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Abstract

In this ongoing theme of coronavirus disease 2019 (COVID-19)
pandemic, highly sensitive analytical testing platforms are
extremely necessary to detect SARS-CoV-2 RNA and antiviral
antibodies. To limit the viral spread, prompt and precise diag-
nosis is crucial to facilitate treatment and ensure effective
isolation. Accurate detection of antibodies (IgG and IgM) is
imperative to understand the prevalence of SARS-CoV-2 in
public and to inspect the proportion of immune individuals. In
this review, we demonstrate and evaluate some tests that have
been used commonly to detect SARS-CoV-2. These include
nucleic acid and serological tests for the detection of SARS-
CoV-2 RNA and specific antibodies in infected people. More-
over, the vitality of biosensing technologies emphasizing on
optical and electrochemical biosensors toward the detection of
SARS-CoV-2 has also been discussed here. The early diag-
nosis of COVID-19 based on detection of reactive oxygen
species overproduction because of virus-induced dysfunc-
tioning of lung cells has also been highlighted.
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Introduction
Recently, coronavirus disease 2019 (COVID-19) has
caused a world health disaster and socioeconomic
www.sciencedirect.com
adversity by infecting millions and killing thousands of

people. This pandemic is reported to have appeared as a
result of a novel mutation of coronavirus as the seventh
member of corona family outbreaking in December 2019
in Wuhan, China [1]. Subsequently, it was noticed that
this novel coronavirus possessed 96% genome sequence
similarity with SARSr-CoV-RaTG13 (bat SARS) and
79.5% with SARS-CoV [2]. The single-stranded RNA b-
coronavirus [3] with Nidovirales order belongs to the
Coronaviridae family [4] and comprises of nucleocapsid,
spike (S), membrane (M), and envelope (E) proteins as
shown in Figure 1a. The receptor binding domain

(RBD) in spike-protein shares the angiotensin-
converting enzyme 2 (ACE2) of human cells as a re-
ceptor [5]. The spike proteins are strongly attracted
toward ACE2, which defines the virus-host array to RBD
and ensures the viral fusion with host cell membrane
[6].

As of today, in the absence of any recommended vaccine
so far, swift and reliable diagnostic methods are of great
significance for the diagnosis of symptomatic as well as
asymptomatic COVID-19 cases [7]. The quick and

reliable treatment decisions and quarantine strategies to
slow down the spread of this infectious disease are all
based on the diagnostics [8]. Some conventional testing
methodologies like thoracic imaging, portable chest X-
ray, flexible bronchoscopy, and computed tomography
(CT) scan have been used for the preliminary diagnosis
of infection. The quantitative real-time reverse tran-
scription polymerase chain reaction (RT-qPCR) based
testing [9] is regarded as the most popular test these
days. Although these testing techniques are of great
value but time consumption, tedious sample preparation

and the need of expertise put them at the back. The
infection rate and contagiousness of SARS-CoV-2 is
much higher compared with other SARS infections.
Therefore, rapid and point-of-care diagnostic methods
are highly desirable to overcome the limitations of
conventional techniques.

For rapid and point-of-care detection, lateral flow assay
(LFA), loop-mediated isothermal amplification (LAMP)
method, reverse transcription-LAMP (RT-LAMP)
approach, clustered regularly interspaced short
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Figure 1

The detailed genomic representation of SARS-CoV-2 and its mobile phone detection (a) Structural illustration of SARS-CoV-2 (a) structural image of
SARS-CoV-2, containing four different types of structural proteins (b) is the inset of key features of spike protein, representing the receptor binding
domain, S1 and S2 regions, whereas (c) shows the full-length viral genome (29,903 nucleotides long) single-stranded positive RNA sequence. The leader
sequence at the 50 end and poly A tail ends at the 30, contains structural proteins E,M,N,S along with different accessory genes (ORF 1a, 1b, 3a, 6, 7a, 7b,
and 8b). The open reading frame ORF1a/b ‘the replicase’ is responsible for the coding of polymerase enzymes for viral RNA synthesis as well as non-
structural proteins. The S1 subunit of spike protein consist of N-terminal domain (NTD), receptor binding domain (RBD) and C-terminal domain, whereas
the S2 subunit comprises heptad repeat 1and 2, which plays a critical role in viral entry (b) The flow chart diagram describing the whole experimental
process and principle for contamination-free visual detection method to detect different concentrations of RNA. Reprinted with permission from Ref. [56].
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palindromic repeats (CRISPR) technology [10], and
SHERLOCK [11] detection methods are generally
implemented these days. Moreover, enzyme-linked
immunosorbent assay (ELISA), LFAs, and microfluidic
devices are the point-of-care testing methods under
Current Opinion in Colloid & Interface Science 2021, 52:101418
consideration. The technology behind testing is based
on biosensing; either in the form of undeviating detec-
tion of biochemical and biotic molecules from the living
sources or it is biomarker detection from bionics. The
direct binding of analyte with target molecules and
www.sciencedirect.com
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biochemical reactions are two benchmark spectacles of
biosensing approaches. However, easy handling, small
sample size, real time analyte tracing, and flexibility to
detect the target analyte of interest within seconds are
the other major advantages of biosensing platforms,
which can circumvent the bottlenecks of other tech-
niques [12]. It is also worth mentioning that electro-
chemical biosensors are reliable analytical techniques

with the potential of being modest to sample absorbance
or turbidity for the detection of contagious disease.

Herein, we outline the SARS-CoV-2 detection tech-
niques with their pros and cons. We also present recent
advances in standard testing tools and emerging bio-
sensing platforms as portable devices for the timely
detection of SARS-CoV-2 to prevent the spread of the
infection. We also aim to offer a new perspective on the
biosensor-based technologies for the rapid and reliable
detection of SARS-CoV-2 to carry out the early diagnosis
of COVID-19. This review concludes with a short dis-
cussion regarding current challenges and future
perspectives.
Current detection approaches for SARS-
CoV-2
The most commonly used techniques for COVID-19
diagnostics are nucleic acid test and CT scan. The
procedure of identification and targeting the virus is
considered more suitable when molecular approaches
are used in comparison to syndromic or CT scan
methods. These molecular approaches are developed
after analyzing the proteomic and genomic structure of
the microbes. The first genomic research on SARS-CoV-
2 was done using metagenomic RNA sequence, which is
an efficient way of sequencing different genomes [13].

Designing nucleic acid tests
The RT-qPCR is a version qPCR technique, which is

unequivocally developed for RNA detection. So, it is
being used for SARS-CoV-2 detection because it directly
tests for the existence of virus RNA. RT-qPCR is
regarded as the standard approach for COVID-19 iden-
tification. This approach is sufficiently reliable and can
complete the results in few hours [14]. The commer-
cially available kits use RT-qPCR techniques which
detect more than two target regions and consequently
the detection sensitivity is enhanced. This technique
amplifies even a small viral genetic material in the
testing samples. It works on two consecutive reactions;

firstly, it converts the virus RNA to small complemen-
tary DNA sequence (cDNA) for special identification of
paired sequencing on viral RNA. Secondly, cDNA is
amplified through PCR using gene-specified primers
and fluorescent-labeled hydrolysis probes. The DNA
produced in first step is used in second step, where it is
multiplied through repeated thermal cycling and finally
the virus is detected using quantitative qPCR machine.
www.sciencedirect.com
To date, numerous RT-qPCR kits have been established
for the SARS-CoV-2 detection by targeting the structural
proteins and accessory genes (nucleocapsid (N), spike
(S) protein (RdRP), envelope (E), or ORF1b, ORF8
genes) as biomarkers for SARS-CoV-2 detection. The
reverse transcription of SARS-CoV-2 RNA into
cDNA takes place in RT-qPCR test case where the
specific cDNA zone is further amplified to complete the

process [15,16]. Zambon’s research group conducted a
research on alignment and investigation of several
SARS-associated genome sequencing to develop the
primers and probes [17]. The E, N proteins, and RNAP
(RNA polymerase) genes are amid three of discovered
genes at present. First two of the three genes are found
to have high analytical sensitivity, whereas the third one
offers feeble sensitivity for detection. The RT-qPCR
tests are carried out both in single-step and double-
step procedure. The single-step assay exhibits rapid
response and good reproducibility, and the whole pro-

cess of reverse transcription and PCR amplification
takes place in one step. However, this procedure finds it
difficult to optimize reverse transcription and amplifi-
cation based on the simultaneous occurrence of both
steps. In comparison, double-step assay shows high
sensitivity but requires more time as the reactions are
completed in separate tubes. Although the two-
step assay is highly sensitive and flexible, one-step assay
is favored for the detection of SARS-CoV-2 because of its
speed, simplicity, limited sample requirement, mini-
mum counter time, as well as less cross contamination

during the RTand real-time polymerase reaction periods
[18,19]. Xiang’s research group presented DNA
nanoscaffold-based SARS-CoV-2 detection to diagnose
COVID-19 [20]. Recently, Lubke’s research group
designed RNA extraction free protocol based on RT-
qPCR for the detection of SARS-CoV-2 where the E-
gene was targeted as novel primer [21]. Without dilution
and heat inactivated, 5 ml respiratory samples were used.
The assay was validated using 91 respiratory samples,
where 81.3% samples were detected positive. It is
concluded that direct RT-qPCR is a well-acknowledged
alternative to conventional RNA RT-qPCR for analyzing

fresh samples. Li et al. has studied 610 patients who
were diagnosed with COVID-19 according to CT scan
diagnosis, and reported the higher rate of false-negative
RT-PCR results for SARS-CoV-2 detection [22]. The
variations in the results by RT-PCR detection might be
possible due to the low viral load in the test samples at
early stages of infection, prolonged RNA conversion, and
transmutations in the probes target regions [23]. PCR
assays are not sensitive enough to differentiate between
symptomatic and asymptomatic patients [24] and sus-
ceptible to few generalizations, which limit their appli-

cations such as:

1. The small countryside hospitals are not well equip-
ped to carry out PCR tests. Lack of expertise and
infrastructure limit this facility.
Current Opinion in Colloid & Interface Science 2021, 52:101418
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2. There is a possibility of false-negative results because
the appropriate sampling time for nasopharyngeal
swab is still vague for the patients on ventilators [25].

3. A tedious procedure for sample preparation is
required, which includes cell lysis and nucleic acid
purification. Also, the extractions kits are less than
the ramping up demand of tests [26].

4. During transportation, the denaturation of sample
may occur, which leads to false-negative results
[27].

5. In case of fully recovered patients, PCR testing can

even result false-positive outcome detecting genetic
material of inactive SARS-CoV-2, which is actually not
reinfection. The genetic material never dies and can
persist in the body for several days to months, so it
can be detected after months of recovery [28].

6. The nucleic acid amplification is used in PCR
testing, where distinct primers and probes for every
target are needed that consequently limit PCR’s
flexibility of scaling up for other nucleic acids in an
easy and prompt way.

7. If mutations of SARS-CoV-2 (which are likely to be)
are undergoing, then it may be a problem for same

target. Thus, continuous monitoring of viral genetic
material is mandatory to warrant the accuracy of test
[29].
No doubt qPCR and RT-qPCR are evolving day by

day with the number of advantages but these few
considerations are needed to be improved in RT-
qPCR to make quick, more sensitive, and espe-
cially cost-effective detection method.

CT scan method
In case of inadequate availability of these kits and
false-negative results of RT-qPCR, a noninvasive CT
scan technique has also been used in clinical di-
agnostics of COVID-19 [30]. The characteristics of
these images are closely related to stage of infection
when the symptoms are shown. At the early-stage
infection, transparent, localized lesions were

confined to the subpleural area of one or both lungs
of patients after the appearance of symptoms [31].
When bilateral and peripheral ground-glass dense-
ness and amalgamation of the lungs are appeared,
then these are the characteristic symbols of COVID-
19. With the progression of COVID-19 infection, the
lungs consolidation increases in addition to crazy
paving pattern. The aforementioned outcomes have
revealed that CT scan method showing better false-
negative rates is more sensitive in comparison with
RT-qPCR but the initial level screening with CT
scan is restricted. The major drawback of CT scan

method in COVID-19 diagnosis is the lack of spec-
ificity because of the overlap of lungs images with
other pneumonia. Moreover, the CT scan diagnoses
the patients at advanced stage of infection [32].
Current Opinion in Colloid & Interface Science 2021, 52:101418
Antibody detection
The reliable diagnosis of COVID-19 is carried out using
protein tests such as antigens and antibodies [33]. The
saliva test may vary with passage of time after the
symptoms appear but in comparison, antibodies persist
for a long time, which enable large span for indirect
SARS-CoV-2 detection [34]. The commonly used
methods for antibody detection are LFAs and ELISA. In
LFA, the sample is deposited onto sample pad of
cassette-like device and moved through strip by capil-
lary action. The antibodies labeled with Au NPs bind

with target molecules present in sample at the first line.
Owing to continuously moving sample, Au-labeled an-
tibodies are bound by capture antibodies existing in
lines. The excessive Au-labeled antibodies are captured
at the control line while moving through the strip. If the
target molecules are not present in sample solution, Au-
labeled antibodies are surely captured at control line,
which makes control line valid for test. For IgG or IgM-
type antibodies or both, there should be one, two, or
three stripes in display window [35]. The average test
time of 10e30 min places it in the rapid diagnostic

methods. It provides only qualitative analysis but has
the advantages of easy handling and cost effectiveness
and allows direct assessment of ongoing infection as
anti-CoV antibodies are used instead of immobilized
viral antigen [36]. Recently, Kong’s group has developed
highly sensitive, fast, easy to use, and on-site immuno-
assay, which can complete the assay in 15 min to detect
SARS-CoV-2 antibodies and antigens at the same time.
The antibodies from human serum samples and SARS-
CoV-2 antigens from nasal swab were detected success-
fully from 26 COVID-19 infected and 28 healthy in-

dividuals using this integrated method [37]. Moreover,
Feng’s research group has constructed a simple operated
point-of-care lateral flow immunoassay to simulta-
neously detect antibodies (IgG, IgM) developed against
SARS-CoV-2 in blood samples of affected people at
various phases of infection. The achieved sensitivity and
selectivity of this testing method were 86.6% and 90.6%,
respectively [38]. The assay for simultaneous detection
of both IgGeIgM possesses better usability and sensi-
tivity in comparison with single IgG and IgM tests.
Convalescent serum containing large quantity of

neutralization IgG is extremely helpful in curing
COVID-19 patients. Tan’s et al. has successfully
demonstrated an ELISA method to detect anti-SARS-
CoV-2 S1 IgG from human serum using just 8 ml sample
[39]. The practicability of this method has been verified
in detecting anti-SARS-CoV-2 S1 IgG in 16 convalescent
SARS-CoV-2einfected persons.

The immunoglobulin IgG and IgM have been detected
from serum sample of infected individuals using ELISA
where nucleocapsid protein of SARS-CoV-2 is used. The
typical result time of ELISA is 60 min to 5 h either the
test is quantitative or qualitative. ELISA being fast,
flexible, robotics, high throughput with variable
www.sciencedirect.com
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sensitive range, and ability to test multiple samples is
specifically suitable as point-of-care purpose [40,41]. In
ELISA test, human serum sample is added to the well
where the recombinant viral antigen is already coated.
The bindings occur between antibodies and target an-
tigen present in sample and then washing is done several
times to make sure the complete removal of unbound
substrate. Another solution comprising labeled anti-

bodies is mixed and binding will occur if the antibodies
of interest are present in the sample. After washing
again to remove unbound substrate, horseradish perox-
idase is used as color changing reaction to confirm the
binding of target antibodies. Using a spectrometer, color
change is read and concentration of antibodies is
measured [42]. It has been noticed that the antibodies
are developed in SARS-CoV-2einfected people after
around 14 days of onset of symptoms. However, some
studies depict the development of IgG and IgM anti-
bodies after five days of SARS-CoV-2 infection [43]. The

level of antibodies in patients may go on increasing after
five days of symptoms appear. The antibodies were also
found in respiratory fluids, blood and fecal specimens.

LFAs are preferred over ELISA tests because these tests
can be performed at home without the need of any
expert. ELISA is the analytical technique, which can
only be carried out in laboratories with the help of
skilled personnel and high protocol as well as it requires
different steps, long turnaround time and special in-
struments. Owing to these limitations, the recent

studies are more focusing to enhance the sensitivity and
selectivity of LFAs. Therefore, signal amplification and
multiplexed detection methods are under development
to achieve increased sensitivity, selectivity, and detec-
tion throughput. The development in serological tests
for SARS-CoV-2 antibody faces the issues of being cross-
reactive with other family members of coronavirus. Okba
observed the cross-reactivity among S proteins of SARS-
CoV-2, SARS-CoV, and MERS-CoV. But there was no
cross-reactivity for S1 subunit of MERS-CoV spike
protein. The most conserved subunit among all coro-
naviruses is S2, which can increase the suitability of S1

subunit for serological tests [44].

Antigen detection
Antigen tests can be considered more reliable
compared with antibodies tests because antigens are
target specific and introduce antibodies [45]. Both the
LFAs and ELISA methods can be used for the detec-
tion of antigens. Kim’s research group developed a
novel detection method where they used ACE2 re-
ceptor to detect SARS-CoV-2 spike 1 (S1) protein [46].
The receptor is further paired with commercially
available antibodies and this pair was captured and
detected using lateral flow immunoassay. There was no

cross-reactivity with other coronaviruses showing a
www.sciencedirect.com
detection limit of 1.86 � 105 copies/mL in clinical
samples. The fluorescent immunochromatographic
LFA was designed by Diao et al. to detect nucleocapsid
(N) protein of SARS-CoV-2 [36]. The anti-N mouse
antibodies and anti-rabbit IgG were used to generate
test and control line, respectively. The conventional Au
NPs were replaced by anti-N rabbit IgG marked with
carboxylate-modified polystyrene Europium (III)

chelate microparticles. The samples were consisting of
urine and nasopharyngeal swab. The assay demon-
strated 68% sensitivity and 100% selectivity in com-
parison with nucleic acid test. These are the early
researches and it will take much time to be available in
markets for practical use irrespective of their superb
sensitivity and specificity. LFAs and ELISA are well
established methods and antigen testing is the need of
the hours but there is just one Sofia 2 SARS Antigen
Test Kit available commercially so far to detect SARS-
CoV-2. It works on the principle of immunofluorescence

strip technology for the detection of N protein of
SARS-CoV-2 and SARS-CoV that mean the kit is unable
to make differentiation between these two viruses. The
kit showed clinical sensitivity of 80% and selectivity of
100% for 47 positive and 96 negative individuals [47].
Following the failures of kits, WHO discouraged the
medical staff to use rapid commercial assays to detect
SARS-CoV-2. There are two companies “QUIDEL as
well as Avacta and Cytiva,” which are working for the
development of trustworthy antigen test kits. The
targets for these two kits are N protein, and SARS-CoV-
2 viral antigens or S glycoproteins [48].

Point-of-care testing
Point-of-care testing is also much imperative to diagnose
SARS-CoV-2einfected persons without sending them to
hospitals. In pandemic, the most important is the mass
testing to identify the persons with viral exposure for
quarantine and treatment strategies. When the viral
infection continues to spread at exponential rate, then
RT-PCR and immunoassays become limited because of
the turnaround time. Simple design, noncomplicated
mechanism, and sample collection to result readout by
anyone to everyone without any expertise are the key
features of point-of-care testing, which is important to

control the viral spread. LFAs are the point-of-care
testing methods, which are being developed for the
detection of SARS-CoV-2. The development in such
point-of-care devices is the need-of-the-hour that
anyone, anywhere with minor to moderate symptom, or
even asymptomatic individuals can get the result within
minutes to confirm whether they are positive or negative
for SARS-CoV-2 [49]. It is reported that currently, four
point-of-care setting devices are being used under Food
and Drug Administration- Emergency Use Authorization
(FDA-EUA) approval that we have enlisted below with

their specific characteristics [50].
Current Opinion in Colloid & Interface Science 2021, 52:101418
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� ID NOW COVID-19 test depends on the isothermal
nucleic acid amplification to target the RdPR gene at
specific site using 4e6 primer and a polymerase at
constant temperature. It has great advantage to pro-
duce large amount of nucleic acid duplicates in a very
short time with excellent sensitivity of 125 copies/
mL. Moreover, the result time is approximately
13 min from upper respiratory samples [51].

� Mesa Biotech’s Accula SARS-CoV-2 test target is N
gene and it is basically the combination of two tech-
niques, RT-PCR plus lateral flow immunoassay. With

the analytical sensitivity of 200 copies/mL and it
approximately provides result in 30 min [50].

� Xpert Xpress SARS-CoV-2 test offers an additional
pledge in SARS-CoV-2 detection targeting more the
one gene. It targets the N and E genes and gives the
turnout in 40 min. With the analytical sensitivity of
140 copies/mL and it provides selectivity of 100%
[50].

� Cue COVID-19 test relies on isothermal amplification
to target N gene of SARS-CoV-2 and gives turnout
approximately in 20 min. It shows 100% selectivity.
Cue test offers the portable and easy to use analytical

podium connected with cell phone, which is advan-
tageous to access the health condition at fingerprint
making it more promising point-of-care testing
approach compared with aforementioned three
methods [50].
Developing techniques for SARS-CoV-2
detection
The imperative need of time is, to develop nucleic acid
and protein-based testing for diagnosing COVID-19 to
compensate the RT-qPCR drawbacks. Fascinatingly, an
international company has used the combination of PCR
with LFA technique as an alternate method to detect
SARS-CoV-2 within the exhaled breath condensate.
Moreover, isothermal amplification of genetic material is
an alternative approach to PCR for developing point-of-

care devices to carry out the quick detection of nucleic
acid.

Viral gene detection
Several organizations are striving to implement the
isothermal nucleic acid amplification techniques in the
detection of SARS-CoV-2. The isothermal amplification
approaches are the best options that can be operated at a
single temperature without particular laboratory appa-
ratus providing sensitive results [52]. The helicase-
dependent amplification, LAMP, and RT-
LAMP approaches turned out to be established to
detect SARS-CoV-2 and are more specific, sensitive, and

reaction efficient [53]. The LAMP technique is more
sensitive and specific but it uses high number of
primers. In comparison, RT-LAMP just uses 4 to 6
primers and DNA polymerase to target genome at 6
positions. Currently, RT-LAMP has been used to detect
Current Opinion in Colloid & Interface Science 2021, 52:101418
SARS-CoV-2 in less than 13 min via reverse of tran-
scription of virus RNA to cDNA. The assay using RT-
LAMP technique was developed, which targeted Nsp3
for SARS-CoV-2 detection and showed a detection limit
of 100 copies/reaction [54]. Baek et al. designed RT-
LAMP primer sets to pick out the N gene of viral
RNA, which showed comparable results with RT-PCR
displaying Limit of Detection (LOD) of 100 copies of

RNA [55]. The test displayed no cross reactivity to
other coronaviruses in the detection of SARS-CoV-2 viral
RNAs. Chen’s group introduced contamination-free
naked-eye detection of SARS-CoV-2 using RT-LAMP
approach as shown in Figure 1b [56]. The portable 3D
printing instrument and smartphone were used and the
created fluorescence was seen by naked eyes without
using some devoted tools. Tanner’s group used DNA-
binding dye for calorimetric detection. It is reported
that at the level of 480 RNA copies in cell lysates,
colorimetric LAMP can recognize the viral RNA without

any interference and can be the alternative of RT-PCR
being fast and simple detection method. Moreover,
high selectivity, sensitivity, and only requiring heating
system and optical inspection make it more favorable for
SARS-CoV-2 detection. Zhu et al. developed an
approach by integrating multiplex RT-LAMP with
nanoparticle-based LFA to detect SARS-CoV-2 through
ORF1ab and N gene detection [57]. The SARS-CoV-2
detection is possible in less than 13 min but the one
sample/run and the optimizations of primers and reac-
tion conditions are the major limitations associated with

LAMP techniques [58]. These isothermal amplification
systems may also be multiplexed at the amplification
and/or readout stages. The process of multiplexing is
done using organic fluorescent molecules as beads for
barcoding. Furthermore, visual detection approaches are
also being carried out using some dyes, which use
intrinsic by-products of widespread DNA synthesis.
Fascinatingly, CRISPR-Cas12 lateral flow test was used
to achieve enhanced sensitivity, simplified result read,
and reduced detection time for RT-LAMP method [59].
Researchers are devoting much efforts in using collateral
cleavage activity of Cas nucleases (e.g., Cas12a, Cas12b,

and Cas13a) to establish point-of-care viral RNA
detection methods. Hou et al. achieved enhanced
sensitivity with a detection limit of 7.5 copies per re-
action in 40 min using RPA and CRISPR-Cas13e
mediated enzymatic signal amplification [60]. A
comparative study on clinical evaluation methods
demonstrated that CRISPR-Cas13ebased tests possess
more detection capacity compared with RT-PCR
methods. To make the detection process further easy,
a compact dual CRISPR-Cas12a (AIOD-CRISPR) assay
has been developed, where single-reaction system is

used to incubate all components and high sensitivity as
well as specificity has been achieved for RNA detection
avoiding the need of separate preamplification steps
[10]. The detection limit of 4.6 copies/reaction has been
achieved for SARS-CoV-2 N gene in 40 min. Recently,
www.sciencedirect.com
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Table 1

Recently used several analytical approaches to detect SARS-CoV-2.

Test type Institute LOD Ref

Virus blood culture and high
throughput sequence of whole genome

Wuhan Institute of Virology (WIV) N/A [72]

RT-PCR Berlin Institute of Virology (BIV) 3.9 copies and
3.6 copies

[73]

High-resolution CT scan HUST N/A [74]
Dual CRISPR Cas12a test University of Connecticut Health Center 1.2 DNA copies and

4.6 RNA copies
[10]

Fast IgM and IgG combined Ab
testing kit

Guangzhou Medical University N/A [38]

Closed tube one-stage LAMP3 University of Pennsylvania 70 copies/reaction [75]
Closed tube two-stage RAMP4 assay University of Pennsylvania 7 copies/reaction [75]
RNA-based paper LFA5 PoC-based

LAMP assay
National Tsinghua University N/A [76]

ELISA6 and GICA for combined IgG-IgM Wuhan University N/A [49]
FTO-based Ab sensor National-Institute of Animal-Biotechnology 10 fM [77]
SPCE-based Ab biosensor National-Institute of Animal-Biotechnology 10 fM [77]
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Wang’s group designed an assay by combining RT-LAMP
with Cas12a cleavage and named it as opvCRISPR to
detect SARS-CoV-2 visually [61]. This assay was vali-

dated with 50 clinical specimens of SARS-CoV-2e
infected people. The RT-LAMP amplicon triggered
collateral activity against single-stranded DNA reporters
of activated Cas12a, which consequently increased the
detection sensitivity and made the outcomes to be
observed by naked eye. Moreover, SHERLOCK detec-
tion methods for SARS-CoV-2 are also used based on
nucleic acid testing technique. In this approach, the
targeted virus RNA is reverse transcribed to cDNA
where isothermal amplification takes place by reverse
polymerase. Further the amplified products are tran-

scribed back into RNA [62].
Biosensing techniques for SARS-CoV-2
detection
The biosensors are emerging area of analytical chemis-
try. The biosensing systems are able to provide quanti-

tative analysis and measurements without demanding
extra processing steps or reagents [63,64]. The
biosensor-based technologies offer alternative approach
to standard PCR tests, which are not only sensitive but
also helpful in diagnostics and therapeutic assessments.
Biosensors have the capability to detect pathogens in
numerous environments without requiring tedious
sample preparing steps [65,66]. Several biosensors with
diverse biorecognition elements (enzyme, antibody,
deoxyribonucleic acid, cell, or microorganisms) and
transducers (such as mechanical and optical trans-

ducers) have been extensively applied in the detection
of pathogens [67]. Labels can also be named as reporters
which are molecular species including organic dyes or
quantum dots which bind to the target, either in a direct
way or via a biorecognition element to enable the
www.sciencedirect.com
detection [68,69]. The biosensors are now trending for
SARS-CoV-2 detection, specifically the
CRISPR technologyebased biosensing systems such as

CRISPR-Chip to electrically detect genetic mutations
[70] and electrochemical CRISPR-biosensing platforms
for microRNA analysis [71]. These approaches are easily
adapted to any nucleic acid and can be able to report the
mutations of SARS-CoV-2 in timely way. Moreover,
successful differentiation in similar gene sequences
with superb sensitivity has been recently reported by
using combination of plasmonic photothermal (PPT)
effect and localized surface plasmon resonance. Here,
we have summarized the recently used several analytical
approaches (see Table 1) for the detection of SARS-
CoV-2.

Optical biosensor
To timely and efficiently diagnose COVID-19 infection,
the detection of immunoglobulin A (IgA) specific to
SARS-CoV-2 is highly crucial to complement the assays
used in the detection of IgM and IgG. Anfossi’s research
group has designed a dual functioning optical/chem-
iluminescence immunosensor for the detection of IgA
from serum and saliva samples as presented in Figure 2a
[78]. The recombinant nucleocapsid antigen was used
to capture SARS-CoV-2 antibodies present in sample in
infected people. The assay was successfully used in the
analysis of 25 serum and 9 saliva samples taken from

infected and/or recovered persons with excellent
sensitivity. This is a noninvasive immunosensor, which
can be helpful to monitor early immune responses to
COVID-19. Moreover, surface-enhanced Raman
scatteringebased lateral flow immunoassay (SERS-
LFIA) has been developed by Liu et al. to detect IgM
and IgG simultaneously as shown in Figure 2b [79]. To
fabricate SERS, tags modified with dual-layers of Raman
Current Opinion in Colloid & Interface Science 2021, 52:101418
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Figure 2

The use of optical biosensors in the detection of SARS-CoV-2 (a) Schematic representation of smartphone reader used for optical immunosensor in the
detection of IgA. Reprinted with permission from Ref. [78]. (b) Preparation and operating-principle of (a) SARS-CoV-2 S protein coupled SiO2@Ag SERS
tags and (b) simultaneous detection of anti-SARS-CoV-2 antibodies. Reprinted with permission from Ref. [79]. (c) Schematic representation of localized
surface plasmon resonance–based opto-microfluidic sensor to detect SARS-CoV-2 antibodies. Reprinted with permission from Ref. [83].
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dye, SiO2 core was completely coated with Ag shell
(SiO2@Ag), which showed superb SERS signal, decent
monodispersity, and excellent stability. The anti-human
antibodies were immobilized which captured SiO2@Ag-
spike S protein anti-SARS-CoV-2 IgM/IgG complexes.
The as proposed SERS-LFIA biosensor showed a
detection limit of 800 times higher than Au NPs based
LFIA. The direct detection of S protein has been
achieved using nanoplasmonic resonance sensors with a
detection limit of 370 vp/mL in 15 min [80]. The assay

was very economical showing good performance under
clinical environment. Recently, surface plasmon reso-
nance (SPR) sensing approach has been used to detect
nucleocapsid antibodies in serum sample, which were
produced in response to SARS-CoV-2 infection [81].
Here, after activating EDC-NHS AffiCoat surface, the
binding of nucleocapsid protein of SARS-CoV-2 (rN) on
the surface of the SPR chip was achieved and ethanol-
amine was used for the passivation of remaining acti-
vated sites. This method is quantitative, portable and
good enough to pave the way for point-of-care assays and

label-free detection of antibodies. The SPR sensor had
the capability to detect anti-SARS-CoV-2 antibodies at
nano-molar level after coating with peptide monolayer
Current Opinion in Colloid & Interface Science 2021, 52:101418
and functionalizing with SARS-CoV-2 nucleocapsid re-
combinant protein. The whole assay was conducted on
portable SPR instrument without diluting the serum
sample. This method is good enough to pave the way for
point-of-care and label-free testing of antibodies.
Another SPR biosensor has been developed based on pig
sera-derived anti-SARS-CoV-2 antibodies [82]. Pig-sera
were used to purify SARS-CoV-2 antibodies against
nucleocapsidprotein (NP). The assay presented a
detection limit of 1.02 pM for the detection of SARS-
CoV-2. More recently, Shen’s group detected antibodies
against SARS-CoV-2 spike protein using Au nanospikes
in opto-microfluidic sensing platform as shown in
Figure 2c [83]. The opto-microfluidic sensor was
developed based on the principle of localized surface
plasmon resonance (LSPR), and Au nanospikes were
electrodeposited for the detection of antibodies against
SARS-CoV-2 spike protein 1 mL of human plasma. The
label-free microfluidic sensor showed a detection limit
of w0.5 pM and completed the assay in w30 min. The
wavelength peak shift of Au nanospikes is measured,

which is then correlated with the amount of target an-
tibodies. This platform is very cheap, easy-to-use, fast,
and offers point-of-care diagnostics. Furthermore, circle-
www.sciencedirect.com
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to-circle amplification and optomagnetic analysis have
been used to quantify SARS-CoV-2 RdRp coding
sequence [84]. The proposed optomagnetic approach
was successfully used to detect SARS-CoV-2 cDNA with
a detection limit of 0.4 fM. In comparison to previous
literature on circle-to-circleebased sensors, this method
showed subfemtomolar level detection, reduced the
time consumption and labor work. These biosensors

possess the advantages to execute fast naked-eye diag-
nosis of viral infection with real-time analysis and
without requiring many reagents. Consequently, pref-
erable method of choice is the used of optical bio-
sensors. They can detect analyte with very low quantity,
high sensitivity and specificity as well as detect the
variants of viral strains.

Dual-functional LSPR and PPT biosensor
The biosensors are considered most trustworthy diag-
nosis approaches as an alternate way out to clinical
Figure 3

Dual-functional plasmonic biosensing and naked-eye detection of SARS-CoV
inhibited hybridization, (b) real-time hybridization of RdRp-COVID and its cDN
tions. Reprinted with permission from Ref. [88]. (b) Scheme illustrating the na
with permission from Ref. [91].

www.sciencedirect.com
analysis, real-time and nonstop monitoring to promote
epidemic prevention and control [85,86]. It is well-
documented that huge optical cross sections are shown
by plasmonic nanoparticles and abundant heat energy is
produced as a result of nonradiative relaxing process of
absorbed light [87]. More recently, Wang’s research
group fabricated a dual-functionalized plasmonic
biosensor using PPT effect in combination with local-

ized surface plasmon resonance (LSPR) sensing trans-
ducer for sensitive and promising diagnosis of SARS-
CoV-2 in clinical specimens [88]. The schematic drawing
of hybridization, real-time hybridization of RdRp-
COVID and its cDNA sequence, and RdRp-COVID
sequence detection at various concentrations have
been shown in Figure 3a. The nucleic acid hybridization
process has been used in the detection of selected se-
quences of virus with super sensitivity where two-
dimensional Au nanoislands combined with cDNA re-
ceptors perform as biosensing platform. To achieve
-2 (a) LSPR biosensing. (a) Schematic drawing of the hybridization and
A sequence, (c) RdRp-COVID sequence detection at various concentra-
ked-eye detection of SARS-CoV-2 using ASO-capped AuNPs. Reprinted

Current Opinion in Colloid & Interface Science 2021, 52:101418
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improved performance, the same Au nanoislands chip is
used to generate plasmonic heat when illuminated.
Furthermore, the localized PPT heat has the capability
to increase the in-situ hybridization temperature, which
in turn enables the perfect differentiation of two same
gene sequences. The proposed LSPR biosensor has
successfully demonstrated superb sensitivity in the se-
lective determination of SARS-CoV-2 sequences

showing low detection limit of 0.22 pM and has allowed
accurate determination of particular target in mixed
genes. This research gains insight into thermoplasmonic
enhancement and envisions the practical application of
LSPR biosensor in nucleic acid testing and viral infec-
tion diagnosis. Moreover, the integration of these bio-
sensors with microfluidic systems may increase overall
sensitivity of device helping in miniaturization process
[89].

Microfluidic colorimetric biosensor
In last decades, microfluidic devices have been used for
the contagious ailments like HIV, SARS-CoV, and others,
which target the biomarkers in less than 5 min

consuming only 6 mL of blood plasma sample [90]. For
COVID-19 and other infectious viral diseases, micro-
fluidic devices are raising the panorama of swift, low
cost, and point-of-care diagnostic to avoid further
transmission of virus. Moreover, microfluidic devices
fulfill the “ASSURED” (affordable, selective, sensitive,
user-friendly, rapid and robust, equipment-free, and
deliverable) criteria for biosensing and point-of-care
testing having the benefits of high precision, trans-
portability, quick response, high reproducibility, less
reagent usage, easily applied, and high throughput par-

allel processing. These biosensors offer multiplexing,
miniaturization, and capability of integration with
various techniques. Conversely, sample preparation and
analysis, sample’s matrix effect reduction, and full
automation in microfluidic devices are still challenging.

Colorimetric biosensors present the exciting properties
including straightforwardness, rapid response, accu-
rateness, and cost-effectiveness, and produce signals
visible to naked-eye for detection of viral infectious
diseases. The thiol-modified antisense oligonucleotides

(ASOs) capped Au NPs (Au-ASOs) have been used as
colorimetric biosensing platform to detect SARS-CoV-2
by Pan’s research group [91]. The schematic illustration
of Au-ASOsebased biosensor for naked-eye detection of
SARS-CoV-2 has been shown in Figure 3b. The Au-
ASOsebased assay enabled the specific detection of N-
gene from nasal swab to detect SARS-CoV-2 infection in
10 min. The detection mechanism involved the
agglomeration of Au-ASOs architecture with target
SARS-CoV-2 RNA, which led to red-shift. The cleavage
of RNA strands from RNAeDNA hybrid was done by

adding RNaseH and finally the precipitations in solution
owing additional agglomeration of Au NPs were visible
Current Opinion in Colloid & Interface Science 2021, 52:101418
to naked-eye. The biosensor showed a detection limit of
0.18 ng/mL for SARS-CoV-2 RNA with no cross-reactivity
with MERS-CoV viral RNA. Moreover, Kumar et al.
developed another similar colorimetric-based biosensing
system for the detection of RdRp gene of SARS-CoV-2
form nasopharyngeal sample in less than 30 min [92].
The biosensor demonstrated low detection limit of
0.5 ng for SARS-CoV-2 RNA and no cross-reactivity

toward cervical DNA sample, which was acquired from
human papillomavirus-infected women. This biosensing
platform may facilitate the mass screening during
pandemic management in a cost-effective manner. The
simultaneous detection of immunoglobulin IgM and
IgG for SARS-CoV-2 has been carried out using AuNPse
based immunoassay [38]. The assay detected antibodies
from human blood sample in 15 min with a clinical
detection sensitivity and selectivity of 88.66% and
90.63%, respectively.

Electrochemical biosensing systems
Moreover, electrochemical biosensors have attracted
immense attention of the researchers because of their

capabilities to offer sophisticated ways to interface at
molecular level, DNA recognition and signal trans-
duction elements and are economical requiring low
volume and power for DNA detection [93,94]. The
electrochemical biosensing podium to detect different
viruses including SARS-CoV-2 has been described in
Figure 4a [95]. A hybridization-based genosensor was
developed on a 100 nm sputtered gold film to detect 30-
mer sequence, which is distinctive to SARS [96]. The
alkaline phosphatase (AP) was attached with AP-
conjugated streptavidin via eminent streptavidine
biotin binding on electrochemical nanoarchitectured
screen printed carbon electrode and was used as a
genosensor for electrochemical detection of SARS-
associated coronavirus [97]. Here, the Au NPs act as
immobilization surface through thiolegold interaction
and transduction surface as well. This enzymatic elec-
trochemical biosensor demonstrated a linear range be-
tween 2.5 and 50 pmol/L with low LOD of 2.5 pmol/L in
the detection of targeted DNA sequence. In this work,
the usability of Au NPs immobilized surfaces has
considerably improved the electrochemical sensing

performance. Fung’s research group developed a
biosensor based on piezoelectric quartz crystal (PQC)-
aptamer coupled with paramagnetic nanoparticle for
specific detection of SCV helicase protein created by
SARS-CoV replication. The fabricated aptamer-PQC
biosensor showed low detection limit of 3.5 ng/mL
having reproducibility of 6.8% (%RSD, n = 3) and good
recoveries of 102% and 119% [98].

Recently, Pan’s research group fabricated Au NPs
capped with specific antisense oligonucleotides

(ssDNA) based electrochemical biosensor chip, which
enabled digital detection of SARS-CoV-2 nucleocapsid
www.sciencedirect.com
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Figure 4

The vitality of electrochemical sensing techniques to carry out SARS-CoV-2 detection (a) Electrochemical biosensing podiums to detect different viruses
including SARS-CoV-2. Reprinted with permission from Ref. [95]. (b) Scheme representing the concept of SPCE/NPs/nano-Dendroids/GO/Ab probe
fabrication to diagnose COVID-19. Reprinted with permission from Ref. [100], Schematic illustration of (c) Preparation of premix (d) Use of smartphone in
SARS-CoV-2 detection using the electrochemical biosensing platform. Reprinted with permission from Ref. [104].
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phosphoprotein (N-gene) [99]. The paper-based elec-
trochemical system was used to immobilize sensing
probes to construct nucleic acid testing device. The as-
fabricated biosensor outperformed, exhibiting a sensi-
tivity of 231 (copies mL�1)�1 and detection limit of 6.9
copies/mL when applied to test samples obtained from
vero cells infected with SARS-CoV-2 as well as patients’
specimens. The biosensor showed 100% accuracy,
sensitivity, and selectivity when the results of 22
COVID-19 positive patients and 26 healthy individuals

acquired by the proposed sensor with standard RT-PCR
diagnostic kit. The sensor was also feasible during
genomic mutation of SARS-CoV-2 because design of
ssDNA probes which concurrently targeted two regions
of SARS-CoV-2.

The scheme representing the concept of SPCE/NPs/
nano-Dendroids/GO/Ab probe fabrication to diagnose
COVID-19 has been shown in Figure 4b [100]. The
label-free electrochemical impedimetric sensor was
www.sciencedirect.com
prepared by Rashed et al. to rapidly detect SARS-CoV-2
antibodies [101]. The sensor showed 100% accurate
performance when results displayed by this sensor for
clinical samples of COVID-19 negative and COVID-19
positive persons were compared with ELISA method.
Moreover, Kim’s research group has designed field-
effect transistor (FET)-based biosensor in the detec-
tion of SARS-CoV-2 from clinical specimens [102].
Graphene nanosheets modified FET was coated with
specific antibody against SARS-CoV-2. The as-

constructed FET biosensor has shown excellent
sensing capabilities in the detection of SARS-CoV-2 in
culture medium and clinical samples with detection
limits of 1.6 � 101 pfu/mL and 2.42 � 102 copies/Ml,
respectively. The detection of S and N proteins from
saliva samples has also been carried out using an elec-
trochemical immunosensor based on magnetic beads as
support of immunological chain and antibody with AP as
immunological label [103]. The sensor depicted low
detection limits of 19 ng/mL and 8 ng/mL for S and N
Current Opinion in Colloid & Interface Science 2021, 52:101418
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proteins in buffer solution and untreated saliva,
respectively. In this assay, saliva sample is used, which
yields high sensitivity compared with nasopharyngeal
sample owing to self-sampling of saliva. Magnetic beade
based sensor offers the possibility of loading enhanced
amount to capture antibody because of high surface
area. More recently, Li’s research group has introduced
an electrochemical sensing platform using smartphone

for the detection of SARS-CoV-2 from infected patients
as shown in Figure 4c and d [104]. Using supersandwich-
type recognition approach, electrochemical smartphone
was able to detect RNA of SARS-CoV-2 without nucleic
acid amplification and reverse transcription. The
detection capability of this biosensor (85.5% and 46.2%)
was higher than RT-PCR (56.5% and 7.7%) when prac-
tically applied in to detect RNA of SARS-CoV-2 from 88
RNA extracts of 25 confirmed patients and 8 recovered
individuals, respectively. The measured LOD was 200
copies/mL and only two copies (10 mL)/assay of SARS-
CoV-2 were needed. The different biosensing platforms
for virus detection have been presented in Table 2.
These biosensors not only demonstrate the very low
detection limit, enhanced sensitivity and selectivity in
detecting infectious agents without sample pretreat-
ment but also produce rapid and cost-effective results in
comparison with RT-PCR detection methods. Rapid
testing, ease of handling, and miniaturization are also
offered by electrochemical biosensors. The integration
of theses biosensors with microfluidic platforms, and
multiplexing can easily be achieved, which can further

increase the sensitivity of device.

Viral-induced reactive oxygen species detection
based on EC sensor
The biomarker-based detection of COVID-19 without
using viral RNA, antigen, antibodies, and whole virus
Table 2

Different biosensing platforms for virus detection.

Biosensor Pathogen Detection target

EC SARS-CoV-2 S or N protein
EC SARS-CoV-2 Antibodies
EC SARS-CoV-2 N-gene

Cell-based SARS-CoV-2 Antigen
Optofluidic SARS-CoV-2 Antibody
Nanoplasmonic SARS-CoV-2 Virus particles
SPR SARS-CoV-2 Antibody
LSPR SARS-CoV-2 RNA
Lateral flow optical/

chemiluminescence
SARS-CoV-2 Serum IgA

SERS-LFIA SARS-CoV-2 Antibody
Lateral flow SARS-CoV-2 RNA
Liquid crystal SARS-CoV-2 RNA
Optomagnetic SARS-CoV-2 RdRp

Current Opinion in Colloid & Interface Science 2021, 52:101418
particles for detection, may be an interesting strategy in
pandemic. It is well-documented that the existence of
viral RNA is acknowledged to initiate the activation of
NLRP3 inflammasome through RNA-modulating pro-
teins and to trigger the generation of reactive oxygen
species (ROS) [108]. Moreover, Zika virus has also been
found to induce oxidative stress, which ultimately
lowers antioxidant enzyme activities. During in-vitro and
in-vivo studies, it has been confirmed that the infection
caused by Zika virus significantly enhances ROS pro-
duction and lipid peroxidation products, whereas de-
creases superoxide dismutase and catalase activities
[109]. Previously, in case of SARS-CoV, Li’s group
investigated that the ROS level was noticeably
augmented in SARS-CoV 3C-like protease expressing
cells. The authors confirmed the role of SARS-CoV in
virus-induced cell apoptosis in Vero-E6 cells [110]. It is
very crucial to carry out early diagnosis of COVID-19
pneumonia to avoid care consumption and mortalities

at mass level. Considering the early diagnosis, Miripour
et al. presented a diagnostic method based on early
traces of overproduced mitochondrial ROS in lungs due
to viral-infected lung epithelium [111]. The recent
investigation on COVID-19 diagnostic mechanism has
been carried out monitoring overproduction of early
traces of mitochondrial ROS as lung cells’ dysfunctions
triggered by SARS-CoV-2. The scheme of side effects of
virus in lungs producing mitochondrial ROS which
promote viral replication has been shown in Figure 5a.
The electrochemical sensor for the detection of ROS

consisting of three steel needle electrodes with working
electrode modified by multiwalled carbon nanotube
(MWCNT), reference electrode and counter electrode
in a triangular form with 3 mm distance from each other,
comparison among DPV responses of confirmed and
healthy persons and their corresponding CTscan images
Limit of detection Linear range Ref.

19 ng/mL and 8 ng/mL – [103]
– – [101]
6.9 copies/mL 585.4 to 5.854 ×

107 copies/mL
[99]

1 fgmL1- 10 fg and 1 mg mL1- [105]
0.5 pM 1- [83]
370 vp/mL 0 to 107 vp/mL [80]
1.02 pM 2–1000 pM [82]
1 pM 1 nM to 1 mM [106]
– – [78]

1.28 × 107-fold dilution – [79]
12 copies/reaction – [57]
– – [107]
0.4 fM 0.1–10 fM [84]

www.sciencedirect.com
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Figure 5

The ROS-based detection of COVID-19 using an electrochemical biosensor consisting of three needle electrodes modified with functionalized multiwalled
carbon nanotubes (a) Scheme representing the side effects of virus in lungs producing mitochondrial ROS which promote viral replication. (b) Elec-
trochemical detection of ROS. (c) Comparison among different fresh sputum samples from patients and their corresponding CV. (d–f) CT-scan images of
infected patients and healthy individual. (g) G1; hospitalized in ICU (n = 25), G2; hospitalized without need to ICU care (n = 36), G3; PCR-positive
nonhospitalized (n = 45), G4; PCR-negative healthy controls (n = 36). Reprinted with permission from Ref. [111].
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have been displayed in Figure 5bef. The practical
application of proposed electrochemical sensor in
differentiating patient samples by measuring the pro-

duced current under sweeping potential range of �0.8
to 0.8 V and with scan rate of 100 mV/s has also been
presented in Figure 5g. So far, this is the first report on
construction of electrochemical sensing platform, which
can specifically detect concentration of ROS in sputum
specimens to screen the individuals with or without
COVID-19 infection. The sensor can work with a
volume of less than 500 ml. The MWCNT-decorated
electrode showed a sensitivity of 97% when applied in
ROS detection in sputum samples of more than 140
healthy and confirmed cases and compared the results

with clinical diagnostics. The sensor displayed the
diagnosis results in less than 30 s and it can be a supreme
assistant in rapid screening of patients. However, the
authentication on specificity of clinical analysis would
be needed further. Though, this type of portable, light
weight, and sensitive biosensing platform is extremely
needed to execute rapid screening of patients for further
www.sciencedirect.com
medical checkup to decrease the workload on front line
medical workers during pandemic.
Comparison among various detection
approaches
The detailed comparison among various detection ap-
proaches has been discussed with their distinguish
characteristics as given in Table 3. There are different

detection methods such as immunofluorescence ap-
proaches, cell cultureebased methods, molecular assays,
and electrochemical biosensingebased approaches.
The issues need to be addressed
No doubt, there are lots of successful advancements in
detection and diagnostic assays which are effectively
contributing to control the SARS-CoV-2 spread world-
wide but some unmet problems still need to be solved
for better control and prevention of COVID-19. Espe-
cially in the case of asymptomatic, presymptomatic, and
the patients with less viral load, the point-of-care de-
vices that work without RNA extraction, met the
Current Opinion in Colloid & Interface Science 2021, 52:101418
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Table 3

Comparing the pros and cons of conventional and electrochemical biosensing techniques.

Techniques Significant points Drawbacks Ref.

Immunofluorescence
(IF) approaches

Highly specific and sensitive. Sensitivity is less as compared to
cell culture–based methods, as
well as, being highly specific
cannot be used for all types of
viruses, exhibit poor sensitivity
against some viral particles.
Moreover, need expertise.

[112]

Cell culture–based
methods

Sensitivity is higher as compared to most
antigen testing methods. Specific viral
particles can be isolated even from the
mixed culture medium. Facilitate the
Antiviral, serotype as well as
epidemiological studies.

Long incubation period and need of
expertise are major
disadvantages related to cell
culturing methods.

[113]

Molecular assays Sensitivity and specificity are good
enough, turnout time is less in real-time
analysis, even appropriately can detect
the viral particles that cannot be cultured
by cell culture methods.

These assays need highly specific
primer and probes, need skills to
be intramural use, as well as are
expensive and most of them can
only be done in research
laboratories. In case of mixed
infections, chances of false
results are higher. Moreover,
FDA-approved kits are not
available for all types of viruses.

[114]

Electrochemical
biosensors

Portable biosensors facilitate the in-house
healthcare services without the need of
highly trained personals. Being highly
cost effective, with frequent response,
less result turnout time, small sampling
size, as well as admirable detection
limits biosensors are key technologies in
health care systems.

Sensitivity toward the samples
matrix effect and poor stability
are the bottleneck of biosensing
technology.

[115,116]
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accuracy problem for the sensitivity and detection of
SARS-CoV-2. The long detection time also does not fit
into the fast and on-site conductive screening of

COVID-19 suspected individuals [117]. In case of
COVID-19, it has been observed clinically that most of
the infected persons have low viral load as well as less
expression of nucleocapsid protein in infected cells,
which ultimately produce a less nucleocapsid concen-
tration in body fluids comparing to other CoV viruses.
This thing by putting the question marks on the accu-
racy of the antigen and viral particle detection, sug-
gested the development of ultrasensitive and POC
detection technologies for the fast and in-situ sensing of
antigen in suspected cases for the early diagnostics

purposes [118].

Furthermore, low seroconversion is the main reason of
trace antibody level (anti SP-antibody) in most of the
COVID-19 patients, specifically the level of anti-RBD
and anti-NP-antibodies is less at the start of infection,
which results in the false results during the examination.
During 5e6 days of incubation period, due to the trace
level of targeted SARS-CoV-2 antibodies, there are more
Current Opinion in Colloid & Interface Science 2021, 52:101418
chances that infected patients could be neglected by
the commercially available kits. Ultimately, these pre-
symptomatic and asymptomatic persons will be the

source of virus spread to their close contacts [119]. To
solve these unmet problems, in addition to smarter
strategies, there is an urgent need to develop the ul-
trasensitive and cost-effective detection technologies
for the accurate detection of antigen, antibodies, and
integration of RNA release through preconcentration,
amplification, and detection in portable microfluidic-
based chips.
Conclusion and future outlook
The ultrasensitive and specific diagnostic methods are
necessary for the early detection of SARS-CoV-2 to
expedite the treatment and isolation of infected in-
dividuals. In addition, diagnostic techniques are highly
mandatory to empower medical staff with direct re-
sources and to better combat with COVID-19. These

days, CT scan, RT-PCR, and lateral flow immunoassays
have been developed for the diagnosis of COVID-19.
The nucleic acid testing methods and RT-PCR kits
www.sciencedirect.com
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being sensitive and specific offer the best way to detect
SARS-CoV-2, but the reduction in false negative results
is needed to increase the applicability of RT-PCR test.
To overcome the bottleneck of standard diagnostic tools,
emerging diagnostic approaches with low cost, wide
availability, rapid response, and superb reliability are
very essential to identify and handle the viral spread.
Here of, we have critically discussed the state-of-the-art

biosensing strategies for SARS-CoV-2 detection.
Biomarker-based diagnosis potential of biosensors will
be the captivating approach in combination with clinical
observations and risk factors to treat the patients ac-
cording to the severity of their disease. Recently, bio-
sensors have successfully detected SARS-CoV-2 from
biological samples; therefore, the use of biosensing
technologies is the best way to diagnose the disease at
its earliest stage.

With the innovation of nanotechnology, the sensing per-

formance of biosensor devices should be further
improved in terms of low detection limits, specificity and
reproducibility, making them more trustworthy for in-
vitro and in-vivo diagnostics. To improve the accuracy,
combined detection of various biomarkers with multiplex
biosensors can be the alternative sensitive approach. To
guarantee the fast measurements at the point-of-care,
sensing devices should be inexpensive and easy to
handle. More work is required to connect sensing devices
through databases with medical staff to realize a decen-
tralized healthcare, which would be an important tool for

the diagnosis of emerging infectious disease and to
determine the herd-immunity regions. Furthermore,
colorimetric strips and smartphone-based biosensors that
can target antibody or antigen possess great potential as
home-used point-of-care testing. Moreover, rapid trans-
lation of laboratory research on biosensors into commer-
cially practicable prototype by industry is the main
challenge to bridge the gap between laboratory work and
industrial needs. The wastewater-based epidemiology
should be further explored to develop proficient analyt-
ical devices for accurate and fast detection of trace level
of SARS-CoV-2 to determine the virus carrier regions.

The society needs the massive defense to contain the
enormous SARS-CoV-2 like viral attacks and we believe
that the best way to deal with such situations is, the
development of the highly sensitive, swift, easily acces-
sible point-of-care testing kits, which can be used even
by the common man.
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