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Abstract: Pear is a kind of common temperate fruit, whose metabolite composition that contributes
to the difference in fruit quality is unclear. This study identified and quantified the metabolites using
a widely targeted LC-MS/MS approach in three pear species, including Pyrus bretschneideri (PB),
Pyrus usssuriensis (PU) and Pyrus pyrifolia (PP). A total of 493 metabolites were identified, consisting
of 68 carbohydrates, 47 organic acids, 50 polyphenols, 21 amino acids, 20 vitamins, etc. The results of
PCA and OPLS-DA demonstrated that the metabolite compositions differed distinctly with cultivar
variability. Our results also involved some metabolic pathways that may link to the fruit quality
based on KEGG pathway analysis, the pathway of phenylalanine metabolism revealed significant
differences between PB and PP (p < 0.05). Furthermore, the study selected D-xylose, formononetin,
procyanidin A1 and β-nicotinamide mononucleotide as the major differentially expressed metabolites
in the three species. The present study can open new avenues for explaining the differences in fruit
quality of the major commercial pear cultivars in China.

Keywords: Pyrus; LC-MS; metabolomics; carbohydrate; polyphenol

1. Introduction

Pear (Pyrus spp.) is an important cash crop among temperate fruits, belonging to the
Rosaceae family [1,2]. The genus Pyrus is considered to have derived from the mountains
of Southwest China during the Tertiary period 65–55 million years ago and is widely
distributed in Asia, Europe and Africa [3,4]. As the third-largest temperate fruit after grape
and apple, annual global pear production was as high as 23.7 million tons in recent years,
with China, USA and Italy contributing almost 75% of global pear production [5]. Pears are
becoming increasingly popular in the consumer market due to their advantages in both
taste and nutrition. Other than fresh pears, the pear industry also involves juices, jellies,
jams, etc. [6].

As one of the most essential diversity centers for cultivated pears, China has approxi-
mately 2000 pear cultivars distributed throughout the country [7]. There are thirteen pear
species known to be native to China, the most important of which are Pyrus bretschneideri
(P. bretschneideri), Pyrus ussuriensis (P. ussuriensis) and Pyrus pyrifolia (P. pyrifolia) [8,9].
Among them, P. bretschneideri and P. ussuriensis are the main species grown in the pear-
producing regions of northern China, which are also the major pear species of both pro-
duction and exports in China [10,11]. Generally, the fruit of P. bretschneideri has the charac-
teristics of thin skin with waxy luster, and sweet flavor with crisp and juicy flesh. On the
other hand, the fruit of P. ussuriensis has properties such as high acid content, long-term
storage ability, coupled with its flesh being rough and compact. P. pyrifolia is cultivated in
the high temperature and humid areas of southern China, characterized by large, juicy and
is unsuitable for long-term storage [12]. Different cultivars of pear would be favored by
different consumers because of their various characteristics in fruit quality.
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Fruit quality composed of taste and nutrition as essential components is the main
factor determining fruit value and market competitiveness [13,14]. It is popularly believed
that the content and proportion of carbohydrates and organic acid are the critical factors to
determine the flavor and quality of fruit [15]. The nutritional value of bioactive substances
such as anthocyanins, flavonoids and vitamins has become increasingly important with the
improvement of public health awareness, which should be considered in the analysis of
fruit quality [16,17]. There is a series of complex processes associated with the accumulation
of metabolites during fruit ripening. Numerous studies have shown that fruit species (geno-
type) is the crucial factor determining the composition of metabolites [18–20]. However,
considerable relevant studies about the metabolites of pear tended to focus on a few specific
metabolites, such as carbohydrates [21,22], organic acids [23,24], polyphenols [25,26] and
vitamins [27,28]. So far, a comprehensive and systematic investigation of the metabolites
variation of different pear species has been needed.

Widely targeted metabolomics provides a relatively fair qualitative and quantitative
assessment of the chemical compositions in complex extracts by analyzing a substantial
number of metabolites in effective high-throughput techniques [29,30]. In this research,
ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass
spectrometry (UHPLC-QTOF-MS/MS) was utilized to identify and quantify the metabolites
of different pear species, including carbohydrates, organic acids, polyphenols, amino
acids, vitamins, etc. This work aimed to clarify the differences in chemical compositions
linked to the fruit quality in different pear species, select the major differentially expressed
metabolites, as well as provide relevant data for the adjustment and optimization of the
cultivar selection in the pear industry of China.

2. Materials and Methods
2.1. Sampling

The samples of this study were collected in Tianjin, the downstream area of the Haihe
River basin of the North China Plain. Tianjin is located in the temperate areas with a semi-
humid continental monsoon climate, an annual average temperature of 12.0 ◦C and an
annual precipitation of ~600 mm. There are diverse types of landforms in Tianjin, consisting
of plains, mountains, hills, depressions, coastal zones and mudflats. The specific climate
and terrain ensure the growth of most deciduous fruit trees in northern China.

In 2019, three species including 9 pear cultivars were collected in the experimental
demonstration base (latitude 39.0◦ N, longitude 116.9◦ E) of Tianjin Research Institute of Po-
mology, including PB (P. bretschneideri cv. Yuluxiang, P. bretschneideri cv. Yali, P. bretschneideri
cv. Qiubai), PU (P. usssuriensis cv. Anli, P. usssuriensis cv. Yaguang, P. usssuriensis cv. Jieli)
and PP (P. pyrifolia cv. Qiuyue, P. pyrifolia cv. Suisho, P. pyrifolia cv. Housi). All the tested
species were grafted on the 30-year-old Pyrus betulifolia, a common rootstock variety of
pear in northern China. The pear trees were grown in an open field with 3 m × 4 m spacing
under standard horticultural practices, including disease and pest control. All the tested
fruits were harvested at their mature stage, which made them capable of representing some
typical features of the species. Ten fruits were collected from four cardinal points in 5 trees
with similar growth status as one sample, and 9 samples (3 samples for each cultivar and
3 cultivars for each species) contained 90 fruits were created for each pear species, so as to
make the samples as representative of biological variability as possible. The 10 fruits were
peeled, pooled and homogenized into one sample using a blender, and all the samples were
stored at −80 ◦C.

2.2. Metabolites Extraction

The samples were freeze-dried and ground with liquid nitrogen and 20 mg of the
freeze-dried samples was weighted into an EP tube, followed by adding 500 µL extract
solution (methanol:acetonitrile:water = 2:2:1 (V/V), including isotope-labeled internal
standard mixture). After vortexing for 30 s, the samples were ground at 35 Hz for 4 min
with steel balls, and ultrasonicated in an ice water bath for 5 min. The grinding and
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ultrasonic treatments were repeated 3 times. After incubating the samples at−40 ◦C for 1 h,
the samples were centrifuged (15 min, 12,000 rpm, 4 ◦C), and then 250 µL of the supernatant
was transferred into a new EP tube for vacuum drying. The dried samples were added to
200 µL of 50% acetonitrile to reconstitute, vortex for 30 s, and ultrasonicate in an ice water
bath for 10 min. After centrifuging (15 min, 13,000 rpm, 4 ◦C), 75 µL of the supernatant
was placed into a sample bottle for LC/MS analysis. An equal aliquot of the supernatant
for all the samples was mixed to constitute the quality control (QC) sample.

2.3. LC-MS/MS Analysis

The LC analysis was conducted utilizing a 1290 Infinity series UHPLC System (Agilent
Technologies, Palo Alto, CA, USA). 1 µL aliquot was injected into a Waters ACQUITY UPLC
BEH Amide column (1.7 µm, 2.1× 100 mm, Shanghai, China). The HPLC mobile phase was
composed of 25 mmol/L ammonium acetate and 25 mmol/L ammonia hydroxide in water
(pH = 9.75) (solvent A) and acetonitrile (solvent B). The elution gradient was 0~0.5 min, 95%
B; 0.5~7.0 min, 95~65% B; 7.0~8.0 min, 65~40% B; 8.0~9.0 min, 40% B; 9.0~9.1 min, 40~95%
B; 9.1~12.0 min, 95% B. The flow rate was 0.5 mL/min with the column temperature of
25 ◦C and the auto-sampler temperature of 4 ◦C.

High-resolution mass spectra data were acquired using a TripleTOF 6600 mass spec-
trometry (AB Sciex, Framingham, MA, USA) with the information-dependent acquisition
(IDA) mode. In this mode, the acquisition software (Analyst TF 1.7, AB Sciex, Framingham,
MA, USA) automatically chose ions and collected their secondary mass spectra data based
on the primary mass spectra data and preset criteria. In each cycle, the most intensive
12 ions with intensity greater than 100 were selected for MS/MS scanning with a cycle
time of 0.56 s. The ion source parameters were as follows: collision energy (CE) as 30 eV;
source temperature as 600 ◦C (TEM); declustering potential (DP) as 60 V; ion spray voltage
floating (ISVF) as 5000 V; gas I (GSI), gas II (GSII) and curtain gas (CUR) as 60, 60, and
35 psi, respectively.

2.4. Data Preprocessing and Statistical Analysis

MS raw data (.wiff) files were converted to the mzXML format by ProteoWizard
(http://proteowizard.sourceforge.net, accessed on 23 October 2021) and processed by the
package XCMS in R v3.6.0 (http://www.r-project.org, accessed on 23 October 2021). The
process includes peak deconvolution, alignment and integration. Minfrac and cutoff were
set as 0.5 and 0.3 respectively. The metabolites were identified using the Biotree in-house
MS2 database (Biotree Biomedical Technology Co., Ltd., Shanghai, China; http://www.
biotree.cn, accessed on 23 October 2021) within R v3.6.0. Principle component analysis
(PCA) was processed using the prcomp function within R v3.6.0. The pie chart for the
classification of the metabolites was plotted using OriginPro v9.8 (OriginLab, Northampton,
MA, USA). Multiple regression orthogonal partial least squares discrimination analysis
(OPLS-DA) was implemented using SIMCA v15.0.2 (Sartorius Stedim Data Analytics
AB, Umea, Sweden). The OPLS-DA model was established by validating with a 200×
permutation test to avoid the model over-fitting and evaluate the statistical significance of
the model.

In order to identify the differentially expressed metabolites, we first used a threshold
of variable importance in the projection (VIP > 1) towards the OPLS-DA model to select the
metabolites, and then we chose those with a fold change >2 (upregulated) or a fold change
<0.5 (downregulated) as the differential metabolites in two paired species. Differentially
expressed metabolites were mapped to the database of the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway (http://www.kegg.jp/kegg, accessed on 23 October 2021)
to determine their associated metabolic pathways. KEGG annotation can only find path-
ways related to the differential metabolites, therefore, comprehensive analyses (including
enrichment analysis and topology analysis) of the pathway related to the differentially
expressed metabolites were performed using R v3.6.0 to locate the pivotal pathway that
were highly correlated with the metabolites’ differences. Student’s t-test was used to ana-
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lyze the accumulation of the differential metabolites. The false discovery rate (FDR) was
used to correct the p-values for the multiple hypothesis testing correction to reduce the
false-positive rate of p-values in t-test results with large sample size, and the resulting
p. FDR was used to evaluate the significance of the difference towards the metabolite
abundance in the three pear species.

3. Results
3.1. Chemical Composition Identification

The widely targeted LC-MS/MS analysis was conducted on the three pear species for
the purpose of clarifying the differences in fruit quality among different pear species. A
total of 493 metabolites were identified, which contained numerous metabolites that may
affect the fruit quality, consisting of 68 carbohydrates, 47 organic acids, 50 polyphenols,
21 amino acids, 20 vitamins and other categories of metabolites (Figure 1A). PCA analysis
of the 493 metabolites illuminated that the chemical compositions of the fruits were clearly
distinguished on the scatter plot, indicating that there were different metabolite profiles in
these three pear species (Figure 1B). Moreover, PU was obviously different from both PB
and PP, which might be the underlying reason for the specific fruit quality of PU.

Foods 2022, 11, 1440 4 of 13 
 

 

(including enrichment analysis and topology analysis) of the pathway related to the dif-
ferentially expressed metabolites were performed using R v3.6.0 to locate the pivotal path-
way that were highly correlated with the metabolites’ differences. Student’s t-test was 
used to analyze the accumulation of the differential metabolites. The false discovery rate 
(FDR) was used to correct the p-values for the multiple hypothesis testing correction to 
reduce the false-positive rate of p-values in t-test results with large sample size, and the 
resulting p. FDR was used to evaluate the significance of the difference towards the me-
tabolite abundance in the three pear species. 

3. Results 
3.1. Chemical Composition Identification 

The widely targeted LC-MS/MS analysis was conducted on the three pear species for 
the purpose of clarifying the differences in fruit quality among different pear species. A 
total of 493 metabolites were identified, which contained numerous metabolites that may 
affect the fruit quality, consisting of 68 carbohydrates, 47 organic acids, 50 polyphenols, 
21 amino acids, 20 vitamins and other categories of metabolites (Figure 1A). PCA analysis 
of the 493 metabolites illuminated that the chemical compositions of the fruits were clearly 
distinguished on the scatter plot, indicating that there were different metabolite profiles 
in these three pear species (Figure 1B). Moreover, PU was obviously different from both 
PB and PP, which might be the underlying reason for the specific fruit quality of PU. 

 
Figure 1. The chemical composition of the three pear species. (A) Classification of the 493 metabo-
lites identified from the three pear species. (B) PCA analysis of the 493 metabolites in PB, PU and 
PP. PB, PU, and PP represent P. bretschneideri, P. usssuriensis and P. pyrifolia, respectively. 

3.2. Selection of Differentially Expressed Metabolites 
To determine the differentially expressed metabolites of the three pear species, OPLS-

DA model was used to perform pairwise comparisons. The permutation test results of the 
the OPLS-DA models basically illustrated that the original models were stable without 
over-fitting (Figure 2). In order to avoid the false-positive errors caused by using only one 
statistical analysis method, we used the variable importance in the projection (VIP > 1) of 
the OPLS-DA model combined with the fold change (FC > 2 (upregulated) or FC < 
0.5(downregulated)) to determine the differential metabolites. 

Figure 1. The chemical composition of the three pear species. (A) Classification of the 493 metabolites
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PU, and PP represent P. bretschneideri, P. usssuriensis and P. pyrifolia, respectively.

3.2. Selection of Differentially Expressed Metabolites

To determine the differentially expressed metabolites of the three pear species, OPLS-
DA model was used to perform pairwise comparisons. The permutation test results of the
the OPLS-DA models basically illustrated that the original models were stable without
over-fitting (Figure 2). In order to avoid the false-positive errors caused by using only one
statistical analysis method, we used the variable importance in the projection (VIP > 1)
of the OPLS-DA model combined with the fold change (FC > 2 (upregulated) or FC < 0.5
(downregulated)) to determine the differential metabolites.

VIP reflected the importance and contribution of the variables to the model. Specifi-
cally, the greater VIP value indicated that the metabolites differed more markedly between
the two groups. In the present study, there were 91 differentially expressed metabolites
between PB and PU, 72 differentially expressed metabolites between PB and PP, and
122 differentially expressed metabolites between PU and PP (Figure 3). Among them,
43 metabolites were upregulated, and 48 metabolites were downregulated in PB compared
with PU (Figure 3A), 54 metabolites were upregulated and 18 metabolites were downreg-
ulated in PB compared with PP (Figure 3B), and 86 metabolites were upregulated and
36 metabolites were down-regulated in PU compared with PP (Figure 3C). The results
revealed that PU had a larger number of differentially expressed metabolites upregulated
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compared with the other two species (48 compared with PB and 86 compared with PP),
which possibly led to more a plentiful taste of PU (Figure 3).
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Figure 3. Differences in the metabolites among different pear species. A threshold of variable impor-
tance in the projection (VIP > 1) was used to select the metabolites, and then those with a fold change
>2 (upregulated) or a fold change <0.5 (downregulated) were chosen as the differential metabolites in
two paired species. (A) Differentially expressed metabolites between PB and PU. (B) Differentially
expressed metabolites between PB and PP. (C) Differentially expressed metabolites between PU and
PP. PB, PU, and PP represent P. bretschneideri, P. usssuriensis and P. pyrifolia, respectively.
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3.3. KEGG Pathway Analysis of Differentially Expressed Metabolites

We mapped the three groups (PB vs. PU, PB vs. PP, PU vs. PP, respectively) of
differentially expressed metabolites to the KEGG database, finding that these differentially
expressed metabolites were basically mapped to ‘metabolic pathways’ and ‘biosynthesis’ of
secondary metabolites. There were also some metabolites mapped in the pathways that may
contribute to the fruit quality, such as flavonoid synthesis, amino acid metabolism, citrate
circle, and carbohydrate metabolism. Furthermore, topological analysis and enrichment
analysis were conducted on the metabolic pathways of these three groups to define the
specific differences in the metabolic pathways in different pear species.

Each bubble represented one of the metabolic pathways shown in the bubble plots
(Figure 4). The x-axis and the bubble size represented the impact of the pathways in
the topological analysis, specifically the larger bubble size meant a larger impact. The
y-axis and the bubble color represented −ln p value of the pathways in the enrichment
analysis, specifically the darker bubble color meant the larger −ln p value (i.e., the smaller
p). The top 5 pathways were marked based on the Impact score in the topology analysis
(Figure 4). The results demonstrated that the differential metabolic pathways of PB and
PU were mainly related to flavone and flavonol biosynthesis, glyoxylate and dicarboxylate
metabolism, tryptophan metabolism, citrate cycle, and galactose metabolism (Figure 4A).
The differential metabolic pathways of PB and PP were substantially associated with
amino acid metabolism including phenylalanine, alanine, aspartate, glutamate, tyrosine
and tryptophan, especially, the pathway of phenylalanine metabolism showed remarkable
differences between PB and PP in the enrichment analysis (−ln p-value > 3.00 i.e., p < 0.05)
(Figure 4B). The differential metabolic pathways of PU and PP basically included flavone
and flavonol biosynthesis, alanine, aspartate and glutamate metabolism, glyoxylate and
dicarboxylate metabolism, starch and sucrose metabolism, and phenylalanine metabolism
(Figure 4C).
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3.4. Key Compounds Associated with the Fruit Quality

The pairwise comparisons were performed among the three groups of differentially
expressed metabolites, and 14 compounds that showed differences in the three species
based on VIP value and fold change were screened out (Table 1; Figure 5). These compounds
involved carbohydrates, polyphenols, vitamins, etc., which may determine the fruit quality
of the pear. The abundance of PU revealed greater than that of PB and PP in 13 differential
metabolites (except pantetheine), which might contribute to the specific taste of PU (Table 1).
D-xylose was the only carbohydrate obtained from the pairwise comparisons, which may
be related to the difference in fruit taste. Formononetin, (−)-naringenin, procyanidin
A1, β-nicotinamide mononucleotide (vitamin B3), acetomenaphthone (vitamin K4) and
pantetheine (vitamin B5), these polyphenols and vitamins with antioxidant activity and
biological activity also showed differences in the pairwise comparisons of the three pear
species. The significance of the difference in metabolite accumulation was evaluated
using Student’s t-test and FDR correction. D-xylose, formononetin, procyanidin A1 and
β-nicotinamide mononucleotide were significantly or extremely significantly different in
the pairwise comparisons of fruit metabolites (p. FDR < 0.05 or p. FDR < 0.01), which could
be regarded as the crucial differential metabolites that contribute to the fruit quality of the
three pear species.

Table 1. Differentially expressed metabolites identified from the pairwise comparisons of the three
pear species.

Category Compounds
Normalized Intensity p. FDR

PB PU PP PB vs. PU PB vs. PP PU vs. PP

Carbohydrates D-Xylose 0.253 ± 0.094 1.312 ± 0.435 0.118 ± 0.094 0.005 ** 0.042 * 0.001 **

Polyphenols_
Isoflavones Formononetin 0.199 ± 0.047 0.637 ± 0.172 0.107 ± 0.055 0.006 ** 0.019 * 0.001 **

Polyphenols_
Flavanones (−)-Naringenin 0.268 ± 0.117 0.890 ± 0.593 0.115 ± 0.023 0.058 0.048 * 0.016 *

Polyphenols_
Proanthocyanidins Procyanidin A1 0.175 ± 0.036 0.515 ± 0.194 0.061 ± 0.048 0.015 * 0.005 ** 0.001 **

Vitamins

β-Nicotinamide Mono-
nucleotide 0.170 ± 0.066 0.673 ± 0.217 0.083 ± 0.063 0.006 ** 0.048 * 0.001 **

Acetomenaphthone 0.128 ± 0.038 0.505 ± 0.180 0.053 ± 0.033 0.006 ** 0.070 0.001 **
Pantetheine 0.310 ± 0.142 0.141 ± 0.081 0.848 ± 0.697 0.012 * 0.106 0.010 *

Hydroxycinnamoyl
derivatives

3,4-
Dimethoxycinnamic
Acid

0.834 ± 0.336 4.061 ± 1.265 0.321 ± 0.331 0.004 ** 0.051 0.001 **

Phenethyl Caffeiate 0.362 ± 0.077 1.019 ± 0.371 0.188 ± 0.099 0.013 * 0.014 * 0.001 **
Propyl Cinnamate 0.303 ± 0.060 0.948 ± 0.343 0.065 ± 0.025 0.013 * 0.000 ** 0.001 **
Coniferol 0.055 ± 0.032 0.165 ± 0.126 0.026 ± 0.006 0.103 0.111 0.029 *

Amino acid
derivatives

3-Amino-3-(4-hydroxy-
phenyl)
Propanoate

1.296 ± 0.512 6.698 ± 2.071 0.495 ± 0.425 0.004 ** 0.025 * 0.001 **

S-Lactoylglutathione 0.407 ± 0.308 2.824 ± 2.611 0.093 ± 0.044 0.047 * 0.079 0.021 *

Nucleotides and
nucleotide
derivates

2′-O-Methylinosine 0.912 ± 0.351 4.380 ± 1.177 0.291 ± 0.236 0.004 ** 0.008 ** 0.000 **

The values of the normalized intensity were normalized by internal standard. The mean and standard deviation
(SD) values of the normalized intensity are listed. The results of Student’s t-test have been corrected with false
discovery rate (FDR). * and ** represent the significant differences at p. FDR < 0.05 and p. FDR < 0.01 levels,
respectively. PB, PU, and PP represent P. bretschneideri, P. usssuriensis and P. pyrifolia, respectively.
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4. Discussion

The widely targeted metabolomics analysis using LC-MS/MS has been successfully
applied to various studies of a great number of plant species, such as metabolic regu-
lation [31,32], stress response [33,34], phytochemical analysis [35,36], and cultivar selec-
tion [37,38]. Certain kinds of metabolites of pear were involved in previous research, such
as carbohydrates [21,22], organic acids [23,24], polyphenols [25,26] and vitamins [27,28], the
former researchers had little consideration for the comprehensive and systematic studies on
the major metabolites of pear. In the present study, 493 metabolites were identified utilizing
LC-MS/MS, consisting of 68 carbohydrates, 47 organic acids, 50 polyphenols, 21 amino
acids, 20 vitamins, etc. (Figure 1A). The results of PCA and OPLS-DA suggested that the
metabolite compositions of PB, PU and PP were distinctly different, and PU was obviously
different from both PB and PP, which provided new evidence for the difference in fruit
quality of different pear species (Figures 1B and 3).

Generally, sweetness and acidity are the most important taste indicators of fruit, result-
ing from both carbohydrate and organic acid, which are proposed to be the determinants
of fruit quality [39,40]. A considerable number of carbohydrates and organic acids were ob-
served in our identification results, which is consistent with most previous research [41–43].
In this study, the content of D-xylose in PU reported was significantly greater than those
in PB and PP (p. FDR < 0.05), which may be the potential reason for the unique taste
of PU (Table 1). It is worth noting that D-xylose, as a common monosaccharide, has the
properties of anti-inflammatory, anti-viral, anti-glycemic and anti-lung cancer, so it even
has a certain positive effect on the treatment of COVID-19 [44]. Moreover, no differential
metabolites from organic acids were found in the pairwise comparisons, but it was found
that the pathway of glyoxylate and dicarboxylate metabolism (glyoxylate cycle), as well as
the pathway of citrate cycle (TCA cycle), showed certain differences in the KEGG pathway
analysis among the three pear species (Figure 4). Citric acid, malic acid, succinic acid,
isocitric acid and other organic acids generated in the metabolic pathways of the glyoxylic
acid cycle and TCA cycle are the main sources of the sourness of pear fruits, while the
accumulation of acids in fruit cells is the result of several interrelated metabolic processes in
different parts of the cells [45,46]. It is worth mentioning that coniferol showed differences
in the three groups of fruit metabolites in the pairwise comparisons, and the abundance
of PU was significantly higher than that of PP (p. FDR < 0.05). As an important precursor
for lignin synthesis, coniferol forms lignin through dehydro-oligomerization and further
accumulates to form stone cells, which has a critical impact on the fruit firmness and flesh
texture of pear [47,48].
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As the biologically active nutrients in fruit that are beneficial to health, polyphenols
have attracted much attention in recent years, whose composition and abundance are
regarded as critical indicators of fruit quality [49,50]. Polyphenols such as flavonoids in fruit
have a certain preventive effect on many diseases, including cancer, diabetes, hypertension
and cardiovascular disorders as described in earlier observations [51,52]. Among the
50 polyphenols we identified, formononetin, (−)-naringenin and procyanidin A1 were
differentially accumulated in the three pear species (Figure 1A; Table 1). Proanthocyanidins
are polymerized from flavanols (e.g., catechin and epicatechin) as the basic structural units,
they are natural antioxidants with strong antioxidant activity and free radical scavenging
activity, which have attracted widespread attention in anti-inflammatory, anti-allergy,
anti-aging and improving blood circulation [53,54]. The contents of formononetin and
procyanidin A1 in PU were remarkably greater than those in PB and PP (p. FDR < 0.05),
which may contribute to the broad prospects of PU in the development of health products
and medicines (Table 1). Moreover, phenolic compounds are also linked to the astringency,
bitterness and flavor of fruit, which is consistent with the sour and astringent characteristics
of PU [55].

Most of the vitamins we need are provided mainly through the diet, of which almost
all are derived from fruits and vegetables because they cannot be manufactured in the
body [56]. Vitamin deficiency may cause a series of diseases, in severe cases, it can even
lead to symptoms such as blindness, dementia, scurvy and rickets [57]. We identified
20 vitamins in the metabolites of the three pear species, of these, the concentrations of
β-nicotinamide mononucleotide (vitamin B3), acetomenaphthone (vitamin K4) and panteth-
eine (vitamin B5) differed remarkably in these three species (Figure 1A; Table 1). Among
them, the abundance of β-nicotinamide mononucleotide revealed significant differences in
the pairwise comparisons of the three groups, and its accumulation in PU was significantly
greater than that in PB and PP (p. FDR < 0.05). Nicotinamide mononucleotide (NMN) is
a kind of bioactive nucleotide that can be transformed into nicotinamide adenine dinu-
cleotide (NAD) in human cells, which can provide a guarantee for maintaining cell viability,
and has outstanding performance in delaying and preventing aging [58].

In addition to the identification and analysis of the metabolites, a certain number of dif-
ferential metabolic pathways associated with flavonoid synthesis, amino acid metabolism,
TCA circle and carbohydrate metabolism were also found in the pear species using topology
analysis and enrichment analysis by KEGG. The results of enrichment analysis indicated
that the pathway of phenylalanine metabolism responded to remarkable differences be-
tween PB and PP (p < 0.05; Figure 4). Phenylalanine metabolism is the main source for the
synthesis of phenylpropanoid aroma compounds in fruits, and phenylalanine ammonia
lyase (PAL) is the vital enzyme in this process [59]. Moreover, phenylalanine metabolism
is also a critical metabolic pathway regulating the synthesis of lignin monomers, which is
of great significance in the formation of stone cells [60]. Therefore, it is inferred that the
phenylalanine metabolic pathway plays a pivotal role in the flavor quality and flesh texture
of pear fruit, and the relevant metabolites of this pathway may contribute to the difference
in fruit quality between PB and PP.

5. Conclusions

This study systematically provided comprehensive information on the composition
and abundance of the metabolites in pear using LC-MS/MS analysis. We identified and
quantified the metabolites of the three pear species, including carbohydrates, organic
acids, polyphenols, amino acids, vitamins and other metabolite classes which may make it
desirable in the fruit quality. The results indicated that the metabolite compositions of PB,
PU and PP differed distinctly, and PU was obviously different from both PB and PP, which
may be associated with the specific taste of PU. The results of OPLS-DA also revealed that
PU had a larger number of differentially expressed metabolites upregulated compared
with the other two species. In the KEGG pathway analysis, the pathway of phenylalanine
metabolism showed remarkable differences between PB and PP (p < 0.05), therefore, it was
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inferred that relevant metabolites of this pathway may be the cause of the difference in fruit
quality between PB and PP. We also selected D-xylose, formononetin, procyanidin A1 and
β-nicotinamide mononucleotide as the major differentially expressed metabolites in the
three species, which can be regarded as the important parameters for the quality evaluation
of pear with certain directive significance for the pear industry in China.
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