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drial energy metabolism is well established. Lipoic acid non�

covalently bound and exogenously administered to cells or

supplemented in the diet is a potent modulator of the cell’s redox

status. The diversity of beneficial effects of lipoic acid in a variety

of tissues can be mechanistically viewed in terms of thiol/disulfide

exchange reactions that modulate the environment’s redox and

energy status. Lipoic acid�driven thiol/disulfide exchange reac�

tions appear critical for the modulation of proteins involved in cell

signaling and transcription factors. This review emphasizes the

effects of lipoic acid on PI3K and AMPK signaling and related tran�

scriptional pathways that are integrated by PGC�1α, a critical reg�

ulator of energy homoestasis. The effects of lipoic acid on the

neuronal energy�redox axis are largely reviewed in terms of their

outcomes for aging and age�related neurodegenerative diseases.
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IntroductionLipoic acid (1,2-dithiolane-3-pentanoic acid)—first isolated
and chemically identified in 1951 by Lester Reed and

colleagues(1)—occurs in the R- and S-enantiomeric structures,
only the R-form being essential in biological systems. The
discovery of lipoic acid led to an unprecedented interest in basic
research because of its role as a coenzyme in energy metabolism
and the non-covalently bound form as a modulator of the cell’s
redox status. The biochemistry, physiology, and pharmacokinetics
of lipoic acid as well as its effects on several disease states have
been extensively reviewed (see Ref. 2, 3); the diversity of effects
of lipoic acid in a variety of tissues can be viewed within the realm
of antioxidant activity, metal chelation, transcriptional responses
—related to inflammation and induction of phase II enzymes—,
and cell signaling responses, especially in terms of cardiovascular
function and glucose metabolism.(2,3) These effects of lipoic acid
can be mechanistically accounted for in terms of thiol/disulfide
exchange reactions that modulate the environment’s redox and
energy status (Fig. 1). The energy and redox components are
integrated into an energy–redox axis; hence, on a mechanistic
basis, lipoic acid co-regulates both components in the several
subcellular compartments. R-Lipoic acid—as a micronutrient and

a therapeutic agent—stimulated interest in clinical research because
of its therapeutic implications for the metabolic syndrome,(4)

diabetic polyneuropathies,(5) and neurodegenerative diseases (with
emphasis on Alzheimer’s disease).(6)

The Cell’s Redox Status

The redox environment of a linked set of redox couples—as
found in biological fluids, organelles, cells, or tissues—is defined
as the summation of the products of the reduction potential and
reducing capacity of the linked redox couples.(7) Quantification of
thioredoxin, glutathione/glutathione disulfide (GSH/GSSG), and
cysteine/cystine redox couples—termed redox control nodes(8)—
brings new dimensions to redox systems biology; assessment of
these major cellular thiol/disulfide systems in different cellular
compartments indicated that individual signaling and control
events occur through discrete redox pathways, thereby leading to
a new definition of oxidative stress as a disruption of redox
signaling and control.(9)

Lipoic acid—either as a dietary supplement or a therapeutic
agent—modulates distinct redox circuits because of its ability to
equilibrate between different subcellular compartments as well as
extracellularly. As such, lipoic acid is a critical component of the
antioxidant network because of its ability to regenerate other
antioxidants, such as vitamins E and C, increase intracellular GSH
levels, and provide redox regulation of proteins and transcription
factors.(10)

The extracellular thiol/disulfide redox environment (determined
by the cysteine/cystine couple) has been reported to modulate cell
proliferation, apoptosis, cell adhesion molecules, and pro-
inflammatory signaling.(11) Lipoic acid may modulate the extra-
cellular redox state inasmuch as dihydrolipoic acid is involved
in the reduction of cystine to cysteine, thus facilitating rapid
uptake of the latter into the cell through the ASC transport system
and, consequently, its availability to stimulate GSH synthesis
(Fig. 2).(12,13) Cellular transport of lipoic acid occurs probably by
several systems, such as the medium chain fatty acid trans-
porter,(14) a Na+-dependent vitamin(15) transport system,(16) and a
H+-linked monocarboxylate transporter for intestinal uptake.(17)

The cellular reduction of lipoic acid to dihydrolipoic acid is
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Fig. 1. Thiol/disulfide exchange by lipoic acid is the basis for its modulation of the cell’s energy and redox status.
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accomplished by NAD(P)H-driven enzymes, thioredoxin reduc-
tase, lipoamide dehydrogenase, and glutathione reductase. Erythro-
cytes take up and reduce lipoic acid by glucose metabolism;
subsequently, dihydrolipoic acid is released to the extracellular
milieu, thus reflecting the activity of disulfide reductases.(14) This
phenomenon was observed in several cell types;(18) 3T3-L1 adipo-
cytes, however, possess a low capacity to reduce lipoic acid and
most of the intracellular effects in these cells are due to its pro-
oxidant function.(19,20)

R-(+)-lipoic acid (as lipoyllisine) is present in both plant and
animal tissues only in small amounts, thus its bioavailability is
low;(21) however, lipoic acid is now available as a nutritional
supplement: the human plasma pharmacokinetics of R-(+)-lipoic
acid (administered as a sodium salt to healthy individuals)
revealed that R-(+)-lipoic acid displayed high plasma maximum
concentration and area under the concentration versus time curve
values; the study reported negligible unbound R-(+)-lipoic acid
at the highest achievable plasma concentrations.(22)

The intracellular redox status is usually determined by the GSH/
GSSG, thioredoxinreduced/thioredoxinoxidized, and cysteine/cystine
couples(8) and their ability to reversibly modulate cysteine- and
methionine moieties in proteins. The participation of R-lipoic acid
in thiol/disulfide exchange is the basis for its redox modulation of
cell signaling and transcription: NFκB-, MAPK-, and PI3K/Akt
signaling as well as transcription factors.(23–29)

Lipoic acid and redox control of glucose uptake and
metabolism. Extensive evidence suggests that lipoic acid has
potential therapeutic value in lowering glucose levels in diabetic
conditions and that the intracellular redox status plays a role in the
modulation of insulin action (insulin resistance). Mechanistic
studies on the effects of lipoic acid on the redox status of insulin-
responsive cells revealed that lipoic acid stimulated glucose
uptake by affecting components of the insulin signaling pathway.
The signaling networks of insulin receptors entail binding of

insulin to the receptor followed by autophosphorylation of the
intracellular tyrosine kinase domain of the β-subunits and
activation of signaling pathways that may be considered in three
sequential nodes(30) encompassing the insulin receptor substrate
(IRS1/2/3/4), PI3K, and Akt (also known as PKB). PI3K/Akt
activity was shown to be necessary for the translocation of glucose
transporter-4 (GLUT4) from an intracellular pool to the plasma
membrane.(31–33) In a comprehensive series of studies it was found
that lipoic acid augmented tyrosine phosphorylation and the
activity of components of insulin signaling: insulin receptor,
insulin receptor substrate-1, PI3K (type I), Akt1, and p38(34,35)

(Fig. 4). The authors concluded that lipoic acid stimulated glucose
uptake upon translocation and regulation of the intrinsic activity of
GLUT4, an effect that might be mediated by p38 MAPK.(34) (Akt
phosphorylates 160 kDa AS160, facilitating its dissociation from
the GLUT4 storage vesicle and preventing inactivation of Rab-
GTP). R-α-lipoic acid and oxidized isoforms are effective in
stimulating glucose transport in differentiated 3T3-L1 adipocytes
by a mechanism entailing changes in the intracellular redox status
(but not changes in the GSH levels); lipoic acid also facilitated
the autophosphorylation of the insulin receptor by a mechanism
that may involve oxidation of the cysteine residues in the α- and β-
subunits.(19) These effects of lipoic acid are in agreement with an
alteration of the thiol reactivity of redox components of the insulin
pathway caused by a thiol/disulfide exchange mechanism (Fig. 3).
The inhibition of protein tyrosine phosphatase 1B activity by
lipoic acid was also associated with a decrease in thiol reactivity
of the enzyme.(20) Lipoic acid inhibits differentiation of 3T3-L1
pre-adipocytes by activation of JNK and ERK pathways and,
in turn, transcription factors,(24) a different mechanism by which
lipoic acid increases glucose uptake (i.e., activation of the insulin
receptor/Akt pathway).

The stress-activated MAPK, JNK, plays a central role in the
progression of insulin resistance and diabetic neuropathies;(36,37)

Fig. 2. Cellular uptake and release of lipoic acid and modification of the extracellular redox state.



doi: 10.3164/jcbn.11�005FR
©2011 JCBN

28

a likely mechanism entails the phosphorylation of the insulin
receptor substrate-1 serine 307 and, as a consequence, inhibition
of the insulin-promoted tyrosine phosphorylation of IRS-1.(38)

Lipoic acid was shown to inhibit the JNK pathway and IRS-1
serine phosphorylation, thereby improving insulin sensitivity.
Although the exact mechanism by which lipoic acid inhibits the
JNK pathway remains unclear, these effects place lipoic acid at the
cross-road of insulin- and JNK signaling favoring glucose uptake
and metabolism, thus ameliorating insulin resistance. A plausible
mechanism suggests that lipoic acid-mediated induction of heat
shock proteins and the subsequent inhibition of JNK and IKKβ.(39)

In L6 muscle cells, lipoic acid prevented the activation of JNK
triggered by either anisomycin or TNF-α.(39)

In hepatocytes, active Akt (Akt phosphorylated at Ser473),
decreases as a function of age, whereas basal Akt phosphorylated
at Thr308 remained unchanged; lipoic acid partially recovered Akt
activation(40) and, as observed also in 3T3-L1 adipocytes, lipoic
acid inhibited the phosphatase activities of PTEN and PP2A.

Full activation of Akt is a complex process entailing different
pathways;(41) Akt activation affects mitochondrial bioenergetics by

at least two pathways (Fig. 4).
First, it was shown that Akt translocates to the mitochondrion of

several cell types upon stimulation with insulin, insulin-like
growth factor-1, or heat stress, where the phosphorylation targets
identified were the β-subunit of ATPase and GSK3β; phosphory-
lation of the latter at a serine residue leads to its inactivation;(42)

in unstimulated cells, heat shock protein-90 is responsible for Akt
accumulation in the mitochondrion.(43) Mitochondrion-targeted
Akt also protected neuroblastoma cells from apoptosis.(44) Whether
or not the insulin-like effects of lipoic acid facilitate the trans-
location of Akt to mitochondria remains to be investigated.

Second, Akt is a positive regulator of the mammalian target of
rapamycin (mTOR)(45) by mechanisms entailing the Akt-mediated
phosphorylation and inhibition of TSC1 or the Akt-mediated
inhibition of AMPK.(46) mTOR regulates the transcription of
several genes and regulates mitochondrial activity, i.e., controls
mitochondrial gene expression by modulation of YY1-PGC-1α.(47)

The Cell’s Energy Status

Lipoic acid is an essential cofactor for the E2 component of
α-ketoacid dehydrogenase complexes, exclusively located in
mitochondria, e.g., the pyruvate dehydrogenase (PDH)-, α-
ketoglutarate dehydrogenase (KGDH)-, and branched chain α-
ketoacid dehydrogenase (BCKDH) complexes. The former
catalyzes the oxidative carboxylation of pyruvate and plays a
fundamental role in carbohydrate metabolism and bioenergetics
(Fig. 5), for PDH bridges anaerobic and aerobic energy metabolism,
and it is the entry point of carbohydrates into the tricarboxylic
acid cycle as acetyl-CoA. The latter is a regulatory control point in
the tricarboxylic acid cycle; the activities of both PDH and KGDH
is substantially decreased during aging and in neurodegenerative
disorders.(48–50) Lipoic acid is reduced to dihydrolipoic acid by
dihydrolipoamide dehydrogenase, the E3 component of PDH
and KGDH. PDH activity is regulated by products, nucleotides,
and reversible phosphorylation; lipoic acid supplementation
increases PDH activity in hepatocyte mitochondria and it inhibits
the pyruvate dehydrogenase kinase (PDK),(51,52) hence leading to a
lower phosphorylation (and inactivation) of PDH. The mechanism
of PDK inactivation by lipoic acid is not known yet.(51) 4-
Hydroxynonenal (HNE) inhibited rather specifically KGDH,
which accounted for the inhibitory effects of HNE on mitochon-
drial respiration;(53,54) the inactivation of KGDH (and PDH) was
ascribed to the electrophilic attack of HNE on the reduced lipoyl
moiety covalently bound to E2 component of the complex). Lipoic
acid at the E2 of KGDH is glutathionylated upon treatment of
mitochondria with H2O2; glutathionylation of the lipoiyl moiety is
reversible and appears to serve as a transient protection against

Fig. 3. Thiol/disulfide exchange as the basis for the activation/inhibition of cell signaling and transcription.

Fig. 4. The insulin�like effect of lipoic acid and Akt�dependent stimu�
lation of mitochondrial function.
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electrophilic attack by HNE.(55)

AMP-activated protein kinase (AMPK) is a sensitive cellular
energy sensor(56) that supports ATP-generating catabolic pathways
and decreases ATP-consuming anabolic processes by post-
translational modifications and modulation of gene transcription
(Fig. 6). AMPK consists of a catalytic (α) and two regulatory
(β and γ) subunits, the γ subunit being the center of allosteric
regulation (stimulated by AMP). Enzyme activation requires
phosphorylation of a threonine residue by LKB1 or elevation of
intracellular Ca++ via CaMKK. The effects of lipoic acid on
AMPK differ depending on whether its action is on peripheral
tissues or the hypothalamus(4) (AMPK in hypothalamic neurons
integrates signals related to body’s energy metabolism). The
different roles of AMPK in neurons have been critically
reviewed:(57) depending on the experimental model, AMPK may

function in a neuroprotective role or be harmful for neuronal
survival or act as an autophagy mediator. AMPK is involved in
transcriptional pathways that control mitochondrial function
through PGC-1α.(58) The phosphorylation of PGC-1α protein(59)

by AMPK at Thr177 and Ser538 appears to be a requirement for the
induction of the PGC-1α promoter. Also, activation of AMPK was
shown to enhance NAD+ levels in muscle cells and induce Sirt1-
mediated PGC-1α deacetylation; apparently, PGC1α phosphory-
lation by AMPK facilitates the subsequent deacetylation by
Sirt1.(60) The energy status of the cell is also related to activity of
sirtuins,(61) which—among others—can deacetylase PGC-1α, by
means of which Sirt1 controls mitochondrial biogenesis and
function.

PGC-1α is a transcriptional regulator of mitochondrial function
and biogenesis and, as such, a critical regulator of energy
homeostasis and integrates several transcriptional pathways
driven by mTOR (Fig. 4), AMPK, and Sirt1 (Fig. 6).(62) Lipoic
acid was reported to increase energy metabolism and mito-
chondrial biogenesis in the skeletal muscle of aged mice by
increasing the phosphorylation of AMPK at Thr172 and expression
of PGC-1α.(63) In this report, lipoic acid also increased the
expression of GLUT4 (as observed in other cell types), but it
decreased the phosphorylation of mTOR at Ser2448.(63) As in the
case of Akt-driven signaling, AMPK phosphorylates AS160,
thereby facilitating its dissociation from the glucose transporter
vesicle and preventing the inactivation of Rab-GTP. It remains to
be investigated whether or not AMPK is a preferential pathway of
lipoic acid for the transcriptional activation of PGC-1α (opposite
to mTOR) in tissues other than skeletal muscle.

It is well established that aging is associated with a loss of
mitochondrial function and insulin resistance. In brain, there is an
increased activation of JNK (bisphosphorylation) with age as well
as its translocation to mitochondria, thereby blunting the activity
of pyruvate dehydrogenase.(48,49) In muscle, AMPK activity—of
significance in the regulation of energy metabolism and mainte-
nance of energy homeostasis through PGC1α—is also reduced as
a function of age;(64) whether its activity also decreases with age in
neurons remains to be determined.

Fig. 5. Pyruvate dehydrogenase�catalyzed oxidative decarboxylation of pyruvate. The lipoyl moiety is shown in red. E1, a�ketoacid decarboxylase;
E2, dihydrolipoyl transcetilase; E3, dihydrolipoyl dehydrogenase.

Fig. 6. AMPK�dependent transcriptional pathway for PGC�1α activation.
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Lipoic Acid and the Neuronal Redox�Energy Axis

Pharmacokinetic studies on the distribution of orally admin-
istered R-, and S-lipoic acid from the systemic circulation into rat
brain tissues (with consideration of the transport efficiency across
the brain blood barrier) showed blood endogenous levels of 0.05–
0.27 μM and brain levels of 0–0.024 μM after either a single or
chronic oral dosing at 50 mg/kg;(65) the authors concluded that
lipoic acid does not readily cross the blood-brain barrier, thereby
questioning a direct effect of lipoic acid in the central nervous
system.(65) Despite this, there is a myriad of reports on the effects
of lipoic acid on improving mitochondrial function in aging and
neurodegenerative disorders. However, few studies have investi-
gated the mechanistic implications of lipoic acid in terms of PI3K/
Akt- and MAPK-driven signaling and transcription (as in peri-
pheral tissues referred to above).

It is widely accepted that loss of mitochondrial function may be
an underlying event in brain aging and neurodegenerative
disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s
diseases. Loss of mitochondrial function entails a reduction of
the energy-transducing systems partly due to oxidative/nitrative
damage. From this perspective, exogenously administered lipoic
acid has been considered a mitochondrial nutrient. Mitochondrial
dysfunction inherent in the pathogenesis of neurodegenerative
diseases is aggravated by downregulation of cytosolic glutaredoxin-
1 (which helps maintain mitochondrial integrity in terms of VDAC
redox status) and is recovered by lipoic acid.(66)

The properties of lipoic acid that help improve age-associated
loss of cognitive function are elevation of cofactors of defective
mitochondrial enzymes, such as PDH and KGDH, protection of
enzymes against oxidative stress, and enhancement of antioxidant
defense systems through the activation of phase II enzymes and an
increase in mitochondrial biogenesis.(67) The amount and activity
of PDH and KGDH are decreased in Alzheimer’s disease,(68) a
finding that might be partly explained by the higher susceptibility
of mitochondria in Alzheimer’s disease to autophagy.(69) PDH
activity is decreased in post-mortem tissues from Alzheimer’s
dementia and vascular dementia, but R-lipoic acid (not S-lipoic acid)
appears to stimulate PDH activity only in vascular dementia.(70)

In aged rats, spatial and temporary memory loss was associated
with loss of brain mitochondrial function as well as RNA/DNA
oxidation in hippocampus; these effects were partially reversed
upon feeding animals with a combination of lipoic acid and acetyl-
L-carnitine.(67) Age-related changes in synaptic function (in terms
of impairment of long-term potentiation (LTP) and glutamate
release) were reversed by dietary supplementation with lipoic acid
(entailing restoration of IL-1β and tocopherol levels to values of
young rats).(71)

Chronic administration of lipoic acid partially restored the age-
associated loss of mitochondrial function to the level of young
rats (in terms of activity of complex I, IV, and V) and improved
oxidative stress markers.(72) A combination of lipoic acid and
acetyl-L-carnitine was suggested to delay the loss of mito-
chondrial function associated with aging, restored mitochondrial
ultrastructural changes, and increase mitochondrial biogenesis
in the hippocampus.(73) Chronic administration of lipoic acid
decreased biomarkers of oxidative stress in young and old control
mice and a transgenic mouse model overexpressing the amyloid-β
protein precursor without having an impact on end-point amyloid-
β load; however, this reduction in oxidative stress was not
correlated with an improvement on cognitive behavior (Y-maze
performance).(74) Conversely, a combination of acetyl-L-carnitine
and lipoic acid partially improved spatial and temporal memory in
an ApoE4 transgenic mouse model.(75) Dietary supplementation
with a combination of several micronutrients—among them lipoic
acid—improved cognitive performance in ApoE-deficient
mice.(76) Lipoic acid also improved survival in two transgenic
mouse models of Huntington’s disease.(77) Interestingly, dichloro-

acetate—an inhibitor of pyruvate dehydrogenase kinase, which
phosphorylates and inactivates PDH—also increased survival in
these two transgenic models of Huntington’s disease showing
improved motor function and decreased striatal neuron atrophy.(78)

Hence, the protective effect of lipoic acid on these models of
Huntington’s disease could be partly due to its inhibition of
pyruvate dehydrogenase kinase (as reported in(52)). A recent study
concluded that short-term supplementation with lipoic acid and
acetyl-L-carnitine is insufficient to improve cognition in aged
dogs, and that the beneficial effects of the full spectrum diet arose
from either the cellular antioxidants alone or their interaction with
lipoic acid and acetyl-L-carnitine.(79)

Lipoic acid protected cortical neurons against amyloid-β or
H2O2-induced cytotoxicity and also induced the expression of
Akt (and the downstream Akt signaling pathway).(26) Pretreatment
of cortical neurons with lipoic acid (and in combination with
acetyl-L-carnitine) results in the activation of the PI3K and ERK1/
2 pathways and the inherent neuronal survival;(80) lipoic acid also
protected against 4-hydroxy-2-nonenal (HNE)-mediated oxidative
modifications in cortical neurons.(80)

Concluding Remarks

R-α-Lipoic acid, a cofactor for four enzyme complexes exclu-
sively located in mitochondria, is essential for energy production
and the regulation of carbohydrate and protein metabolism. Lipoic
acid is synthesized in vivo and it is almost entirely covalently
bound to the E2 component of three α-ketodehydrogenase
complexes and the glycine cleavage system. Hence, it would be
expected that only trace amounts are available from dietary
sources. However, when lipoic acid is supplemented in the diet, it
is readily absorbed and present in all cell compartments and
extracellular fluids where it acts as a redox modulator and anti-
oxidant par excellence.

Although known for more than 60 years to have potent effects
in biological systems, lipoic acid studies have been hampered by
the inability to detect accurately its presence in tissue samples. A
study of the plasma pharmacokinetics of R-(+)-lipoic acid
revealed that maximum concentrations were reached within
~30 min of administration and had a short half life when admin-
istered as sodium R-(+)-lipoate to healthy human subjects.
Therefore, due to its very rapid metabolism, precise sampling
times are required to establish an association of lipoic acid
concentration with function in cells and tissues. Nevertheless,
the redox modulating action of lipoic acid on signaling and
transcription exhibits remarkable promise. Future studies are
warranted to elucidate the therapeutic effects of exogenous lipoic
acid during aging and age-related diseases, with emphasis on
Alzheimer’s disease, of special interest to the co-authors of this
review.
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Abbreviations

AMPK AMP-activated protein kinase
ASC alanine, serine, cysteine transporter
CaMKK calcium/calmodulin-dependent protein
AS160 Akt substrate of 160 kDa
HNE 4-hydroxy-2-nonenal
IRS insulin receptor substrate
KGDH α-ketoglutarate dehydrogenase
LKB1 liver kinase B1
mTOR mammalian target of rapamycin
PDH pyruvate dehydrogenase
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PDK pyruvate dehydrogenase kinase
PGC-1α Peroxisome proliferator-activated receptor γ (PPARγ)

coactivator-1α

PI3K phosphotidylinositide 3-kinase
PP2A protein phosphatase 2A
PTEN phosphatase and tensin homologue
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