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Abstract. Substantial research attention has been directed 
at exploring the mechanisms and treatment of renal cell 
carcinoma (RCC). Indeed, the association between inflamma‑
tion and tumor phenotypes has been at the center of cancer 
research. Concomitant with research on the inflammation 
response and inflammatory molecules involved in RCC, new 
breakthroughs have emerged. A large body of knowledge now 
shows that treatments targeting inflammation and immunity in 
RCC provide substantial clinical benefits. Adequate analysis 
and a better understanding of the mechanisms of inflammatory 
factors in the occurrence and progression of RCC are highly 
desirable. Currently, numerous RCC treatments targeted at 
inflammation and immunotherapy are available. The current 
review describes in detail the link between inflammation and 
RCC.
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1. Introduction

Renal cell carcinoma (RCC) originates from the renal paren‑
chyma and is the most common subtype of kidney cancer (1). 
According to 2018 GLOBOCAN data, RCC accounts for up 
to 2.4% of all cancer cases, with an estimated 338,000 patients 
diagnosed globally each year (2). It has been shown that 
25‑30% of affected patients have metastatic disease and there‑
fore poor survival outcomes (3). Surgery remains the most 
effective treatment for both localized and locally advanced 
RCC, with those patients with RCC who receive surgical exci‑
sion showing a good prognosis. However, the total recurrence 
rate after surgical resection is high, estimated at 35% (4).

Although there is now a greater understanding of the 
occurrence and development of RCC based on previous 
research, the clinical prognosis of patients with regard to the 
biological behavioral characteristics of RCC is still unsatisfac‑
tory. In recent years, the association between inflammation and 
tumors has become the focus of cancer research. Inflammation 
is a fundamental innate immune response to perturbed tissue 
homeostasis (5). Numerous studies have shown that inflam‑
matory molecules and pathways play an important role in 
the development of cancer, such as breast cancer, pancreatic 
cancer, colorectal cancer, colon cancer, rectal cancer, prostate 
cancer, bladder cancer, lung cancer and ovarian cancer (6‑8). 
Inflammation is highly associated with RCC, and participates 
in the development of RCC tumors, which are considered to be 
immunogenic (9,10). The present review summarizes the main 
inflammatory response features in RCC, focusing primarily 
on immune‑related molecules and immunotherapy to elucidate 
the association between inflammation and RCC, and its role in 
the treatment of RCC.
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2. Close association of inflammation with the occurrence 
and development of cancer

Inflammation is considered a hallmark of cancer development. 
It is estimated that potential infections and inflammatory 
responses contribute to 15‑20% of cancer‑associated deaths 
globally (11). Evidence shows that the inflammatory response 
plays a vital role in the occurrence and development of 
tumors (12). Inflammatory bodies, cytokines, chemokines, 
transcription factors and immune cells drive the inflam‑
matory tumor microenvironment (TME) through multiple 
inflammation‑associated pathways. It is now increasingly 
being recognized that inflammation is inextricably linked to 
cancer (5,13,14). Growth factors alter endocytosis and receptor 
cycling in cancer cells through several pathways, inhibition 
of negative feedback mechanisms that attenuate growth and 
enhancement of receptor‑like tyrosine kinases to enrich prolif‑
eration‑related downstream signaling (15). These changes 
increase genetic mutations and anti‑apoptotic signaling, and 
promote angiogenesis, thereby promoting cancer progres‑
sion (6,16,17).

3. Role and mechanism of inflammation in the development 
of RCC

Inflammation is the natural defense mechanism of the body 
against microbial infection and other noxious stimuli, which 
inevitably cause tissue damage. Inflammatory cells accumulate 
at the site of injury, secrete a large amount of inflammatory 
mediators, promote tissue breakdown and enhance the defense 
of the host against potential pathogens (18,19). Inflammation 
is divided into acute inflammation and chronic inflammation. 
Acute inflammation contributes to cancer regression (7,20), 
whereas chronic inflammation promotes cancer progres‑
sion (21). Currently, details regarding the pathogenesis of 
cancer arising from inflammation are accumulating at an expo‑
nential rate. There are two different modes for the association 
between inflammation and cancer, namely the intrinsic and 
extrinsic pathways (22). DNA damage, chromosomal insta‑
bility and epigenetic changes lead to aberrant gene expression, 
which is a key feature of intrinsic pathways. Inflammatory 
signals caused by infections and autoimmune diseases are 
associated with extrinsic pathways. A variety of important 
transcription factors, including nuclear factor‑κB (NF‑κB) and 
signal transducer and activator of transcription 3 (STAT3) are 
activated in these two pathways and drive the inflammatory 
cascade (23,24).

4. Important inflammation‑related pathways in the 
development of RCC

Inflammation and RCC are closely associated, and numerous 
inflammatory pathways interact with RCC. Four of these 
pathways that are particularly important include the 
Von Hippel‑Lindau (VHL), mechanistic target of rapamycin 
(mTOR), tumor necrosis factor (TNF) and STAT pathways.

VHL pathway. VHL is a gene that suppresses the develop‑
ment of RCC and has the highest mutation rate among 
other genes involved in RCC (25,26). The main function of 

VHL is to control the oxygen‑sensing mechanism of cells 
by regulating the hypoxia‑inducible factor (HIF) α subunits 
(‑1α, ‑2α and ‑3α) (27‑29). HIF is a heterodimeric transcrip‑
tion factor composed of two subunits, HIF‑α and HIF‑β (30). 
Although the β‑subunit of HIF is constitutively expressed, 
HIF‑α protein is only expressed under hypoxic conditions and 
when VHL is inactivated (31). VHL promotes the degrada‑
tion of HIF‑α under normoxic conditions to keep the HIF‑α 
subunit level low (32). Under hypoxic conditions, VHL is 
inactivated, leading to the accumulation of HIF‑α, which 
binds to HIF‑β and forms heterodimers that activate target 
genes. Therefore, the inactivation of VHL in RCC results in 
the upregulation of HIF‑α isoforms, hence an increase in HIF, 
thereby activating the downstream carcinogenesis‑related 
genes such as those associated with angiogenesis [vascular 
endothelial growth factor A  (VEGFA) and platelet‑derived 
growth factor β (PDGF‑β)], erythropoiesis (erythropoietin) 
and glycolysis (solute carrier family 2 member 1). This causes 
tumor development processes such as cell growth, survival 
(cyclin G2 and transforming growth factor‑α are increased) 
and migration [C‑X‑C motif chemokine receptor 4 (CXCR4) is 
increased] to be enhanced (33‑35).

mTOR pathway. mTOR is a member of the protein kinase 
phosphatidylinositol 3‑kinase (PI3K)‑associated kinase 
family, which plays a key role in cell growth, cell prolifera‑
tion, cell motility, cell survival, protein synthesis, autophagy 
and transcription (36). mTOR is composed of two complexes, 
mTOR complex 1 (mTORC1) and mTORC2, containing 
two different scaffolding proteins (37,38). mTORC1 can be 
activated by growth factors and amino acids to promote cell 
growth (e.g., increases in cell size and mass) and cell prolif‑
eration. Activation of mTORC2 contributes to the regulation 
of cell polarity and the actin cytoskeleton (39,40). mTOR is 
closely associated with the incidence of RCC. AKT, a molecule 
with an important role in the mTOR pathway, can be activated 
by inflammation, which causes tumorigenesis through mTOR 
signal transduction (41). Mutations in associated genes and 
inflammation lead to an increase in the incidence of metastatic 
RCC after an increase in mTOR activity (Fig. 1). Functional 
deletion mutations of the mTOR negative regulator PTEN, 
via the PI3K/AKT pathway, occur in ~5% of patients with 
RCC (42,43). Furthermore, the increased constitutive activity 
of mTORC1 promotes the proliferation and invasiveness of 
metastatic RCC (44). This is since the increased activity of 
mTORC1 promotes cell growth and proliferation (45). In addi‑
tion, mTORC1 increases the level of HIF‑1α in cells, thereby 
activating the production of proangiogenic factors such as 
VEGF, PDGF‑α and TNF‑α (46). In certain patients with RCC, 
activation of mTORC1 is mediated by a phosphatase PTEN 
loss‑of‑function mutation, which negatively regulates mTORC1 
via the upstream PI3K/AKT pathway (47). Additionally, the 
occurrence of RCC in patients with tuberous sclerosis is due 
to mutations in tuberous sclerosis complex interfering with its 
negative regulation of mTORC1 activity (48,49).

TNF pathway. TNF is a multifunctional pro‑inflammatory 
cytokine secreted by macrophages and is the core driver 
of inflammatory responses (50). TNF binds and functions 
through its two different receptors, TNF receptor 1 (TNFR1) 
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and TNFR2 (51). TNFR1 is mainly expressed in endothelial 
cells in normal kidneys; it can activate apoptotic signal 
kinase 1 and NF‑κB leading to cell death (52). TNFR2 
is expressed primarily on damaged endothelial cells and 
tubular epithelial cells (TECs), which can activate endo‑
thelial/epithelial tyrosine kinase (Etk) and transactivate 
VEGF receptor 2 (VEGFR2) to promote cell prolifera‑
tion (53). Aberrant expression of TNFR2 on tumor cells has 
been found in human RCC (54). The expression of TNFR2 
in RCC is associated with grade of malignancy (55). 
Al‑Lamki et al (56) showed that TNF is an autocrine growth 
factor that selectively promotes clear cell RCC (ccRCC) 
progression via the TNFR2/Etk/VEGFR2 pathway (56). It 
was earlier reported that TNF‑α selectively activates the 
TNFR2 response, leading to activation of epithelial cells and 
Etk, and apparent transactivation of VEGR‑2 phosphorylation 
at Tyr(P)‑1054‑1059. This pathway promotes the activation 
of NF‑κB, which participates in tumor malignancy (55). The 
activation of NF‑κB triggers transcription of anti‑apoptotic 
proteins, including apoptosis inhibitors [cellular inhibitor 
of apoptosis proteins (c‑IAPs)], cFLICE (procaspase‑8) 
inhibitory protein (c‑FLIP), mitogen‑activated protein kinase 
(MAPK)‑specific phosphatase and A20 (57). In addition, 
myeloid‑derived suppressor cells (MDSCs) contribute to 
tumor immune evasion. Recent studies have shown that the 
generation, accumulation and function of MDSCs depend 
on TNF‑TNFR2 signaling (58‑60). Thus, the activation of 
TNFR2 can promote the progression of RCC.

STAT pathway. The STAT proteins are a family of cytoplasmic 
transcription factors comprising seven members, STAT1, 
STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. 

Since cancer cells are more dependent on the activity of 
these proteins than their normal counterparts, STAT proteins 
are considered to be ideal targets for anticancer therapy (61). 
STAT3 is a potential transcription factor that mediates extra‑
cellular signals, such as cytokines and growth factors, by 
interacting with cell surface polypeptide receptors. Studies 
have shown that STAT3 promotes RCC occurrence and devel‑
opment (62‑64). STAT3 responds to extracellular stimuli and 
is activated after tyrosine phosphorylation. Phosphorylated 
STAT3 dimerizes and translocates to the nucleus where it then 
binds the sequence‑specific DNA elements, thereby activating 
transcription of the target gene (65). Cancer‑associated inflam‑
matory mediators, such as the interleukin (IL)‑6 and IL‑10 
cytokine families, recruit Janus kinase (JAK) family members 
(JAK1, JAK2 and TYK2) to activate STAT3 phosphoryla‑
tion after cross‑phosphorylation. STAT3 forms homodimers 
in the cytoplasm, which migrate to the nucleus to regulate 
gene expression that leads to cancer (66). Numerous lines of 
evidence have reported that STAT3 regulates genes that play 
important roles in cell physiology, including the cell cycle, 
apoptosis, inflammatory immunity, metabolism and angiogen‑
esis (67‑69). Enhanced STAT3 activity can block the process 
of apoptosis and induce the upregulation of Cyclin D1, c‑Myc 
and Survivin expression, resulting in abnormal cell prolifera‑
tion (70). STAT has also been extensively studied in the field 
of RCC. Studies have shown that activated STAT3 is a poten‑
tial regulator of HIF‑1, which mediates VEGF expression in 
RCC (71,72). The aforementioned findings show that STAT 
affects not only gene expression through the JAK/STAT3 
pathway, but also the expression of VEGF by regulating HIF‑1. 
In this way, it affects the occurrence and progression of renal 
cancer.

Figure 1. mTOR pathway affects tumor cell growth and proliferation. mTOR consists of two intracellular complexes, mTORC1 and mTORC2. Growth factors 
and amino acids activate mTORC1, thereby activating lipid kinase PI3K. Phosphorylation of PIP2 by PI3K then produces PIP3, which phosphorylates and 
activates AKT via the intermediate kinase PDK1. PTEN is a phosphatase that negatively regulates PI3K to dephosphorylate PIP3 back to PIP2. Once this 
pathway is activated, AKT phosphorylates and inhibits the TSC phosphorylation (AKT can also be activated by mTORC2). TSC is able to negatively regulate 
mTORC1 by inhibiting Rheb, a GTP‑binding protein. AKT can disable this inhibition and activate the mTOR pathway. AMPK reduces cellular ATP storage 
and increases the AMP:ATP ratio, inhibiting mTOR by the phosphorylation and activation of TSC2. After AKT is activated, mTORC1 phosphorylates p70S6K 
and 4EBP to promote protein translation and enhance cell growth. mTOR, mechanistic target of rapamycin; mTORC, mTOR complex; PI3K, phosphati‑
dylinositol 3‑kinase; PIP2, phosphatidylinositol 4,5‑bisphosphate; PIP3, phosphatidylinositol‑3,4,5‑triphosphate; TSC, tuberous sclerosis complex; Rheb, Ras 
homolog enriched in brain; PDK1, 3‑phosphoinositol‑dependent kinase‑1; p70S6K, 70 kDa ribosomal protein S6 kinase; 4EBP, eukaryotic translation initia‑
tion factor 4E‑binding protein 21.
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5. Role of inflammation factors and immune‑related cells 
in the occurrence and progression of RCC

A variety of inflammatory factors and immune‑related cells are 
involved in the interactions between inflammation and RCC, 
where they play an important role. Cytokines, chemokines 
and other small inflammatory proteins from host cells coor‑
dinate intracellular communication in the TME. Continuous 
crosstalk between cells is critical for tumor growth, invasion, 
angiogenesis and metastatic spread (9). The present review 
focuses on the major contributors to tumor‑associated inflam‑
mation and local immune responses, including cytokines and 
chemokine receptors, transcription factors and immune‑related 
cells (Fig. 2).

Cytokines
IL‑6. IL‑6 is an inflammatory cytokine with multiple 
biological effects; it is composed of 184 amino acids, with 
a molecular weight of 21‑28 kDa. IL‑6 has a 4‑helix bundle 
structure consisting of 4 long α‑helices (73‑75). It has been 
reported that enhancing the production of IL‑6 stimulates the 
expression of proinflammatory factors, such as IL‑1, TNF‑α, 
interferons, bacterial endotoxin and lipopolysaccharide or 
viral infection (76,77). Numerous studies have explored the 
role of IL‑6 in kidney functions. Renal cortical tissue and 
kidney cancer tissue can produce IL‑6 (78). IL‑6 is expressed 
in most RCC cell lines and in patient tissues, and it plays 
an important role in the proliferation of RCC cells (78). 
Mechanistic studies showed that IL‑6 activates IL‑6 receptor 
(IL‑6R) and glycoprotein 130 (gp130), causing phosphoryla‑
tion of the tyrosine kinases JAK1, JAK2 and TYK2. This 
results in phosphorylation of STAT3 (79). Pathophysiological 
conditions play an important role in the regulation of IL‑6. 
The transcriptional signal of IL‑6 appears to be activated only 
during immune stress, and the IL‑6/soluble IL‑6R complex 

is usually upregulated in pathophysiological conditions (80). 
Matsumoto et al (81) indicated that tumor endothelial cells 
upregulate the expression of gp130 and downregulate the 
expression of membrane‑bound IL‑6R through the IL‑6/IL‑6sR 
complex, leading to cell proliferation, inhibition of apoptosis 
and enhancement of tumor development. IL‑6 inhibits STAT1 
phosphorylation, enhances STAT3 phosphorylation, promotes 
RCC proliferation and blunts the antitumor effect of IFN (82). 
Meanwhile, studies have shown that IL‑6‑activated plasma 
membrane‑associated sialidase (NEU3) may also contribute to 
the expression of malignant phenotypes in RCC (83) (Fig. 3).

TNF. TNF is a potent pro‑inflammatory cytokine that mediates 
complex biological responses, including inflammation, anti‑
viral response, septic shock and apoptotic cell death (84). TNF 
can trigger apoptosis through the caspase‑protease pathway 
and the NF‑κB pathway. In the NF‑κB pathway, TNF binds 
to TNFR to activate atypical protein kinase C and phosphory‑
lates inhibitor of nuclear factor‑κB kinase subunit β (IKKβ). 
Subsequently, the activated IKKβ phosphorylates inhibitor of 
NF‑κB (IκB), resulting in ubiquitin‑mediated degradation of 
IκB. NF‑κB is released after IκB degradation and translocated 
into the nucleus where it activates the transcription of a number 
of anti‑apoptotic genes, including the c‑FLIP and c‑IAP fami‑
lies (85,86). It has been shown that TNF‑α regulates RCC cells 
growth by modulating the NF‑κB‑mediated anti‑apoptotic 
pathway (55). Harrison et al (87) used an anti‑TNF monoclonal 
antibody, infliximab, in two phase II clinical trials in patients 
with locally advanced and metastatic RCC. It was found 
that targeting TNF may be a beneficial therapeutic approach 
for cancer management. A previous study has reported that 
patients with high serum inflammatory cytokine levels in RCC 
have a poor prognosis, thus, TNF‑α can be used as an inde‑
pendent prognostic indicator. Normal TNF‑α plasma levels are 
high predictors of good prognosis in untreated patients (88).

Figure 2. Inflammatory molecules associated with RCC. The role of different inflammatory factors and immune cells in RCC‑promoting inflammation 
and RCC tumor immunity. RCC, renal cell carcinoma; IL, interleukin; STAT, signal transducer and activator of transcription; TNF, tumor necrosis factor; 
NF‑κΒ, nuclear factor‑κB; TRAIL, tumor necrosis factor‑related apoptosis‑inducing ligand; CSF‑1, colony‑stimulating factor 1; CSF‑1R, CSF‑1 receptor; 
CXCL, chemokine (C‑X‑C motif) ligand; CXCR, CXC chemokine receptor; MMP, matrix metalloproteinase; TAM, tumor‑associated macrophage; 
MDSC, myeloid‑derived suppressor cell.
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TNF‑related apoptosis‑inducing ligand (TRAIL). TRAIL 
is a molecule belonging to the TNF superfamily; it is an 
effective anticancer agent as it specifically targets cancer 
cells while retaining normal cells, thereby inducing apop‑
tosis (89). TRAIL can bind to death receptor DR4 and 
DR5, and assembles a death‑inducing signaling complex 
by recruiting FAS‑associated protein associated with death 
domain and caspase‑8. Autocatalytic activation of caspase‑8 
leads to caspase cascade activation, ultimately leading to cell 
death (90). In cancer treatment, normal cells highly express 
decoy receptors DcR1 and DcR2, while cancer cells highly 
express death receptors DR4 and DR5 (89). TRAIL can bind to 
DR4 and DR5 and ultimately target cancer cell death (91). The 
complex formed by the binding of TRAIL to the DcR does not 
activate the apoptotic signaling pathway. Therefore, there is a 
weaker influence of TRAIL on the apoptosis of normal cells 
than cancer cells. Furthermore, TRAIL produced by immune 
cells has been shown to limit the progression of RCC (92).

Colony‑stimulating factor 1 (CSF‑1). CSF‑1 is an important 
regulator of macrophage homeostasis (93). Co‑expression of 
CSF‑1 and CSF‑1 receptor (CSF‑1R) promotes proliferation 
and anti‑apoptosis during regeneration of renal TECs. The 
CSF‑1‑dependent autocrine pathway is an important pathway 
for RCC growth. High levels of CSF‑1 and tumor‑associated 
macrophages (TAMs) are associated with a poor cancer 
prognosis. Co‑expression of CSF‑1 and CSF‑1R on RCCs 
and adjacent TECs promotes tumor proliferation and tumor 

metastasis (94). The paracrine interaction between tumor cells 
and TAMs promotes tumor cell migration, invasion and metas‑
tasis, accelerating the spread of tumors in the host (95,96). 
Tumor‑derived CSF‑1 regulates TAMs, while CSF‑1 and 
CSF‑1R co‑expression‑regulated macrophages affect the TME 
of the host (97,98). A study by Dosquet et al (88) indicated that 
the autocrine CSF‑1‑dependent RCC mechanism is the core 
of RCC growth, and that the binding of CSF‑1 to its unique 
cognate receptor CSF‑1R promotes the survival and prolifera‑
tion of RCC, and reduces apoptosis. Moreover, EGF induces 
CSF‑1 and CSF‑1R on RCC, thereby promoting tumor cell 
proliferation and inhibiting tumor cell apoptosis (99). This 
indicates that CSF‑1R signaling promotes the growth of RCC.

Chemokines and chemokine receptor
Chemokine (C‑X‑C motif) ligand (CXCL) and CXC chemokine 
receptor (CXCR). Chemokines are a subfamily of cytokines 
that contain ~50 different signaling proteins. Similar to 
other cytokines, chemokines affect cell behavior through 
both autocrine and paracrine modes (100). Chemokines 
and their receptors are involved in the regulation of growth, 
angiogenesis and metastasis of RCC (101). It has been shown 
that CXCR4 is an ideal target for tumor diagnosis and 
treatment (102). The expression of CXCR4 in most cases is 
associated with tumor‑specific survival in ccRCC with VHL 
mutations. A close association between VHL and CXCR4 has 
been observed. The VHL disease tumor suppressor (pVHL) is 
a protein that negatively regulates CXCR4. pVHL can target 

Figure 3. IL‑6 pathway promotes RCC development. IL‑6 (pink stars) binds first to the membrane‑bound non‑signaling IL‑6R (green diamonds). Non‑signaling 
IL‑6R is activated as IL‑6R (green square), which can be signal transduced. After recruitment of 2 gp130 (brown‑colored rectangular squares) molecules, the 
signaling complex is formed and signal transduction is induced (brown‑colored squares represent ‘dimerization of gp130’). Signaling via membrane‑bound 
IL‑6R can promote the development of RCC by activating STAT3, a potential regulator of HIF‑1‑mediated VEGF expression transcription. This may be associ‑
ated with the proliferation of RCC. Human NEU3 plays an important role in cell differentiation and transmembrane signal transduction, and its expression is 
associated with IL‑6. NEU3 is sensitive to IL‑6 signaling via the PI3K pathway. Overexpression of NEU3 can enhance the action of IL‑6, inhibit apoptosis 
and promote cell migration. IL‑6, interleukin‑6; IL‑6R, IL‑6 receptor; RCC, renal cell carcinoma; gp130, glycoprotein 130; STAT3, signal transducer and 
activator of transcription 3; HIF‑1, hypoxia‑inducible factor 1; VEGF, vascular endothelial growth factor; NEU3, plasma membrane‑associated sialidase; 
PI3K, phosphatidylinositol 3‑kinase; EMT, epithelial‑mesenchymal transition.
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the degradation of HIF under normoxic conditions to prevent 
CXCR4 expression. This process is inhibited under hypoxic 
conditions (103‑105). A study by Ieranò et al (106) indicated 
that the CXCL12‑CXCR4‑CXCR7 axis activates mTOR 
signaling in human renal cancer cells, resulting in enhanced 
RCC cell growth and invasion (106). Other studies have shown 
that the CXCR4‑CXCL12‑CXCR7 axis also plays a key role in 
RCC. The activity of CXCR4 is mainly γ‑mediated; however, 
CXCR7 is considered to be an atypical G protein‑coupled 
receptor, as it does not cause intracellular Ca2+ release when 
bound to a ligand (107). Some studies have shown that CXCR7 
is a DcR that isolates extracellular CXCL12 or regulates the 
CXCR4 signaling pathway by forming a CXCR7‑CXCR4 
heterodimer (108,109). High expression of CXCR7 in human 
cancer types such as bladder cancer, glioma, colorectal cancer, 
ovarian cancer and breast cancer, and in tumor‑associated 
blood vessels, may be critical for tumor cell survival, adhe‑
sion and growth (110‑115). Overall, CXCR4 and CXCR7 are 
potential molecules affecting the prognosis of RCC (116).

Proteases
Matrix metalloproteinases (MMPs). MMPs are members of the 
zinc‑dependent endopeptidase family; they regulate signaling 
pathways that control cell growth, inflammation or angiogen‑
esis. Hence, MMPs participate in molecular communication 
between tumors and stroma, mediating microenvironmental 
changes during tumor progression (117,118). Compelling 
evidence from knockout mouse experiments has shown that 
MMPs play an important role in acute and chronic inflam‑
mation (119). Numerous studies have demonstrated that 
MMPs can aggregate leukocytes to cause tumor‑related 
inflammation (120,121). Studies have confirmed that MMPs 
affect the early proliferation of metastatic tumor cells, while 
tissue inhibitors of MMP (TIMPs) inhibit MMP activity to 
indirectly regulate tumor cell proliferation (122,123). Among 
these MMPs, MMP‑9 has the most important function in 
tumors. MMP‑9 exhibit higher expression in malignant 
tumors than in benign or non‑invasive tumors, and it also 
exhibits high expression in RCC; it can denature type I, II and 
IV collagen, enabling tumor cells to penetrate the basement 
membrane (124,125). Additionally, membrane type 1 MMP 
(MT1‑MMP/MMP‑14) is involved in tumor invasion; it is 
widely expressed in most malignant tumors, and its overex‑
pression enhances cell invasion ability (126). MT1‑MMP not 
only degrades extracellular matrix molecules such as type I, II 
and III collagen, vitronectin, laminin‑1 and ‑5, fibronectin 
and aggrecan (127), but it also recruits pro‑MMP‑2 to the 
cell surface and causes the activation of MMP‑2 by cleaving 
the propeptide sequence (128). A study by Petrella and 
Brinckerhoff (129) showed that MT1‑MMP is the main trigger 
of type I collagen degradation and the invasiveness of VHL 
RCC cells expressing MT1‑MMP or HIF‑2α. In addition, in 
the absence of VHL, the protein and gene levels of MT1‑MMP 
are significantly upregulated in RCC (130).

Immune‑related cells
TAMs. TAMs are derived from peripheral blood mononuclear 
cells. Macrophages usually undergo M1 or M2 activation under 
inflammatory stimuli (131). In RCC, M1 cells produce inflam‑
matory cytokines such as TNF‑α, IL‑6, IL‑12 and IL‑23, while 

M2 cells produce anti‑inflammatory cytokines such as IL‑10, 
thereby promoting RCC‑related immune dysfunction (132). 
Santoni et al (133) showed that high TAM infiltration in the 
RCC microenvironment promotes tumor progression and 
metastasis by stimulating angiogenesis, tumor growth and cell 
migration. RCC is a typical hemangioma in which VEGF is 
significantly upregulated. VEGF, considered to be a chemokine 
of TAM, supports tumor proliferation. TAM can self‑produce 
VEGF, which increases the accumulation of TAM in tumor 
sites (134). TAM plays a key role in RCC immunosuppression 
and T‑cell tolerance by secreting immunosuppressive factors 
and inducing T‑cell immunity without response (135).

MDSC. MDSCs are a group of heterogeneous cells derived 
from the bone marrow, which are preferentially expanded 
in cancer and have a significant ability to suppress immune 
cell responses; they primarily inhibit T‑cell proliferation and 
NK‑cell activation, and induce differentiation and proliferation 
of regulatory T cells (136). MDSCs have the ability to inhibit 
T‑cell activation through upregulation of arginase‑1 (Arg1) and 
inducible nitric oxide synthase in monocytic MDSCs, and Arg1 
and reactive oxygen species in granulocytic MDSCs (137). The 
TME affects the progression and metastasis of solid tumors, 
which consist of tumor cells and other primitive stromal 
cells (138,139). MDSCs are the main components of the TME, 
and the increase in blood volume is associated with a shorter 
patient survival time. Mechanistic studies have shown that 
MDSCs promote tumor cell survival, associated angiogenesis, 
invasion and metastasis (140,141). MDSCs also protect tumor 
cells from immune‑mediated killing, establish a TME and 
interact with tumor cells to promote epithelial‑mesenchymal 
transition to support tumor growth and metastasis (142). A 
close association between MDSCs and clinical outcomes 
of cancer patients has been established. MDSCs hold great 
promise as novel biomarkers for tumor prognosis (143).

6. Inflammation‑associated molecules and clinical prognosis 
in patients with RCC

A number of inf lammation‑related factors, including 
Th1‑related factors (IFN‑γ), Th1‑related chemokines (mono‑
kine induced by IFN‑γ [MIG], IFN‑γ inducible protein 10 
[IP‑10] and IFN‑γ‑inducible T‑cell A chemoattractant [I‑TAC]), 
Th2‑related factors (IL‑4) and Th2‑associated chemokines 
(eotaxin and macrophage‑derived chemokine [MDC]) are 
elevated in tumor tissues (138). A variety of inflammatory 
factors are associated with recurrence in patients, for example, 
MIG and IFNγ‑mediated mononuclear factors (144).

Inflammation‑related factors TNF‑α, CXCR4 and C‑C 
chemokine receptor type 3 (CCR3) are associated with the 
prognosis and staging of patients with RCC. For instance, 
TNF‑α is an independent prognostic indicator, and normal 
levels in plasma can highly predict the good prognosis of 
untreated RCC patients (88,145). In addition, CXCR4 has 
significant prognostic value in univariate analysis, and its low 
expression indicates a good prognosis (146). The high expres‑
sion of CCR3 in immunohistochemical analysis is associated 
with the degree of malignancy of the tumor. Upregulation 
of CCR3 and its ligands may promote tumor cell prolifera‑
tion (147). In another study, Kallakury et al (148) showed that 
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increased expression of MMP2, MMP9, TIMP1 and TIMP2 
in RCC correlated with a poor prognosis. In summary, 
inflammation‑related factors may be predictive indicators of 
RCC clinical prognosis and have a huge potential role in RCC 
therapy.

7. Anti‑inflammatory immunotherapy in RCC

With in‑depth basic research and a better understanding of 
the mechanism of inflammation in RCC, new anti‑inflamma‑
tion‑related therapeutics and immunotherapy‑related agents 
may be developed. In recent years, simvastatin, all‑trans reti‑
noic acid (ATRA), nivolumab and other immunotherapeutic 
agents have played a role in the treatment of RCC (Table I).

Anti‑inflammation‑related agents
Simvastatin. Simvastatin is a cholesterol‑lowering drug for the 
prevention of cardiovascular disease, and is involved in tumor 
growth, spread and endothelial function (149). A previous 
study has reported that the extracellular signal‑regulated 
kinase (ERK)1/2 signaling pathway is a statin‑dependent 
pro‑apoptotic mediator (150). Knockdown of ERK can make 
RCC cells sensitive to simvastatin‑induced anticancer effects. 
Simvastatin can inhibit the proliferation and migration of 
RCC cells by inhibiting the phosphorylation of AKT, mTOR 
and ERK; it also exhibits antitumor effects by inhibiting the 
IL‑6‑induced phosphorylation of JAK2 and STAT3 (151).

ATRA. ATRA is the active metabolite of vitamin A, 
involved in cell proliferation, differentiation and apop‑
tosis; its role is mediated by nuclear flavonoid receptors, 
MAPK and cAMP/cAMP‑dependent protein kinase 
signaling pathways (152). ATRA reduces cell proliferation 
and alters gene expression through nuclear receptor‑ and 
non‑receptor‑mediated pathways, thereby accelerating cell 
differentiation and apoptosis. In genomic action, the func‑
tion of ATRA is mediated by nuclear receptors, particularly 
retinoic acid receptors (RARs) (α, β and γ). Nuclear RAR acts 
as a retinoid‑inducible transcription factor, and regulates cell 
cycle arrest, cell differentiation and cell regulation through 
heterodimer formation with retinoid X receptor (153). Among 

the RARs, RARβ is a tumor suppressor that is expressed at low 
levels in a number of cancer types, such as breast and prostate 
cancer, and whose expression is regulated by ATRA (154). In 
the non‑genomic pathway, ATRA independently activates the 
transcription of genes involved in the PI3K/AKT pathway in 
cells, reversing the dysregulation of the PI3K/AKT pathway 
in most human cancer types. In more detail, this process 
entails the activation of PI3K by ATRA through G‑protein 
coupled receptors and multiple receptor tyrosine kinases. 
Activated PI3K catalyzes the production of phosphatidylino‑
sitol‑3,4,5‑triphosphate to promote aggregation and activation 
of AKT on the membrane (155).

Nivolumab. Nivolumab is a programmed death 1 (PD‑1) 
checkpoint inhibitor that selectively blocks the interaction 
between PD‑1 and PD ligand (PD‑L)1/PD‑L2 expressed on 
activated T cells, thereby preventing T‑cell inactivation (156). 
Expression of PD‑L1 as a remote immunomodulator occurs in 
20‑50% of human cancer types. A variety of cancer immuno‑
therapies targeting the interaction between PD‑L1 and PD‑1 
have been developed (157,158). PD‑L1 effectively inhibits the 
tumor‑killing ability of T cells. Once the PD‑L1:PD‑1 inter‑
action is blocked, T cells can quickly restore their effector 
function. PD‑L1 expressed on tumor cells binds to PD‑1 on 
activated effector T cells, and phosphatase SHP‑2 is recruited, 
resulting in inactivation of the PI3K signaling cascade (159). It 
has been found that PD‑L1 or PD‑1 inhibitors have a positive 
effect on the treatment of cancer. Nivolumab exerts antitumor 
activity in metastatic RCC (160). The immunotherapeutic agent 
ipilimumab is a human cytotoxic T‑lymphocyte antigen‑4 
(CTLA‑4) immune checkpoint inhibitor antibody, which 
can prevent CD80 and CD86 ligands on antigen‑presenting 
cells from binding to the CTLA‑4 receptor on activated 
T cells, thereby preventing the downregulation of antitumor 
T cell activity (161). CTLA‑4 plays a significant role in early 
immune response, primarily occurring in lymphoid tissues, 
while PD‑1, whose expression is upregulated after T‑cell acti‑
vation in peripheral tissues, is more involved in late immune 
response (162). The combined application of CTLA‑4 and PD‑1 
blockers can synergistically activate the antitumor immune 
response and increase the response rate of patients (163). Thus, 

Table I. Main anti‑inflammatory agents in RCC.

Agent Target/associated pathway Therapeutic effects

Simvastatin AKT, mTOR and ERK pathway;  Inhibit the proliferation and migration of
 IL ‑6‑induced phosphorylation of JAK2 RCC cells
 and STAT3 pathway
ATRA RAR/RXR pathway; PI3K/AKT pathway Regulate the cell cycle
Nivolumab PD‑1 pathway Antitumor activity in metastatic RCC
LY294002	 PI3K/AKT	pathway	 Influences	tumor	cell	growth	and	apoptosis
Antibodies	against	15‑LOX2	 15‑LOX2/15(S)‑HETE	pathway	 Influences	the	RCC	tumor	microenvironment

RCC, renal cell carcinoma; ATRA, all‑trans retinoic acid; mTOR, mechanistic target of rapamycin; ERK, extracellular signal‑regulated 
kinase; IL‑6, interleukin‑6; JAK2, Janus kinase 2; STAT3, signal transducer and activator of transcription 3; RAR, retinoic acid receptor; 
RXR, retinoid X receptor; PI3K, phosphatidylinositol 3‑kinase; PD‑1, programmed death 1; 15‑LOX2/15(S)‑HETE, 15‑lipoxy‑
genase 2/15(S)‑hydroxyeicosatetraenoic acid.
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a combination of nivolumab and ipilimumab will effectively 
control tumor development with a good safety profile (164).

Immunotherapy for RCC. Emerging clinical data reveals 
that immunotherapy has great potential in the treatment 
of cancer. Associated studies have shown that a series of 
gradual and repeated immune response events, defined as 
the cancer‑immune cycle, can effectively kill cancer cells. In 
the first step of this process, tumor antigens are captured by 
dendritic cells (DCs) for processing (165). Proinflammatory 
cytokines and factors released by dying tumor cells can 
be used as a designated immune signal to avoid induction 
of tumor tolerance antigens (step 1) (166,167). DCs then 
present the captured antigen on the major histocompatibility 
complex I (MHCI) and MHCII molecules to the T cells 
(step 2) (168). This initiates and activates the effector T‑cell 
response (step 3) (169). This is followed by the entry (step 4) 
and invasion (step 5) of the tumor bed by the activated effector 
T cells (170), which then recognize and bind to specific cancer 
cells (step 6) and kill them (step 7) (171). Subsequently, the 
tumor‑associated antigens released from the dying cells 
amplify the cycle of immune response and make it more wide‑
spread and repetitive (172).

The entire immune cycle is enhanced through the positive 
regulatory signal or suppressed via the negative regulatory signal 
in the aforementioned steps during therapeutic treatments. 
The first phase of treatment corresponds to chemotherapy, 
radiotherapy and targeted therapy. These treatments induce 
immune cell death by activating the immune system (173). The 
second phase corresponds to use of cancer vaccines, which 
rely on tumor cell‑associated antigens to awaken the immune 
system against cancer (174). The third phase is mainly associ‑
ated with CTLA‑4 inhibitors. CTLA‑4 is a receptor found on 
the surface of activated T‑cells, which predominantly acts by 
competing with CD28 receptors for binding to B7 ligands on 
antigen presenting cells (APCs). In the process of T cell acti‑
vation, CD28 receptors on the T‑cells bind to the B7 ligands 
on APCs and provide the essential second activation signal 
for T‑cell. However, CTLA‑4 receptors can competitively 
bind to B7 ligands with higher affinity, resulting in the lack of 
second activation signal. Lack of the second activation signal 
in the presence of CTLA‑4 receptors would lead to anergy in 
T‑cells (163,175). The fourth phase involves the transport of 
T lymphocytes, and no intervention is available at this stage. 
The fifth stage is predominantly through anti‑VEGF treatment 
to enhance T cell transport and tumor bed infiltration. The 
transfer of activated T cells from the lymph nodes into circula‑
tion and then to the tumor requires a series of steps. VEGF 
promotes the formation of abnormal tumor blood vessels, 
which can negatively affect the transmigration of T‑cells 
from lymph nodes to the tumor bed (176). In addition, the 
blockade of VEGF can increase the expression of E‑selectin 
on tumor vascular endothelium and down‑regulate the Fas 
ligand on vascular endothelial cells, ultimately promoting the 
increased of T‑cell tumor infiltration (177). The sixth phase 
involves CAR‑T‑cell therapy, which is to generate a powerful 
immune‑mediated anti‑tumor response through the in vitro 
manipulation of T‑cells (178). This treatment is achieved 
through the selection and expansion of tumor‑infiltrating 
lymphocytes (TILs), or through gene transfer of a synthetic 

TCR (sTCR) or a chimeric antigen receptor (CAR) into 
T‑cells (179). The seventh stage corresponds to PD‑1/PD‑L1 
inhibitor treatment (180). Immunotherapy has successfully 
been applied to RCC in recent years (172).

In addition, it has been found that inhibiting the inflam‑
matory pathway is an effective approach to suppress the 
progression of RCC. Thus agents, such as LY294002, 
that inhibit the PI3K/AKT signaling cascade may benefit 
patients with RCC (181). Activation of the 15‑lipoxy‑
genase 2/15(S)‑hydroxyeicosatetraenoic acid pathway 
increases the metabolism of arachidonic acid in the RCC 
TME, compromising the function of the recruited immune 
cells, thereby promoting local immunosuppression and tumor 
escape (182).

8. Conclusions and prospects

Inflammation influences all aspects of tumor occurrence and 
progression, as well as the tumor response to treatment. In 
the early stages of tumor formation, inflammatory cells play 
a pro‑tumor development role, creating favorable conditions 
for tumor growth (183). Chemokines and cytokines provided 
by inflammatory cells affect the entire tumor organ and regu‑
late the growth, migration and differentiation of cells in the 
TME. In the later stages of tumorigenesis, tumor cells also 
switch inflammatory mechanisms, such as the production 
of chemokines and MMP, favoring tumor proliferation and 
metastasis (119,184). However, aggregation of inflammatory 
cells may suppress tumor growth (7).

Accumulating evidence indicates that the TME harbors 
multiple inflammatory cells that regulate tumor cell growth, 
proliferation, survival and migration (185). The aforemen‑
tioned inflammation‑related pathways (the VHL, mTOR, 
TNF and STAT pathways) can promote the occurrence and 
progression of RCC by activating the inflammatory response. 
Pro‑inflammatory cytokines (IL‑6, TNF and CSF‑1) and 
chemokines (CXCL and CXCR) are involved in tumor‑related 
pathways and promote the proliferation of RCC cells. When 
highly expressed, they confer a poor prognosis for RCC. 
TRAIL expression has been recorded as a prognostic factor 
for improved RCC‑specific survival (186). As a key participant 
in the molecular communication between tumors and stroma, 
MMP overexpression enhances RCC cell invasion ability (187). 
TAM cells and MDSCs support the growth and metastasis of 
RCC by suppressing the ability of immune cell responses. In 
terms of the therapy, agents targeting inflammation (simvas‑
tatin, ATRA, nivolumab, PI3K/AKT pathway inhibitor and 
cancer immune cycle inhibitors) have shown great promise in 
prolonging the survival time of RCC patients. Understanding 
the nature of inflammation and RCC will reveal important 
targets for developing treatments of RCC (9,188).

On the basis of recent technological advances and in‑depth 
research on the pathology and mechanism of RCC, new find‑
ings and breakthroughs have been reported. The association 
between inflammation and RCC phenotypes has become the 
new hotspot of current cancer research (9,189,190). Numerous 
studies have demonstrated that the expression of most inflam‑
mation‑related factors is associated with the poor prognosis 
of RCC and that immune‑infiltrating cell profiles can also 
predict the prognosis of patients (72,92,191). Research on 
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immune‑targeted treatments has become one of the hotspots 
in basic and clinical research, providing hope for tumor treat‑
ment. In the past 12 years, the medical treatment of RCC has 
transitioned from non‑specific immune methods to targeted 
therapy for VEGF to new immunotherapeutic agents (192). The 
interaction between tumor immune status and cancer‑related 
systemic inflammation is essential for the treatment of RCC. 
Therapies targeted at inflammatory pathways are likely to be a 
new direction for RCC treatment.
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