the 15 closest ranked pairs of households had on average a

distance of 286 m from each other, whereas the average

geographical distance between all the households in the

data is 1022 m. These pairs are shown in figure 6. In the

electronic supplementary material, §8, we show in more

detail the effect of different observation models, and also

the null distribution for the mean distance for 15 random

pairs of households, under which the observed 286 m is

highly improbable.

While there are differences between the observation

models in terms of the predicted transmission links, all the

models are consistent with the above spatial observation.

This actually constitutes very strong evidence for localized

transmissions: if these households are likely to be linked by

a few intermediate hosts in the transmission tree and not by

a direct transmission, as predicted by our analysis, and they

still appear geographically significantly close to each other,

the direct transmissions seem even more likely to be localized.

Even in a small area like Mae La, with length of few kilometres

and width of less than 1 km, transmissions thus occur more

often between closer neighbours. It is still unknown whether

this is because the neighbours have more direct interaction

or, for instance, if they share a water supply.
4. Discussion
We have presented a Bayesian approach for analysing

transmission events for a partially sampled temporal data

of genotypic isolates of infectious pathogens. The approach

was based on the insight that some features of the data

are informative about the transmission process in general,

whereas the other features are mostly informative about the
genealogy of the particular isolates collected. Importantly,

both types of information are necessary for making inferences

about actual transmission trees.

We are aware that there exist various tools for inferring

the nature of transmission dynamics directly from the phylo-

geny [6,2,3,17]. We present an alternative approach based on

importance sampling that is not tied to any particular model

for transmissions or observations. In many cases, trans-

mission trees are even a priori known to have complicated

features, such as some particular heterogeneity in the

number of secondary infections produced by an infected indi-

vidual. Such heterogeneity was a predominant feature of

the data considered here, because the duration of within-

household epidemics had such a large variation. When

previous estimates about the transmission dynamics are

available, or if some other epidemiological inference methods

can be used to unravel them, it is optimal to use such infor-

mation by introducing a corresponding importance

distribution. This is particularly important because recent

studies [19,20] suggest identifiability issues if contact structure

or other epidemic properties are inferred from phylogeny with-

out any other prior information about the transmission

dynamics. Motivated by these findings, we first made infer-

ences about the transmission process without using the

sequence data to construct a proposal distribution for trans-

mission trees. Then, each proposed transmission tree was

assigned an importance weight by evaluating the overall prob-

ability of the observed infections and their genealogy. The key

advantage of such an approach is its generality, because it

allows for inference of transmission links under any kind of

model for transmissions and observations. The characteristics

of the transmission model affect the relevant features of the

transmission tree, such as the offspring distribution, whereas

the observation model allocates a posterior probability for

each tree, and consequently has substantial influence on the

transmission link probabilities. This was highlighted by our

observations on the different predictions under the different

observation models. This emphasizes the importance of

careful study design and observation model assessment.

To make the analysis computationally tractable, we clus-

tered the observations into smallest possible subsets of data
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that could be argued to have emerged from a process that

was independent of the process that generated the rest of

the data. While such clustering can be assumed to exist, it

may be more uncertain how best to identify it. Because we

observed that the clustering influences the nature of predic-

tions for transmissions, developing statistical methods for

this would be a relevant topic for future investigations. As

for the computational feasibility, we stress that our approach

enjoys a high level of parallelizability, as one simulated trans-

mission tree could be weighted with respect to different data

clusters, and different observation models.

The independence assumption for different branches of the

tree is not expected to be valid in general. For large populations

and endemic pathogens, such as the one analysed here, such an

assumption is reasonably justified. For emerging diseases, the
assumption of independence could be made to hold by forcing

the branching process model to take into account the rate of

epidemic growth as a function of time from the beginning of

the epidemic. We are aware of the many other simplifying

assumptions used in this study concerning the model of evol-

ution, transmission and the observation process. However,

our main focus is to present a general conceptual framework

that can be modified and extended to suit a wide range of situ-

ations, such that transmissions can be considered under

interesting models in a feasible manner.

Data accessibility. The references to full-genome data are given in refer-
ence [13]. The parsimony trees can be found in Dryad (doi:10.
5061/dryad.8d2f6).
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