
6046–6054 Nucleic Acids Research, 2016, Vol. 44, No. 13 Published online 6 June 2016
doi: 10.1093/nar/gkw500

How far from the SNP may the causative genes be?
Aharon Brodie, Johnathan Roy Azaria and Yanay Ofran*

The Goodman faculty of life sciences, Nanotechnology building, Bar Ilan University, Ramat Gan 52900, Israel

Received September 03, 2015; Revised May 20, 2016; Accepted May 22, 2016

ABSTRACT

While GWAS identify many disease-associated
SNPs, using them to decipher disease mechanisms
is hindered by the difficulty in mapping SNPs to
genes. Most SNPs are in non-coding regions and it
is often hard to identify the genes they implicate.
To explore how far the SNP may be from the af-
fected genes we used a pathway-based approach.
We found that affected genes are often up to 2 Mbps
away from the associated SNP, and are not neces-
sarily the closest genes to the SNP. Existing ap-
proaches for mapping SNPs to genes leave many
SNPs unmapped to genes and reveal only 86 signif-
icant phenotype-pathway associations for all known
GWAS hits combined. Using the pathway-based ap-
proach we propose here allows mapping of virtually
all SNPs to genes and reveals 435 statistically signif-
icant phenotype-pathway associations. In search for
mechanisms that may explain the relationships be-
tween SNPs and distant genes, we found that SNPs
that are mapped to distant genes have significantly
more large insertions/deletions around them than
other SNPs, suggesting that these SNPs may some-
times be markers for large insertions/deletions that
may affect large genomic regions.

INTRODUCTION

Mapping SNPs to molecular process is crucial for under-
standing disease

A first step towards making molecular sense of GWAS is
to map phenotype-associated SNPs to genes. While a SNP
within a coding region is usually assumed to affect that gene,
the majority of SNPs fall in non-coding regions and many
of them are intergenic (1–3). This makes it difficult to deter-
mine which genes they affect (4) and, by extension, learn of
their molecular contribution to the phenotype. Moreover,
it has been shown that SNPs may occasionally affect dis-
tant genes (5), which makes the mapping of SNPs to genes
even more challenging. Intergenic SNPs are often found in
GWAS to be significantly associated with the studied phe-
notype (2). While linkage disequilibrium (LD) may help link

some of these SNPs to nearby genes (2), many phenotype-
associated SNPs are not in LD with any gene. It is a com-
mon practice to automatically map SNPs to the closest gene
provided that it is close enough (see for example the Fram-
ingham heart study (6), which initiated many of the prac-
tices in GWAS), but there is no consensus as to the dis-
tance cutoff that should allow such mapping. The widely
used SNP database dbSNP (7) uses an upstream cutoff of
2 Kbps and a downstream cutoff of 0.5 Kbps to map a
SNP to a gene. A few studies have used larger cutoffs of up
to 100 Kbps (8) and even 500 Kbps(9–12). But even these
cutoffs leave many GWAS hits with no associations to any
gene. Moreover, acknowledging that SNPs may affect dis-
tant genes (e.g. in the case of enhancers and repressors (9))
the common practice of mapping SNPs to the nearest gene
may lead to false SNP-gene mapping.

Molecular pathways allow assessment of SNP-gene relation-
ships

Results of GWAS have been increasingly used to associate
phenotypes with pathways (13). This is based on the as-
sumption that SNPs that are associated with the same phe-
notype are expected to affect the same biological processes
and hence the same pathways. We recently introduced a
framework that assesses associations between phenotypes
and pathways based on SNPs and the genes to which
they are mapped (14). Briefly, our framework determines
whether the genes that are mapped to SNPs associated with
a certain phenotype fall within the same pathway more than
expected by chance. Here, we used this framework to statis-
tically assess how far from the SNPs the causative genes may
be. Specifically, for each phenotype, we tentatively assigned
all associated SNPs to genes that are within a certain dis-
tance cutoff (e.g. 10 Kbps). We then checked whether these
genes cluster into curated pathways more than expected by
chance. Then, we repeated the same analysis, this time with
a larger SNP-gene distance cutoff (e.g. 50 Kbps). In this sec-
ond iteration, we map more SNPs to more genes (as more
intergenic SNPs could be mapped to a gene). If these ad-
ditional, more distant genes are mostly irrelevant for the
phenotype, we expect that now the clustering of genes into
pathways will be weaker than when considering only closer
genes. However, if these more distant genes include many
genes that affect the phenotype we expect that the cluster-
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ing of these genes into pathways will be even stronger. We
repeated this analysis for increasingly large distance cutoffs.
Assigning SNPs to genes that are up to 200 Kbps away in-
creased the number of significant phenotype-pathway as-
sociations. Beyond this distance the number started to di-
minish. However, the associations remained significant even
when considering only genes that are up to 2 Mbps away
from the SNP. Reviewing specific phenotypes, we found that
in some cases associations to relevant molecular pathways
were identified only once we allowed linking SNPs to very
distant genes.

Possible association of SNPs and insertions/deletions (in-
dels)

We compared the cases in which assigning SNPs to distant
genes revealed more significant phenotype-pathway associ-
ations to the cases in which assigning SNPs to distant genes
did not increase the number of associations. We found that
there are significantly more indels in the chromosomal in-
tervals between SNPs and genes that are associated through
pathways compared to similar chromosomal segments be-
tween SNP and genes that are not associated. This suggests
that in some cases, SNPs may be markers for large indels,
which may affect large genomic regions and distant genes.

MATERIALS AND METHODS

Data

Phenotype-SNP associations were extracted from GWAS
data in the NHGRI GWAS catalog (15). It contains man-
ually curated entries of published GWAS, in which SNPs
were associated with diseases, phenotypes, and traits. Un-
less otherwise stated we used the version from www.ebi.ac.
uk/gwas on 9 September 2015. Gene symbols were taken
from Genenames (16), while the genomic locations of SNPs
and genes were taken from the UCSC genome browser
(17). Biological pathways and their associated genes were
taken from the KEGG pathway database (release 53) (18),
and from ConsensusPathDB (CPDB) (19). From CPDB we
took only KEGG pathways. Genomic indels were taken
from DGV (20), a database of genomic structure variants
(SV). These were used for the analysis of whether more in-
dels fall in phenotype-associated SNP-gene regions. For the
analysis of indels around SG regions (see below) we used
GWAS Catalog version downloaded from www.genome.
gov/gwastudies on 11/2011 with merged GWAS entries of
the same phenotype as in (14).

Association of phenotypes to pathways

We define a SNP as a ‘phenotype-associated SNP’ if it is
associated with a phenotype in the NHGRI GWAS catalog
(see (15)). To determine whether a pathway is significantly
associated with a phenotype we assess whether the genes of
that phenotype fall within that pathway significantly more
than expected by chance. The next paragraph describes the
background model on which we determine the number of
genes that are expected to cluster into a pathway by chance.

Assessing significance of phenotype-pathway associations

Assessment of the significance of the association between a
phenotype and a pathway in a given distance cutoff x (e.g.
10 Kbps, 200 Kbps), hereby referred to as ‘cutoff’, is done
as in (14), with a slight variation regarding the background
model. Briefly, for each phenotype, with s SNPs associ-
ated with it according to GWAS, the number of phenotype-
associated genes, denoted g, was recorded. For a distance
cutoff of x, g is number of genes that are less than x bps from
any of the s SNPs. We also recorded how many of these g
genes fall into the same pathway. SNPs from GWAS have
more genes in their vicinity compared to all SNPs (Figure
1), to account for that the expected number by chance was
assessed by repeatedly picking s random SNPs from GWAS,
mapping them to the genes that are less than x bps away
and recording how many of these genes fall into the same
pathway (note that in (14) genes were chosen randomly, and
not SNPs). For each phenotype-pathway pair, this was re-
peated 1000 times. A phenotype is said to be significantly
associated with a pathway with P-value <0.001, if <0.001
of these random resamplings resulted in an equal or greater
number of genes which clustered into the pathway.

The random model should test whether genes that are
close to phenotype-associated SNPs cluster into pathways
more than expected by chance. However, it should take into
account that neighboring genes on the chromosome might
cluster into the same pathway regardless of the SNPs. We
define a ‘segment’ as a stretch of contiguous base pairs en-
compassing one or more SNPs and the DNA around them
up to a given distance cutoff. For example, for a pheno-
type with three associated SNPs in the following chromo-
somal locations: 9000, 35,000 and 40,000, on chromosome
3, using a distance cutoff of 10 Kbps, we should extend a
segment 10 Kbps in each direction around each of these
SNPs. In practice, we will end up with two segments, the
first at 0–19,000, and the second at 25,000–50,000. Note
that given the proximity of the first SNP to the end of the
chromosome the effective size of the segment around it is
1.9 Kbps and not 2 Kbps. Given the proximity of the other
two SNPs to each other their segments partially overlap to
yield one joint segment of 2.5 Kbps rather than two sepa-
rate segments of 2 Kbps each. Thus, these three SNPs high-
light two chromosomal segments, one of 1.9 Kbps and one
of 2.5 Kbps. To generate a random model we now select
two segments of the same size as the two segments around
the SNPs. To avoid biases, we restrict our selection to seg-
ments that surround reported SNPs. In particular, we first
randomly chose two segments that are centered by a SNP,
one that is 1.9 Kbps long and one that is 2.5 Kbps long.
Next, in order to account for the original number of SNPs,
the second segment, originally containing two SNPs, was di-
vided by two arbitrary ‘SNPs’ distributed equally along the
segment such that when applying the cutoff their combined
segment will span 2.5 Kbps. As described in (14), the frame-
work accounts for multiple testing. Briefly, let n be a number
of phenotypes with associated SNPs that were found using
the resampling procedure above to be significantly associ-
ated with pathways. Since the P-value for each phenotype
was evaluated separately, one needs to assess the P-value of
the overall result for all phenotypes. To this end, for each
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Figure 1. Distribution of SNPs according to their proximity to the nearest gene. Bars depict percentage of SNPs that have a gene within a certain distance
from them. Blue bars represent all known SNPs, the red bars represent only SNPs that were found by GWAS to be associated with phenotypes. The X-axis
represents distance from the SNPs the Y-axis represents the percentage of SNPs that have a gene within that distance from them.

phenotype from n, a pseudo phenotype was created by ran-
domly picking segments, as described above, correspond-
ing in number and length to the original phenotype seg-
ments (note that in (14) pseudo phenotypes were made by
randomly choosing genes, not segments). Then, the resam-
pling procedure above is repeated for each of these n sets,
to determine whether this pseudo phenotype turns out to
pass the significance assessment described above. The num-
ber of ‘significant’ phenotype-pathway associations for each
of the pseudo phenotypes is recorded. This is repeated 100
times, to yield a P-value for obtaining a certain number of
significant phenotype-pathway associations for all pheno-
types. The red bars/line in Figure 2 represent the median of
these resampling procedures. Error bars on the red bars/line
represent standard deviations.

Assessing relationships between SNPs and
insertions/deletions

Defining SNP-gene regions. We define a SNP-gene (SG)
region as the chromosome area between a gene and a
SNP to which it is assigned. We use this definition to ex-
plore whether more indels tend to occur inside phenotype-
associated SG regions than non-associated SG regions.

Mapping indels to SG regions. To assess whether there is
a relationship between SNPs and indels, we tested whether
extracted indels from the DGV database reside in regions
that are between phenotype-associated SNPs and linked
genes (i.e. genes that contribute to a significant phenotype-
pathway association). We defined two types of genomic re-
gions that lie between a SNP and a gene (SG regions). A
linked SG region lies between a phenotype-associated SNP
and a gene that falls within a pathway significantly associ-
ated with that phenotype. In a non-linked SG region, the

gene does not fall within a pathway that is significantly as-
sociated with the phenotype. Finally, non-SG regions are
all regions that are not between a SNP and a gene. We com-
pared the amount of indels found in these three types of
genomic regions.

Note that we cross-referenced the locations of all dele-
tions with the linked SG group, as well as the two other
groups, in order to calculate the amount of deletions per
group. Since the groups vary in size, i.e. the number of re-
gions and their lengths are different for each group, we nor-
malized the number of indels per nucleotide. For example,
when considering SG regions that are 0.5–1 Mbps, we took
all the linked SNP-gene pairs that are more than 0.5 Mbps
but less than 1 Mbps apart. We then summed the length of
all these regions in nucleotides. Then, we took all the known
indels from DGV that fall within any of these regions and
summed their cumulative length. Finally we divided the to-
tal length of the regions by the total length of the indels.
The resulting number is the average different indels in which
each nucleotide in the region appears. This was repeated for
all region sizes and for all region types. Note, that currently,
each position in the human genome appears, on average, in
roughly 2 known indels.

In order to calculate significance for the amount of dele-
tions in the group of linked SG regions, we employed ran-
dom testing on each of our control groups. That is, we
merged all the regions of a certain size, regardless of whether
they come from linked SG regions or from a control. For
each random run, two sets of 100 regions were randomly
selected from the group and the amount of indels per nu-
cleotide was calculated for each group, and the difference
between the two groups was calculated. This was done 1000
times for each control group.
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Figure 2. Associations based on mapping a SNP to genes at different intervals. (A) Number of pathways significantly associated with phenotypes if we map
a SNP to all genes within a certain distance, in non-cumulative distance cutoffs (e.g. genes that are between 0–100 Kbps are not considered for the 100–200
Kbps interval, etc.). Red bars represent the number of associations expected by chance (median of 100 random resampling repetitions, see Methods). (B)
Number of pathways significantly associated with phenotypes when for each distance cutoff genes are considered cumulatively (all genes between the SNPs
and the distance cutoff are considered). Red line represents the number expected by chance, as above.

RESULTS

Most SNPs are outside genes, and are often very far from any
gene

Of the SNPs curated in the UCSC genome database (17),
46% are inside a gene (i.e. downstream of the transcription
start site (TSS)). Of the phenotype-associated SNPs listed in
the NIH GWAS database (2), 59% are inside a gene. Figure
1 shows the cumulative fraction of SNPs according to their
distance from the nearest gene. One third of phenotype-
associated SNPs are more than 10 Kbps from the nearest
gene and 15% of them are over 100 Kbps from the near-
est gene. Bearing in mind that LD intervals are typically
<10 Kbps long, Figure 1 indicates that over a third of SNPs
that are associated with a phenotype are too distant to be
mapped to any gene. Arguably, this suggests that very often

SNPs reflect molecular effects that are more distant than
currently assumed.

We analyzed 1420 phenotypes and all their associated
SNPs in GWAS. A pathway and a phenotype are said
to be associated with each other if the genes mapped
to the phenotype-associated SNPs were significantly (P-
value<0.001, resampling) enriched in that pathway. Figure
2 shows the number of pathways that are significantly as-
sociated with phenotypes, for genes at different distances
from the SNPs for all 1420 phenotypes. Figure 2A shows the
number of associations for non-cumulative intervals of 100
Kbps. That is, the first bar from the left presents the number
of significant phenotype-pathway associations found when
assigning each SNP to all the genes that are less than 100
Kbps from it. The second bar represents the number of sig-
nificant phenotype-pathway associations found when ignor-
ing any gene that is less than 100 Kbps away, and assigning
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SNPs to all the genes that are more than 100 Kbps, but <200
Kbps away. For each interval, we also assessed the number
of associations expected by chance, based on the number of
SNPs in the interval and the number of KEGG pathways
in CPDB. The difference between the observed number of
phenotype-pathway associations (blue bars) and the num-
ber of associations expected by chance (red bars) is great-
est for the genes that are between 100 and 200 Kbps away
from the SNPs. That is, the genes with the strongest effect
on the phenotype are close to the SNP but not necessar-
ily very close. The number of phenotype-pathway associa-
tions decreases as we get further away from SNPs, suggest-
ing that in these intervals there are fewer genes that affect
the phenotype, but it remains significantly greater than what
we expect by chance even when we consider only DNA seg-
ments that are >1 Mbps away from the SNPs. The number
of phenotype-pathway associations reaches what we expect
by chance only at a distance of 2.1 Mbps.

Figure 2B shows the number of significant phenotype-
pathway associations that could be identified when assign-
ing cumulatively all the genes in increasingly long distance
cutoffs from the SNPs. That is, the first point from the left
represents the number of significant phenotype-pathway as-
sociations found when assigning a SNP to a gene only if it is
inside the gene (0 bp). The fifth point, however, represents
the number of significant phenotype-pathway associations
found when adding all the genes that are between 100 and
200 Kbps from the SNPs to the genes that are between 0 bp
and 100 Kbps from the SNPs. If we map a gene to a SNP
only if the SNP falls inside that gene (i.e. downstream of the
TSS), we found a mere 86 significant phenotype-pathway
associations for all phenotype-associated SNPs in GWAS.
When we mapped all genes that are <10 Kbps from a SNP
to that SNP (including those that are inside the gene), there
are 161 significant phenotype-pathway associations. As we
extend the considered distance interval, the number contin-
ues to grow until it reaches 435 associations at a distance
of 200 Kbps. Beyond this distance the number begins to de-
cline and reaches that of the random model at around 1000
Kbps, suggesting that at this distance we introduce more
noise (genes that are not related to the phenotype) than sig-
nal (genes that account for the phenotype). In the cumula-
tive analysis (Figure 2B) the number expected by chance in-
creases at greater distances but in the non-cumulative analy-
sis (Figure 2A) it stays the same (as the interval size remains
constant). This explains why the real data and the random
model merge closer to the SNPs in Figure 2B than in Figure
2A. As we move away from the SNP, fewer genes in an inter-
val are relevant to the phenotypes. These smaller numbers
are visible against the random model of the non-cumulative
analysis, but not on the background of the larger number of
genes in the cumulative analysis.

Identifying relevant pathways only at large distances

Some significant phenotype-pathway associations can be
revealed only when distant SNP-gene assignments are con-
sidered. A few examples are presented in Table 1. For in-
stance, 14 SNPs are reported in the GWAS catalog to be as-
sociated with multiple myeloma (hyperdiploidy). As shown
in Table 1, when mapping these SNPs to genes that are <10

Kbps away, the genes did not significantly cluster into any
pathway. Increasing the distance to 400 Kbps still did not
identify any significant phenotype-pathway associations.
However, when assigning SNPs to genes that are up to 500
Kbps away from SNPs, two pathways emerged as being sig-
nificantly associated with that phenotype, a pathway named
‘Pathways in cancer’ and ‘Melanoma’, both are arguably bi-
ologically related to the phenotype. Similarly, many SNPs
were found to be associated with eye color but looking at
nearby genes didn’t lead to associations with any pathways.
The relevance of this phenotype to the pathway ‘melano-
genesis’ is revealed only when we map those SNPs to genes
that are up to 100 Kbps away.

Comparing SNPs that are linked to distant genes to SNPs
that are not

Figure 3 compares the indels around SNPs that are mapped
to distant genes and indels around SNPs that are not
mapped to distant genes. Briefly, a phenotype-associated
SNP and a gene are said to be linked if (i) the gene belongs
to a KEGG pathway, and (ii) the gene is less than x bp away
from the SNP such that the phenotype and the pathway are
significantly associated for a distance cutoff that is ≤x bp.
The chromosomal region between the SNP and the gene is
then referred to as a ‘linked SNP-gene (SG) region’. Simi-
larly, we defined a chromosomal segment as a ‘non-linked
SG region’ if it is between a SNP and gene that are not
significantly linked by a pathway (Methods). We collected
all known indels from the Database of Genomic Variants
(20), which lists indels observed in healthy human subjects.
We then binned all SNP-gene pairs according to the physi-
cal distance between the SNP and the gene (in Mbps). For
each such DNA segment, we counted the number of differ-
ent known indels. For SNP-gene pairs that are less than 10
Kbps apart, there was no difference between linked SG re-
gion and non-linked SG regions. The difference in the num-
ber of indels appears at a distance of 50 Kbps, grows until
100 Kbps, where it starts to decline, and disappears again
for SNP-gene pairs that are 2 Mbps apart (P-value < 0.001
up to a distance of 300 Kbps, and P-value ≤0.01 up to a
distance of 1 Mbps).

As additional controls, we also analyzed chromosomal
regions that do not contain known SNP or genes (non-
SNP-gene regions), as well as all chromosomal regions that
do not encompass linked SG regions (that is, they cover
non-linked SNP-gene regions and non-SNP-gene regions).
As shown in Table 2, in both of these additional controls,
the average number of indels was very similar regardless of
the length of the region we tested. The average number of
known indels per nucleotide in linked SG regions varies be-
tween 2.28, for SNPs that are very close the gene, and 3.69
for SNPs that are linked to genes that are 100 Kbps away, a
range of 1.41. For the three other types of regions we con-
sidered, the number of indels was never above 2.78 indels
per nucleotide, and the maximum range was 0.41 (Table 2).
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Table 1. Association between phenotypes and pathways at incrementing distance cutoffs

Some phenotype-pathway associations that cannot be discovered without considering distant genes.

Table 2. Average number of indels per base-pair in different types of chromosomal regions

Values in the table are the normalized average numbers of known indels in a DNA segment of a given length range. The two top rows were used to generate
Figure 4. The top row represents segments between SNPs and genes that are mapped to them through a pathway. The second row represents segments of
the same length with a SNP and a gene that are not mapped to each other. The bottom two rows represent additional controls: the third row represents
segments of DNA that contain no genes and the last row represents segments of DNA that may or may not contain genes but do not contain SNPs and
genes that are mapped to each other. The three right columns summarize the maximum and minimum values in each line, and the range.

DISCUSSION

Determining statistically justified cutoff for mapping genes to
SNPs

Figure 2 reveals that if we look at traditional distance cut-
offs of <10 Kbps, we will identify relatively few associations
between phenotypes and pathways based on SNPs. As men-
tioned above, it is common practice to assign SNPs to genes
based on a distance cutoff. Studies use a variety of cutoffs,
such as 2 Kbps (21), 5 Kbps (22–24), 20 Kbps (25–27), 100

Kbps (8,28). Some studies suggested to use a cutoff of 500
Kbps (9–12), since enhancers and repressors may be as dis-
tant as 500 Kbps from their genes (9). As shown in Figure
2A, assigning SNPs to distant genes, while ignoring nearby
genes, yields clustering of genes near phenotype-associated-
SNPs into pathways at a significantly higher rate than genes
near randomly selected SNPs. The nearest 100 Kbps inter-
val identified 416 associated pathways as opposed to 137.5
associations expected by chance. However, when we ignore
the genes that allowed for these associations and consider
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Figure 3. Average number of indels between SNPs and genes at different distances. Each point depicts the normalized average number of known indels
between a SNPs and genes at a certain distance. The blue points represent indels between SNPs and genes that are linked to each other through a significance
association with a pathway. Red points represent SNPs and genes that are not mapped to each other. For example, SNPs that are linked by pathways to
genes that are 150 Kbps away have, on average, 3.5 known indels for every nucleotide in that distance. SNPs that have genes 150 Kbps away, but these genes
are not associated to them by pathways, have on average only 2.1 indels per nucleotide.

only genes that are between 100 and 200 Kbps, the num-
ber of significant associations remains much higher than ex-
pected by chance. As we map to a SNP genes that are further
away from it, the number of significant phenotype-pathway
associations declines but remains higher than the number of
phenotype-pathway associations expected by chance, until
1 Mbps where it merges with the number of associations ex-
pected by chance. These results suggest that SNPs are more
likely to be relevant to closer genes, but that even very dis-
tant genes are affected by the variation.

The random model in this analysis had to be considered
carefully. Since functionally related genes may be adjacent
on the chromosomes neighboring genes may cluster into
the same pathway more than random genes. To account
for that, our random model was based on picking up ran-
dom SNPs and considering DNA stretches of the same size
around them. This way, we can make sure that the differ-
ence between the real data and the random model should
be attributed to the effect of SNPs on distant genes and not
to the fact that genes of the same pathway are likely to be
near each other.

It is difficult to determine, statistically, what is the opti-
mal distance for linking a SNP to genes. Such optimal cutoff
would be a distance from the SNP beyond which the addi-
tion of more genes does not improve the identification of
phenotype-pathway associations. The difficulty stems from
the change in the random model. In Figure 2A each of the
compared intervals has the same size, and thus approxi-
mately the same number of genes. Therefore, for each inter-
val the number of associations expected by chance is very
similar. In this analysis we still discover significant associa-
tions with pathways even when we consider genes that are
1.9 Mbps away from the SNPs. However, Figure 2B com-

pares stretches of different sizes. Since a stretch of 1 Mbps
has more genes than a stretch of 0.2 Mbps, the number of as-
sociations expected by chance is larger for longer intervals.
Indeed, in Figure 2B, the expected number of random as-
sociation increases with distance. Figure 4 shows the differ-
ence between the number of associations in the real data and
the number expected by chance for the cumulative analysis.
The number grows rapidly until 200 Kbps and drops rapidly
for longer distance. These results suggest that linking SNPs
to genes that are up to 750 Kbps away is justified statisti-
cally both by the cumulative and the by the non-cumulative
analyses and is likely to reveal true functional connections.
While our results show that causative genes are often found
up to 2 Mbps away from the SNP, further analysis is re-
quired to define ways to tease these genes out for specific
phenotypes and specific distances.

Mapping SNPs to multiple genes, rather than one, is more
revealing

While some studies try to offer tools that help in identify-
ing a single gene within that interval (29,30), it is a com-
mon practice to map the SNP to more than one gene within
a given cutoff (11,27,31,32). It has been argued that such
gene-based approach can resolve some of the reproducibil-
ity challenges of the SNP-based approach and would cap-
ture more of the potential risk-conferring SNPs (33,34). As
seen in Figure 2, assigning a SNP to all the genes in an
interval identifies significant phenotype-pathway associa-
tions. This corroborates the suggestion that a paradigm of
one-SNP-many-genes may be more useful in unraveling the
molecular basis of the phenotype.
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Figure 4. Difference between observed and expected number of associated pathways. Subtracting the numbers represented by the red line in Figure 2B
from the numbers represented by the blue line, reveals that until 200 Kbps away from the SNP, associations with pathways improves as we include more
distant genes. From this distance on, adding of more distant genes decreases the number of significant associations.

The effect of the genome 3D structure

While SNPs are commonly regarded as affecting nearby
genes, effects on distant genes have been demonstrated. For
example, in the case of enhancers (5,35), which may af-
fect distant genes (36,37) or even genes on other chromo-
somes (38,39) because of the 3D organization of the genome
(40,41). The 3D structure of the genome may be a major fac-
tor in the effect of SNPs on distant genes, and may explain
many of the effects we observed in this study. The rapid ac-
cumulation of data regarding the 3D arrangement of the
genome would probably allow, in the near future, for the
mapping of SNPs to their 3D spatial neighborhood. How-
ever, with the amount of structural data available at the mo-
ment, this is not yet possible. Our results suggest that non-
local effects are more common than previously assumed.
We observe that this effect attenuates with distance. Indeed,
one may expect that while 3D packing could bring any two
points on the genome to close proximity, the probability of
two points to be close in 3D decreases with their physical
distance on the chromosome.

The effect of indels

Another possible explanation for the relationships of SNPs
and distant genes may be that SNPs are markers for large
structural variations that may affect large chromosomal
segments. If such a relationship exists, we should observe
more indels between SNPs and their linked genes than in
other genomic regions of similar size. The suggestion that
SNPs may be markers to structural variations has been
made before (42). Our results indicate this may be more
frequent than previously assumed. The control group we
selected, that of DNA stretches that lie between SNP and
genes that are not significantly linked, is similar to our test
group of significantly linked SNP-gene regions, and avoids a
bias toward long intergenic regions, which may have unique
traits (e.g. low complexity or enrichment of ALU or dif-
ferent packing). The non-linked SG group was tested as a

whole, meaning that regions overlapping with the linked SG
group were not removed. Therefore, indels residing in a re-
gion overlapping a linked SG region as well as a non-linked
SG region were counted in both groups. Still, the difference
between the two sets of genomic regions was significant.

We extracted all primary indels in the DGV database. The
data from DGV suggests that, on average, any nucleotide
in the genome appears in approximately two different ob-
served indels. Many entries in the DGV database are par-
tially overlapping. As such, it is possible for multiple dele-
tions to encompass the same region on the chromosome.
We calculated in how many different known indels each nu-
cleotide appears, on average, for significantly linked SG and
for non-significantly linked ones. Importantly, our results
show that there are more deletions for SNP-gene links that
are up to 2 Mbps apart (Figure 3). Beyond this distance we
cannot see a difference between significantly linked SNP-
gene pairs and random SNP-gene pairs. These results may
suggest that in some cases SNPs are markers for structural
variations. To validate this suggestion, further analysis is
required. Specifically, full genome sequence of many thou-
sands of genomes is may establish that specific deleterious
alleles are associated with large indels. Current publically
available genomes are not sufficient for such analysis.

The success of the approach proposed here for mapping
SNPs to genes relies on the current knowledge of pathways.
Unraveling more of the networks that underlie biological
processes will increase both the number and the quality of
known pathways. This will improve our ability to map SNPs
to genes and phenotypes to molecular processes.
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