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Chemical detection is key to various behaviours in both marine and

terrestrial animals. Marine species, though highly diverse, have been under-

represented so far in studies on chemosensory systems, and our knowledge

mostly concerns the detection of airborne cues. A broader comparative

approach is therefore desirable. Marine annelid worms with their rich behav-

ioural repertoire represent attractive models for chemosensation. Here, we

study the marine worm Platynereis dumerilii to provide the first comprehen-

sive investigation of head chemosensory organ physiology in an annelid. By

combining microfluidics and calcium imaging, we record neuronal activity

in the entire head of early juveniles upon chemical stimulation. We find

that Platynereis uses four types of organs to detect stimuli such as alcohols,

esters, amino acids and sugars. Antennae are the main chemosensory

organs, compared to the more differentially responding nuchal organs or

palps. We report chemically evoked activity in possible downstream brain

regions including the mushroom bodies (MBs), which are anatomically

and molecularly similar to insect MBs. We conclude that chemosensation

is a major sensory modality for marine annelids and propose early

Platynereis juveniles as a model to study annelid chemosensory systems.
1. Introduction
Chemical signals are central to animal behaviour, including feeding, predation,

courtship and mating, aggregation, defence, habitat selection and communi-

cation [1]. Adapting to variable habitats and changing chemical landscapes,

animals have evolved a broad variety of chemosensory organs. Investigations

of chemosensory systems in mammals, insects and nematodes have provided

insights into the molecular and cellular basis of how chemical information is

encoded into neuronal activity [2–4]. While similar circuit architectures can

be found in distant species at some steps of information processing, this

appears to be no general rule [5,6]. Genomic studies have revealed that receptor

proteins are highly diverse in the animal kingdom [7] and can be entirely differ-

ent between distant species—vertebrates and insects, for example, use distinct

types of receptors [8,9]. Hence, a broader comparative approach will facilitate

the elucidation of both general operating principles and evolutionary origins

of animal chemosensation. Notwithstanding studies in fish and crustaceans

[10,11], and to a lesser extent in molluscs [12,13], our current understanding

of animal chemosensation still mainly concerns terrestrial and airborne cues.

Marine animals thus deserve more attention.

Marine annelids, traditionally referred to as ‘polychaetes’, represent an

attractive group for chemosensory studies. These worms, represented by
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Figure 1. Platynereis and the microfluidic device for precise chemical stimulations. (a – c) Light microscopy pictures of Platynereis at the adult (a,b) and early
juvenile (c) stages, showing antennae (ant), palps ( pa) and tentacular cirri (tc, adc, avc, pdc, pvc). Further abbreviations: see the abbreviations list. (a – c)
Antje Fischer &. (d ) Channel flow rates used to generate (e) the different flow patterns. The sum of the three channels’ flow rates is constant. ( f ) Schematic
of the microfluidic device. The three inlet channels are operated by computer-controlled pumps. Single animals are introduced manually in the trapping channel and
immobilized at its end. (g) An immobilized early juvenile, with its head freely exposed to the seawater flows. Confocal image with transmitted light illumination.
(h) Calcium signals upon chemical stimulation are recorded with a confocal microscope in 12 optical planes sampling the whole head volume.
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more than 10 000 species, are typically free-living, burrow in

the marine sediment or build tubes. They are known to

respond to chemical signals in reproduction, feeding, aggres-

sion, avoidance, aggregation, environment probing, larval

settlement and metamorphosis [14]. Marine annelids are

suited for electrophysiological [15–18] as well as behavioural

[19–22] studies, and their nervous system is anatomically and

histologically well described [23–31]. Potential chemoreceptor

proteins have been identified in the first published annelid

genomes, which contain homologues for insect receptors (41

ionotropic receptors (IRs) and 12 gustatory receptor-like recep-

tors (GRs)), but apparently not for mammalian ones (olfactory

receptors (ORs)) [32,33]. Despite these advantages, the physi-

ology of chemical sensing in annelids is scarcely known (for an

up-to-date review on annelid chemosensation, see [34, ch. II]).

Unlike terrestrial annelids such as leeches and earth-

worms, marine annelids possess elaborate head sensory

organs with diverse morphologies [35]. Nuchal organs,

paired ciliated cavities located at the back of the head, are con-

sidered an annelid synapomorphy [36] and are generally

regarded as chemosensory. Based on cell morphology, they

are the best candidate chemosensory organs, though no phys-

iological support yet substantiates this claim. Palpae, or palps,
the most important head appendages for phylogenetic sys-

tematization, have been proposed to be chemosensory based

on cell ultrastructure and activity-dependent cell labelling

[31,37,38]. Similar claims based on ultrastructure were made

for antennae and tentacular cirri, the two other major types

of head appendages [31,39]. Gross in 1921 [19] showed that

the removal of palps or antennae, and to a lesser extent of

tentacular cirri, lengthens the reaction time of the nereidid

Nereis virens to ionic solutions. Yet, physiological evidence

is scarce, and at present no direct experimental proof of

chemosensitivity exists for any of these four head organs.

We report here a comprehensive study of head chemo-

sensory organ physiology in the marine annelid Platynereis
dumerilii (figure 1a–c), which can be easily kept in the labora-

tory and is amenable to molecular studies. This species

belongs to nereidids, the family regarded as best representing

the annelid nervous system [40, p. 735]. Rather than adults, we

chose to study early juveniles around the 6-days-post-

fertilization (6 dpf) stage, which are already equipped with

nuchal organs, palps, antennae and one pair of tentacular

cirri (figure 1c). They feed, crawl, swim and display various

natural behaviours such as phototaxis, startling, escaping

or silk spinning. They present experimental advantages
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comparable to those of the nematode Caenorhabditis elegans,

being transparent, developmentally synchronous, easily

obtainable in high numbers and suitable for whole-body

light and electron microscopy. A whole-body atlas of gene

expression available for this developmental stage [41] consti-

tutes a unique resource which facilitates the characterization

of cell types. Moreover, a connectomic resource exists at a

larval stage that has proved powerful in the reconstruction

of whole-body neuronal circuits, notably in the context of

phototaxis and ciliated locomotion [42–44].

Four stimuli (1-butanol, amyl acetate, glutamate and

sucrose) were chosen for their different physico-chemical

properties and their likely ecological relevance to Platynereis.

Short alcohols trigger behavioural reactions in Nereis [45].

Amyl acetate can act as a conditioned stimulus for associative

learning in the aquatic snail Lymnea [46]. Glutamate elicits

behavioural responses in Nereis [45], and amino acids, in

general, are relevant aquatic chemical cues for various

marine animals [12,38,47–50]. Sugars can be degradation

products of the polysaccharides contained in plants such as

eelgrass and seagrass, or in algae, on which nereidid poly-

chaetes are known to feed [19,51]. However, except for a

pH and salinity preferendum [52], nothing is known regard-

ing chemoreception and relevant chemical cues in early

Platynereis juveniles.

Using a customized microfluidic device for animal immo-

bilization and precise stimulus delivery, we performed

whole-head functional imaging in early juveniles ubiqui-

tously expressing the genetically encoded calcium sensor

GCaMP6s. We found that nuchal organs, palps, antennae

and tentacular cirri are chemosensory, though with different

degrees of specialization: for example, antennae responded to

all stimulants, while nuchal organs were most sensitive to

amyl acetate and sucrose, but did not respond to glutamate.

We observed a chemically evoked activity in other regions

including the mushroom bodies (MBs), which could poten-

tially be involved in learning phenomena. We also described

a prominent oscillatory activity in the larval apical organ,

however not obviously linked to chemical stimulations. We

provide the first direct evidence of chemosensory function

in annelid head organs and lay the ground for future

investigations of sensory integration.
2. Results
2.1. Establishment of a functional imaging assay system

for chemosensation in early Platynereis juveniles
We designed a simple microfluidic device, made of the trans-

parent polymer polydimethylsiloxane (PDMS) and fabricated

by soft lithography. The device is symmetric, has a uniform

height of 60 mm and consists of a single chamber in which

a constant flow of natural seawater is established. Three

inlet channels generate three parallel, non-mixing water

streams thanks to a laminar flow regime. Changing the rela-

tive flow rates between channels allows to expose the

chamber’s centre to any of the streams (figure 1d,e). With

one side stream being used to deliver a chemical stimulus

and the other to deliver the solvent alone (seawater), a flow

control is performed in each experiment that allows to separ-

ate the purely chemical sensory input from the mechanical

one. An early Platynereis juvenile can be immobilized at the
end of a central trapping channel (figure 1f ), where its head

is exposed to the water flows (figure 1g; see electronic sup-

plementary material, figure S1A,B for a detailed description

of the set-up).

We performed calibration experiments with a dye to

quantify the actual changes of stimulant concentration at

the level of the animal’s head (see electronic supplementary

material, figure S1C and Material and methods). With this

set-up, a change from zero to maximum stimulant concen-

tration (stimulus onset) can be completed within 0.9+0.3 s,

with a delay of 3.2+0.5 s compared with the pump trigger-

ing time. The reverse change (stimulus offset) can be

completed within 1.0+0.2 s, with a delay of 3.0+0.5 s.

Slight timing differences between these two events stem

from the geometrical asymmetry between central and lateral

streams.

To survey calcium activity in the entire head, we immo-

bilized juveniles ubiquitously expressing GCaMP6s and

acquired images with a confocal microscope from 12 horizon-

tal, equally spaced optical sections sampling the whole head

volume (figure 1h). With the whole stack being acquired

within a second, a 1 Hz temporal resolution was obtained

for each of the 12 planes; hence, the precision of stimulus

delivery was deemed satisfactory.
2.2. Ten distinct sets of cells show activity during
chemical stimulation experiments

To comprehensively identify head regions active in the

context of chemical stimulations, we imaged calcium activity

across the entire head in response to four stimulants (see

Introduction). For each stimulant, three to four experiments

were conducted for each of nine animals (only eight for 1-

butanol). A single experiment consisted of three identical

cycles: each cycle comprised a chemical stimulus and a flow

control, lasting 15 s each and spaced by 20 s resting intervals

(figure 1d ).

We observed activity in 10 bilaterally symmetrical spots

(figure 2), including four paired regions which we identified

as the cell masses of the four presumed chemosensory organs

(nuchal organs, palp, antennae and tentacular cirri). We also

observed activity in another paired chemosensory region, the

lateral region, as well as in the dorsal and ventral mushroom

body (MB) regions. Finally, we saw activity in three bilater-

ally symmetric pairs of cells: one in the apical organ area,

the eyefront cells and the fronto-dorsal cells. The lateral

regions, the eyefront cells and the fronto-dorsal cells, so far

undescribed, were named for the present study. Activity

was also observed in the nuchal, palpal antennal and cirral

nerves, which were thus included in the analyses.

To make sense of these signals, we first characterized the

tissue context of the responding cells at the 6 dpf stage

(figure 2; electronic supplementary material, figure S2). The

nuchal organs (figure 2a; electronic supplementary material,

figure S2A) lie posterior to the eyes and slightly more ventral.

Nuchal cavities equipped with ciliated supporting cells can

be recognized. The short nuchal nerves project posteriorly

to the central neuropil and form a commissure. In the absence

of clear anatomical boundaries, only proximity to the cavity

and coactivation with the nerve can allow to attribute a cell

to the nuchal cell mass. Most calcium activity was observed

in a pair of cells, named ‘revolver cells’ due to their typical
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shape, but other cells next to the cavity were occasionally

active. The palps (figure 2b; electronic supplementary

material, figure S2B) lie ventrally, on each side of the

mouth opening, and protrude only very little at this stage.

Their mobile tip possesses clusters of cilia. The palpal
nerves, short and thick, project to the central neuropil in

proximity to the dorsal and ventral roots of the circum-

oesophageal connectives. The palpal cell masses, delimited

by membrane layers and developing coelomic cavities, con-

stitute the largest cell masses in the head. Up to three pairs
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of active cells were observed rather in proximity to the nerves

than to the tips. The antennae (figure 2c; electronic sup-

plementary material, figure S2C) are slender, frontal organs.

Cellular extensions and nervous fibres, but not cell bodies

(electronic supplementary material, figure S3), are present

inside the appendages, whose surface is equipped with

clusters of cilia. The prominent antennal nerves, always

identifiable in calcium recordings, project laterally to the cen-

tral neuropil. The antennal cell masses, anatomically well

delimited, are located at the base of the antennal appendages.

Up to four pairs of active cells were observed throughout the

cell masses. The mobile tentacular cirri (figure 2d; electronic

supplementary material, figure S2D) possess clusters of cilia

at their surface and nervous fibres. The cirral nerves project

to the circum–oesophageal connectives, not to the central

neuropil. The cirral cell masses, future cirral ganglia, are

well delimited and occupy a lateral and posterior position

in the head. Unlike the antennae, the cirral appendages con-

tain cell bodies (electronic supplementary material, figure S3).

Activity was recorded only in cells located at their base,

amounting to a maximum of two pairs.

The lateral regions (figure 2e; electronic supplementary

material, figure S2E) are well delimited, located between

the palpal and cirral cell masses, close to the ciliary band

called the akrotroch. Between one and three active cell

bodies were observed in these regions, with no apparent

neurite connection to the central neuropil. The MB regions

consist of probably 15–20 cells each at this stage, organized

around two neurite bundles called peduncles: a dorsal one,

immediately lateral to the antennal nerve (figure 2f; electronic

supplementary material, figure S2F), and a ventral one, ven-

tral to the antennal nerve and dorsal to the palpal cell mass

(figure 2g; electronic supplementary material, figure S2G).

At 6 dpf, the strong condensation of MB cell nuclei character-

istic of adult nereidid brains [53] is not yet apparent; hence,

precise delimitation of MB cells is not possible. Nevertheless,

active cells were observed in immediate proximity to the ped-

uncles, and a coactivation with the peduncle was visible in

ventral MB regions (inset in figure 2g1).

Single active cells were observed in the area of the apical
organ (figure 2h; electronic supplementary material, figure

S2H), an unpaired sensory organ present in annelid and

other marine larvae and thought to be involved in their settle-

ment, a crucial life cycle transition [54–56]. These two cells are

close to the dorsal head surface, directly anterior to the akro-

troch, in proximity to the neurosecretory neuropil known to

be associated with the apical organ [57]. Their flask shape is

typical for apical organ cells described in Platynereis at 2 dpf

[58]. It should be noted that the cilia present dorsomedially

at the head surface at 6 dpf do not belong to the apical

organ but to another organ of unknown function, the dorsal

ciliated pit (see electronic supplementary material, figure

S2H1). A second pair of active cells was observed in a position

immediately anterior to the eyes and therefore named eyefront
cells (figure 2i; electronic supplementary material, figure S2I).

Their activity, though observed only in a minority of animals,

was prominent. A third pair, called fronto-dorsal cells (figure 2j;
electronic supplementary material, figure S2J), was observed

in a position slightly more dorsal and medial than the anten-

nal nerves, and anterior to the central neuropil. These cells

seem to have an axonal projection into the central neuropil,

and their shape suggests an anterior cellular extension.

A pair of tubulin-rich cells with a similar shape is present at
the same position (figure 2j2), but we could not determine

whether they are the same cells.
2.3. Nuchal organs, palps, antennae and tentacular cirri
respond differentially to four chemical stimulants

Using four distinct chemical stimulants, we quantified the

occurrence of responses for all regions and cells, in each

animal, over a long time window following each stimulus

onset (figure 3a,b; see Material and methods). The most

obvious responses were those of the antennae, which

responded systematically to each of the four stimulants. By

contrast, the three other organs showed more differential

responses. Nuchal organs were sensitive to amyl acetate

and sucrose and, to a lesser degree, to 1-butanol, but did

not seem to respond at all to glutamate. Palps responded to

all compounds, but responses were observed for typically

two-thirds of the exposures with glutamate, as opposed to

about one-third for the other compounds, indicating that

palps are particularly responsive to glutamate. In tentacular

cirri, responses were seen frequently with glutamate and

sucrose, and seldom with 1-butanol and amyl acetate,

suggesting that glutamate and sucrose can elicit stronger

responses. We performed an analysis of variance to quantify

these differences (electronic supplementary material, table

S1). Only cirral responses to glutamate versus amyl acetate

differed significantly, but more differences would probably

become apparent with an increased sample size (here, nine

animals per compound). These results show that chemosensi-

tivity in nuchal organs, palps and tentacular cirri is tuned to

different types of stimulants.

Different causes seem to account for the non-systematic

observation of responses in nuchal organs, palps and tentacu-

lar cirri. In nuchal organs, responses were only observed in

about 30% of exposures. The fact that these responses were

of high amplitude (typically DF/F0 ¼ 100–150%) and

occurred in large cells (diameter of 8–12 mm, as opposed to

5–9 mm in the other regions) excludes that they may have

been omitted by our imaging, and suggests that they were

conditional. In palps, responses were seen in about 60% of

exposures on average. Since the responding cells were small

(less than 6 mm in diameter) and because abundant muscle

fibres and neurites produce calcium signals in this area, we

attribute this percentage to technical difficulties in detecting

the responses, rather than true biological variability.

Responses in the tentacular cirri, whenever observed,

occurred in a high fraction of exposures, but were nearly

absent in some animals. Since they were overall the weakest

responses (typically DF/F0 , 50%), we concluded that the

cirri did respond to all stimulants, but the low amplitude of

calcium signals did not always allow their detection.

In all organs, the responses were more frequent for the

stimulants than for the flow controls (see statistical significance

in figure 3a), which confirmed that the observed activity was

chemically evoked. Control experiments without chemical

stimulants showed that all organs had comparable levels of

responses to natural seawater stimulations as here (figure 3a;

see Material and methods), confirming that responses to

flow controls in the present experiments did correspond to a

non-chemically evoked activity. An overall increased activity

of the palpal cell masses was nevertheless observed in the

particular cases of glutamate and sucrose stimulation.
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We next investigated chemically evoked responses at the

single-cell level rather than for the entire organs. In palps, anten-

nae and tentacular cirri, we found that most cells which

responded to a stimulant did so systematically and responded

only after its onset. Examples are shown for each stimulant in

figure 3c (calcium signal snapshots and regions of interest

(ROIs) are shown in electronic supplementary material, figure

S4; more examples of activity traces can be found in Chartier

[34, ch. IV]). These findings indicate that these organs are

indeed able to directly detect the onset of such stimulants.

In nuchal organs, sucrose was the only stimulant for which

we could observe reproducible responses, though only in a

single animal. Two examples of activity traces are shown in

figure 3c: the first is representative of responses overall

observed in nuchal organs (only some of the calcium transi-

ents correlate with a stimulus onset), and the second shows

repeatable responses observed in this single animal. Hence,

while the nuchal organs are able to directly respond to the

onset of at least some stimulants, such responses do not

seem to be robust in our assay.
2.4. Chemosensory responses of the mushroom body
regions and a newly identified lateral region

Similar to nuchal organs, palps, antennae and tentacular cirri,

the lateral and MB regions showed an enhanced activity

directly related to the onset of chemical stimuli (figure 3a,b),

which identifies these regions of the early differentiated Platy-
nereis brain as part of the chemosensory circuits. Responses

were observed in about 65% of exposures for the lateral regions,

40% for the ventral MB regions and 15% for the dorsal MB

regions. The lateral regions responded to all compounds,

though slightly less to sucrose, indicating a broad chemosensi-

tivity as for the antennae. The MB regions showed more

differential responses, with the ventral ones being more respon-

sive to 1-butanol and glutamate than to amyl acetate and

sucrose, and the dorsal ones being mostly responsive to gluta-

mate. Flow controls confirmed the chemically evoked nature of

responses in the three regions. Only responses of the ventral

MB regions upon sucrose stimulation were an exception; in

this particular case, another factor than the stimulant may

have led to an overall increased activity (three times higher

than in control experiments). We found examples of chemically

evoked single-cell responses to all stimulants for the lateral

regions, to amyl acetate and glutamate for the dorsal MB

regions, and to 1-butanol and glutamate but not sucrose for

the ventral MB regions (figure 3c; calcium signal snapshots

and ROIs are shown in electronic supplementary material,

figure S4). This confirmed that the lateral regions respond to

all stimulants, and the two MB regions to at least some of them.

By contrast, no evidence for stimulant-specific responses

could be found in the apical organ cells, the eyefront cells

or the fronto-dorsal cells.
2.5. Responses are observed with a delay in the lateral
regions and mushroom body regions compared
with the major chemosensory organs

Following the observation that seven regions were activated

by stimulants, we set out to determine when exactly their
responses occurred with respect to the window of exposure.

The cumulated distributions of all response times were calcu-

lated for each region, by pooling experiments involving all

four stimulants (figure 4, inner graphs). The response times

correspond to the beginning of calcium transients (see

Material and methods).

For the nuchal organs, palps, antennae and cirri, the vast

majority of responses took place within 5 s following the

stimulus onset. The observed variability in these response

times was at least partly attributable to variable stimulus

onsets compared with the pump triggering times (electronic

supplementary material, figure S1C). Activity outside of the

stimulation period was seen more often in the nuchal

organs than in the three other chemosensory organs, in agree-

ment with the more erratic responses observed in single-cell

activity traces (figure 3c).

For the lateral regions and MB regions, responses were

likewise observed predominantly following stimulus onset,

but the mean response times were slightly delayed. Taking

as a reference the antennal cell masses’ responses—the most

abundant and robust ones—we saw indeed a statistically sig-

nificant delay in the order of 1 s for the mean response time of

the lateral regions and of 0.75 s for the two MB regions, but

no significant delay or lead for the nuchal organs and cirri

(figure 4, inner graphs). The palps did respond as fast as

the antennae, because the delay observed for the cell

masses was absent for the nerves.

Complementarily, the offsets of response times with

respect to the antennal cell masses were assessed in individ-

ual animals, by calculating the actual offset for each response

of each region (see Material and methods). The cumulated

distributions of these offsets confirmed the statistical signifi-

cance of the observed delays (figure 4, outer graphs). A

rather wide distribution of offsets was visible for the palpal

cell masses and the ventral MB regions, as opposed to the

other regions responsive to stimulants. For the lateral regions,

the offset distribution seemed to be bimodal, with a main

peak at around þ1 s and a minor one at around þ5 s (15%

of the responses). A small but significant lead was observed

for the antennal nerves over the antennal cell masses (in the

order of 0.3 s). The observation that the lateral regions, the

two MB regions as well as the palpal cell masses responded

with some delay with respect to the overall synchronized

responses of the chemosensory organs was robust when

offset distributions were alternatively calculated against the

cirral cell masses, cirral nerves or palpal nerves (data not

shown).

Activity in the apical organ cells and eyefront cells was

rather uniformly distributed, irrespective of the chemical

stimulation period. For the fronto-dorsal cells, the coexistence

of a uniform activity and a peak of responses synchronized to

the antennal ones suggested that these cells may show both

specific and unspecific responses.
2.6. The apical organ cells show a periodic activity,
synchronized with the eyefront cells

We further analysed single-cell activity in apical organs cells,

eyefront cells and fronto-dorsal cells, to better understand

why this activity was prominent in our experiments,

though not obviously chemically induced (figure 5). Activity
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traces reveal that in 13 out of 35 animals, apical organ cells

had slow, large-amplitude calcium fluctuations, as shown

in figure 5a (for calcium signal snapshots and ROIs, see

electronic supplementary material, figure S5). These

fluctuations were synchronous between both cells, as well

as with the closely located neurosecretory neuropil

(figure 5b). We found that the eyefront cells, though rarely

active, were always synchronized with the apical organ

cells (figure 5a,b), which suggests that these two pairs of

cells are interconnected. The calcium fluctuations’ period,

typically 35 s (animals #29, 30, 33, 37, 40), matches the period-

icity of the alternated stimulations with and without

chemical stimulant (see Material and methods). Although

the fluctuations had variable phases compared with the

stimulations, they could thus have been entrained by the

flow stimulations, independently of chemical stimulants; in

fact, they can take place in the absence of chemical stimulant

(animal #32). Yet, additional experiments, either without

flow patterns or with a different periodicity of flow patterns,

would be needed to exclude that these cells had an intrinsic

periodic rhythm which accidentally matched the flow

period used here. Nevertheless, in two animals, a different

pattern of activity was observed, with beginnings of calcium

transients correlating with the onsets of chemical stimuli and

resulting in similar fluctuations with a period of approxi-

mately 70 s, i.e. double (animals #86, 97). This suggests that

apical organ cells could still be responsive to chemical stimu-

lants, at least to 1-butanol and sucrose. On the whole, the

present experiments do not suffice to conclude whether or

not chemical stimulants trigger the oscillating calcium

activity in the apical organ cells and eyefront cells.
2.7. Activation of the fronto-dorsal cells partially
coincides with stimulus onset or termination
of locomotor activity

In all experiments, activity was highly synchronous between

the two fronto-dorsal cells (figure 5b). A closer look at

single-cell activity confirms that these cells do show occasional

responses to the onsets of chemical stimuli (figure 5c, animals

#21, 22-1, 40; for calcium signal snapshots and ROIs, see elec-

tronic supplementary material, figure S5), as previously

suggested by the distribution of response times. Responses

to the onset of the flow controls were also observed (animal

#22-1). Besides, activation of these two cells was seen to

follow muscle contraction in the trunk or stomodeum in sev-

eral animals (animals #21, 22, 40, 72, 100). The existence of

overlapping calcium transients when an episode of movement

and a stimulus onset rapidly follow each other (animals #21,

22-2, 34) suggests that both types of activity may add up.
3. Discussion
3.1. Platynereis possesses four types of head

chemosensory organs
Our calcium imaging experiments reveal chemically evoked

responses to four types of chemical compounds in nuchal

organs, palps, antennae and tentacular cirri (figure 3a,b).

Single-cell responses (figure 3c) immediately follow the

onset, not the offset, of the chemical stimuli, and are
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synchronous for the four organs (figure 4). The lateral regions

may constitute a fifth type of primary chemosensory organ, as

suggested by their proximity to the surface (figure 2e) and

their high activity upon chemical stimulations (figure 3a).

However, the absence of externally obvious sensory structures

associated with them (figure 2e) as well as their systematic

response delay compared to the four other organs (figure 4)

would speak against that, hence this question deserves further

investigation.
In palps, antennae and tentacular cirri, responsive cell

bodies were only seen at the base of the appendage, hence

at least part of them must correspond to sensory neurons

that extend a long dendritic process through the appendage

until the actual site of chemical detection; in fact, such pro-

cesses were sometimes visible in the calcium signal (e.g.

electronic supplementary material, video S1). However, part

of the active cells may well have been interneurons. In

nuchal organs, only two cell types are present around the



rsob.royalsocietypublishing.org
Open

Biol.8:180139

10
sensory cavity: sensory neurons which extend a dendritic

process into the cavity and ciliated supporting cells [59,60],

while interneurons described in Platynereis at 3 dpf are dis-

tant from the cavity [61]. The revolver cells are thus clearly

sensory neurons (see morphology in figure 2a), and so are

probably the rare other responsive cells observed close to

the cavity.

We showed that nuchal organs, palps and tentacular cirri,

unlike the antennae, respond differentially to the compounds,

which suggests a specialization of these organs in terms of che-

mosensory repertoire. Our few attempts to test for functional

differences between cells belonging to the same organ, using

two stimulants per animal, were so far inconclusive (data

not shown). Nevertheless, it is likely that at least antennae

and palps could be capable of chemosensory discrimination,

due to the high number of cells they possess.

Antennae appear to be central in Platynereis’ chemosen-

sation and are probably responsible for the general

identification of chemical cues. It came as a surprise that

their responses were by far more systematic than those of

the nuchal organs, because the latter are generally thought

to be important for annelid chemosensation, but not the

former [24,36]. Palps, which are located close to the

mouth and were more strongly activated by the amino

acid and the sugar (figure 3a,b), may be specialized in the

detection of directly food-related chemical cues, as is

hypothesized in spionid annelids [22,38,62]. These highly

musculated appendages, which adult Platynereis use for

prehension of food items (TF Chartier 2015, personal obser-

vations), could also serve in the contact chemoreception of

hydrophobic compounds, whose importance is often

underestimated in marine animals [63,64]. The tentacular

cirri sometimes showed separate response times between

the left and right side (data not shown). It is likely that

these long organs, which extend in different directions in

adults, can provide relevant spatial information about the

localization of chemical cues. These tactile organs are also

photosensitive and involved in the shadow reflex in Platy-
nereis [65]. Hence, their role is probably to collect general

multisensory information about objects approaching the

head, in order to produce immediate, coarse responses.

Finally, there is little doubt that the highly conserved

nuchal organs play an important sensory role in annelids;

hence, it is likely that we did not test the most relevant

cues for them.

Platynereis detects 1-butanol and glutamate, which corro-

borates behavioural observations made long ago in Nereis
[44]. Amino acids, such as glutamate, are general chemical

cues in aquatic environments, as is known in fish and crus-

taceans [66,67]; other known cues such as nucleotides,

steroids and bile acids [68] should be tested in future exper-

iments. The stimulants were presented here at 10 mM, but

the presence notably in antennae of responses that slightly

precede the earliest possible onset of this concentration

(figure 4; electronic supplementary material, figure S1C)

suggests that lower concentrations can be detected. The fact

that 1-butanol and amyl acetate, which are odorant molecules

for humans, act as distance cues in the water for Platynereis
provides support to the view of Mollo et al. [1, section 8]

that the traditional categories of ‘olfactory molecules’ and

‘taste molecules’ should be abandoned.

Our results in Platynereis suggest that marine annelids

possess head chemosensory organs with distinct roles,
adapted to sets of chemical cues relevant in different situ-

ations (feeding, escaping, reproduction, etc.), similar to

what is known from crustacean chemoreception [69]. Anten-

nae, which seem to be the main chemosensory organs in

Platynereis, are present in a vast majority of annelid taxa

[70] and may thus be of general importance in annelid che-

mosensation. Though we did not test it here, a distributed

chemosensitivity of the body surface is likely for annelids,

as suggested by previous behavioural and anatomical studies

[19,26,71,72].

3.2. Annelid mushroom bodies as possible
chemosensory integration centres

Mushroom bodies (MBs), which have long been described in

annelid brains [25,27], have a high anatomical similarity with

their homonyms in insects [73]. In fact, similar structures are

found in several protostome phyla including flatworms,

nemerteans and onychophorans [74], which suggest that

they may have been inherited from the last common proto-

stome ancestor’s brain. In insects, MBs are the place where

associative memories are formed, notably with odour stimuli

[75–77]. In mammals, this role is endorsed by the pallium

[78–80], which includes cortex and hippocampus, and devel-

ops from neuroectodermal brain regions expressing similar

combinations of transcription factors as in Platynereis [81].

We observed cells located in the dorsal and ventral MB

regions responding specifically to several chemical stimulants

(figure 3a,c). In particular for the ventral regions, coactivation

with the MB peduncles proved that these responsive cells

indeed belonged to the MBs (figure 2g1, inset). Our obser-

vations represent the first physiological data available for

annelid MBs and firmly establish them as part of the

chemosensory system. MB cellular responses were delayed

compared to the four major organs (figure 4) and may have

stemmed from sensory interneurons. This would be in line

with a presumed role of MBs in the representation and

integration of chemical cues also in the annelid brain.

3.3. Apical organ cells, eyefront cells and fronto-dorsal
cells may be part of the chemosensory circuits

We have identified three distinct pairs of cells in the head

whose activity may be partially linked to chemical stimu-

lations. Activity in the apical organ cells did correlate with

the onset of chemical stimulations in at least two animals

(figure 5a). This preliminary evidence for chemosensitivity

calls for further exploration, as apical organs are likely impor-

tant in the settlement and metamorphosis of marine larvae in

general, which they are thought to trigger via the detection of

environmental chemical cues [54–56]. The long duration

of calcium transients in these cells, as well as their proximity

to and coactivation with the neurosecretory neuropil

(figure 2h, figure 5a,b), suggest a neurosecretory nature.

One can hypothesize that upon detection of appropriate

settlement cues, these two cells would adopt periodic pat-

terns of neurosecretory activity as observed here, signalling

to the animal that settlement can start. Alternatively, calcium

fluctuations in these cells may have been merely entrained by

the changing flow patterns, as would also be consistent with

our data. However, we do not favour this latter hypothesis,

because their prominent activity should then have been
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observed in most animals, not in one-third of them. When-

ever the eyefront cells were visible, their activity was tightly

synchronized to that of the apical organ cells; hence, both

pairs of cells may belong to a common circuit involved

in neurosecretion and/or larval settlement. The pair of

fronto-dorsal cells, which are probably neurons due to their

morphology and activity patterns (figure 2f; electronic sup-

plementary material, figure S5), were seen to respond after

at least three types of events: chemical stimulations only,

chemical stimulations and flow stimulations, locomotor

episodes (figure 5c). Hence, their responses to chemical

stimulants were not primary sensory responses. These neur-

ons may have an inhibitory effect, their role being either to

prevent a locomotor reaction to external stimuli such as

chemical cues, or to stop an ongoing locomotor episode.

We hypothesize that they form part of a general circuit for

locomotor inhibition receiving inputs from different sensory

modalities. As such, they may represent a non-specific part

of the chemosensory circuits.
3.4. Variability of responses: biological and technical
factors

While antennal responses were strong and systematic for all

animals and all compounds, responses in palps and tentac-

ular cirri could not be observed in all animals or for all

exposures (figure 3a). Since single-cell responses, though of

lower amplitude than in antennae, were always robust

(figure 3c), we interpret this fact as a consequence of their

response amplitude sometimes falling below our detection

threshold. We conclude that these two organs do detect

these stimulants, which a more targeted imaging would

allow to verify. By contrast, single-cell calcium responses to

stimulants in the nuchal organs were hardly repeatable

(figure 3c). The typically high amplitude of these responses,

whenever observed, rules out an issue of detection threshold.

While we cannot exclude that other compounds may elicit

systematic responses, it seems that nuchal organs respond

to chemical stimulants in a more conditional manner,

though we were so far unable to tell what influences their

responsiveness. For the four chemosensory organs, the

nerve was seen to respond with a slight lead over the cell

mass (figure 4), even though the former is located anatomi-

cally downstream of the latter. We interpret this as an effect

of geometry, with local calcium concentrations increasing

faster in the axons than in the somata. Finally, in most

active regions, a majority of responses were visible only on

one side of the head, for example, in figure 2d1 or g1 (see

quantification in electronic supplementary material, figure

S6). Because the imaging planes can be slightly tilted, we

regard this as an artefact of imaging, occurring when a

weakly responsive nerve or cell body on one side is located

between two consecutive optical planes and fails to be

detected. However, we are confident that all responses are

indeed bilateral, notably because no anatomical asymmetry

is known for the head and because the regions where most

non-bilateral responses are seen are the most difficult to

image and show the weakest responses (palpal and cirral

nerves, MB dorsal and ventral regions; see electronic sup-

plementary material, figure S6). Besides, an activity can

appear non-bilateral for the cell masses, while it is clearly

bilateral in the corresponding nerves, as is obvious for the
nuchal organs and antennae (electronic supplementary

material, figure S6).

3.5. Sensory cell anatomy and physiology is different
between nuchal organs and head appendages

Based on our functional imaging data, nuchal organs seem to

possess a different physiology than the three other chemosen-

sory organs, and incidentally, they are known from electron

microscopy studies to possess different types of sensory

cells than palps, antennae and tentacular cirri. While cells

of the three appendages have sensory cilia that traverse the

cuticle and come directly in contact with the environment

[23,26,31,39,82–84], sensory cilia of nuchal organ cells sit in

a fluid-filled sensory cavity shielded from the environment

by specialized cuticular or microvillar layers [59,60,85,86]. If

these layers affect the diffusion of molecules, changes of

chemical composition in the fluid environment may be effec-

tive with some delay inside the cavity compared with the

surface of appendages. The nuchal organs’ shielded anatomy

suggests that they may detect the global presence and

concentration of ambient chemical cues, but not capture

their rapid concentration dynamics, as the three appendages

probably do. A role of these organs in inter-individual

communication and the detection of pheromones constitute

a good working hypothesis.

3.6. A microfluidics set-up for immobilization
and targeted stimulus delivery

The use of microfluidics for in vivo experiments offers several

advantages over the immobilization methods used so far

with Platynereis juveniles and larvae: gluing, MgCl2 or meca-

mylamine paralyzing, low-melting agarose embedding or

slide-coverslip mounting. The present device allows both a

reliable animal immobilization without any chemical agent

potentially interfering with the animal’s physiology and an

ecologically relevant exposure to chemical stimulants. More-

over, stimulant exposures are precise and repeatable, which is

key for probing single-cell activity.

Further experiments can be performed with the same

set-up, notably testing discriminatory abilities of the chemo-

sensory organs between either two concentrations or two

stimulants. Any other waterborne stimulus such as pH, sal-

inity, O2 or CO2 levels, or even small solid particles, can be

used and possibly combined with a precise pharmacological

treatment. Adding a dye to the stimulus solution would

allow a more precise monitoring of stimulus timing, though

all dyes we have tested were improper in that they triggered

antennal chemosensory responses. Whole-head recordings at

higher spatial and temporal resolutions could be obtained

using a light-sheet microscope (as in [87]). The microfluidic

device is suited for experiments on 4–7 dpf animals and

can easily be adapted for younger stages. Beyond 7 dpf,

muscles, hence movement artefacts, are too strong, and

either a more elaborate trap or a drug treatment would be

needed to achieve immobilization. The trap design could

also be adapted for other marine larvae or small organisms,

some of which are suited for microfluidic experiments (TF

Chartier 2015, personal observations). Though our con-

clusions would not have been altered, absorption issues

documented for PDMS devices may have reduced effective
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stimulant concentrations [88]; hence, alternative materials

such as COC [89] or sTPE [90] may be preferred to PDMS

for future experiments. Microfluidic set-ups have been suc-

cessfully used to explore neuronal and motor activity in

nematodes and fish larvae [4,91], and our study shows that

similar experiments are possible with Platynereis juveniles.

3.7. Early Platynereis juveniles as a model for the study
of annelid chemosensory systems

Platynereis sensory organs and nervous systems are represen-

tative for annelids, and early juveniles already possess all

types of adult chemosensory organs. Our results show that

whole-head activity upon precisely controlled chemical

stimulations can be imaged in early juveniles. Hence, these

juveniles can be used to test the general physiology of annelid

chemosensory organs, as monitored by any fluorescent repor-

ter. The availability of a cellular resolution expression atlas

[41] in combination with single-cell sequencing and mapping

onto the atlas [92,93] will enable efficient identification of

candidate chemoreceptor genes. Candidates would then be

validated by combining knockouts [94] of receptor proteins

and functional imaging, and possible in vitro deorphanization

of receptors [95]. We have demonstrated that single cells,

such as the eyefront cells, fronto-dorsal cells or apical organ

cells, can be identified based on their calcium activity pat-

terns (figures 2 and 3). Mapping functional imaging data as

acquired here onto the gene expression atlas will allow

thorough characterization of such cells. Furthermore, the

feasibility of connectomics in Platynereis has been proved at

the 3 dpf stage [43,44,57,61], and a connectomic effort at

6 dpf is ongoing, which could allow to add circuit infor-

mation to the molecular and functional data presented here.

It will be interesting in the future to investigate Platynereis’

abilities for sensory integration and associative learning,

whose neuronal correlates could be directly studied with

the present set-up. Finding an involvement of annelid MBs

in associative learning would be of particular interest for

the comparative neurobiology of learning.
4. Conclusion
We have established that nuchal organs, palps, antennae

and tentacular cirri are chemosensory organs in Platynereis,

responding to an alcohol, an ester, an amino acid and a

sugar. This conclusion is likely to extend to annelids, for

which similar sensory cells have been detected in electron

microscopy. Our results show a capability to differentially

respond to multiple chemosensory cues, which opens the

possibility of complex chemosensory integration. With our

findings, we establish 6-day-old Platynereis juveniles as an

experimental system for the chemosensory physiology of

marine annelids.
5. Material and methods
5.1. Device fabrication
Standard soft lithography was used to fabricate the mould

[96]. The photomask was designed with AutoCAD (2014

free student version, Autodesk, Inc.) and printed at a
resolution of 25 400 dpi by an external company (Selba S.A.,

Versoix, Switzerland); the source file is available as .dwg file

in the electronic supplementary material. The trapping chan-

nel’s width linearly decreases from 150 to 75 mm at its end,

which constitutes the trap. The mould with a uniform height

of 60 mm was obtained by spin-coating a silicon wafer

(4 inches; Siltronix, France) with a negative photoresist (SU-8

2050, MicroChem Corp., Newton, MA, USA). Devices were

produced by pouring onto a mould and curing at 658C for a

minimum of 4 h a prepolymer mixture of polydimethylsi-

loxane (PDMS, Sylgard 184 silicone elastomer kit, Dow

Corning Corp.) with a 1 : 9 ratio of curing agent. PDMS

blocks were then irreversibly bound to a 0.17 mm glass cover-

slip (#1871, 24 � 50 mm, Carl Roth GmBH, Germany) by a

1 min treatment in a plasma oven (Femto, Diener electronic

GmbH & Co. KG, Germany). For a detailed fabrication

protocol, see chapter IV and appendix E in Chartier [34].

5.2. Experimental set-up and procedure
Filtered natural seawater obtained with 0.22 mm sterile filters

(Millipore), plastic syringes (Luer Plastipak, BD, USA), met-

allic needles (Microlance #20, 302200, BD, USA) and

polytetrafluoroethylene tubing (PTFE, TW24, inner diameter

0.59 mm, Adtech Polymer Engineering Ltd, UK) were used

in all experiments. A 1 mM stock solution was prepared

weekly for each chemical stimulant. Working solutions at

10 mM were prepared on the day of the experiment, and

syringes loaded with these solutions were placed in the

experimental room 1 h before starting. All solutions were

kept at 188C and handled in glassware, because preliminary

experiments had revealed that the animals may detect dis-

solved substances from plastic containers such as Falcon

tubes. Water streams were generated in a laminar flow

regime (7 mm s21, Reynolds number �0.5). Flow rates of

8.33, 33.33 and 41.66 ml min21 were used in the channels

(figure 1d ), with the total flow rate kept constant

(50 ml min21) to minimize pressure changes experienced by

the animal. The device was operated by push-pull pumps

(AL4000-220Z, WPI Germany GmbH), which were compu-

ter-automated via MICRO MANAGER (v. 1.4.21, [97]). Image

acquisition and stimulus delivery were synchronized with

AUTO MOUSE CLICK (MurGee.com), a software for automated

mouse actions. A customized metallic chip holder was built

to hold the fragile device and facilitate its observation

under an upright microscope. For details on the pump

automation and the pumping programmes, see chapter IV

and appendix D in Chartier [34].

5.3. Imaging
GCaMP6s fluorescence excited at 488 nm was detected by a

hybrid detector (HyD) set to photon-counting mode in a

Leica TCS-SP8 confocal microscope, equipped with a 40�
(NA 1.1) water-immersion objective (water was preferred to

oil for experimental convenience). Transmitted light images

were recorded with a classical PMT detector, from the same

excitation light as GCaMP. The head region was imaged in

12 horizontal optical sections (pinhole opened at 6.4 Airy

units) sampling the whole volume at 5 mm intervals. To bal-

ance potential biases due to increased signal loss with tissue

depth, approximately half of the animals were imaged from

the dorsal side and the other half from the ventral side,
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thanks to adequate trapping. Images were acquired by confo-

cal scanning at 8 kHz (resonant mode, phase X correction

1.32, laser powers 6–28 mW, pixel dwelling time 50 ns).

5.4. Calibration experiments
A green dye (tartrazine, E102) was dissolved in the two side

streams to visualize their moving boundaries. Transmitted

light intensity from a 633 nm laser illumination was

measured at 10 Hz resolution in a square region of interest,

constant in size and position, located just upstream of the ani-

mal’s head (brown rectangle in figure 1g). Minimal and

maximal intensities, which according to the Beer–Lambert

law corresponded, respectively, to the absence of stimulant

and maximum stimulant concentration, were normalized

between 0 and 1. Edge detection allowed to quantify the

beginning and ending of stimulation onsets and offsets (elec-

tronic supplementary material, figure S1C). Measurements

were made successively with eight trapped animals (four

experiments per animal).

5.5. Animal preparation and handling
Platynereis juveniles were obtained from a permanent culture

following Hauenschild & Fischer’s breeding protocol [98] and

kept at 188C with 16 L : 8 D cycles. Calcium imaging exper-

iments were conducted at 18–208C, between 142 and 177 h

post-fertilisation (hpf), at various times of the day and

night. For each chemical stimulant, animals coming from at

least two distinct batches were imaged. The calcium reporter

GCaMP6s [99] was transiently and ubiquitously expressed by

microinjecting Platynereis eggs with mRNA (1.000 ng ml21)

between 1 hpf and the first cleavage. Capped and polyA-

tailed mRNAs were synthesized with the mMESSAGE

mMACHINE T7 Ultra Kit (Life Technologies) from a vector

obtained from the Jékely lab (pUC57-T7-RPP2-GCaMP6

described in [43]). After micro-injection, eggs were kept in

filtered natural seawater and culture conditions remained

unchanged. The device was washed with filtered natural

seawater for 4 min before every new animal was manually

introduced with a syringe. Each animal was allowed to rest

for 5 min before the experiments, and successive experiments

on one animal were performed at 5–10 min intervals. After

the experiments, the animal could be recovered without

damage for potential further observations, by gently flushing

it out of the device.

5.6. Response assessment
Cellular or nerve responses were assessed with the human

eye from raw recordings. In the absence of specific genetic

markers, the attribution of a responsive cell to a region

relied on its position, guided by anatomical landmark recog-

nition based on precise reference immunostainings (figure 2;

electronic supplementary material, figure S2). A given region

was considered to respond whenever at least one cell was

seen to respond in at least one of the region’s two bilaterally

symmetric parts—for a given nerve, whenever at least one of

the two bilaterally symmetric nerves was seen to respond.

The bilaterality of observed responses is quantified in the

electronic supplementary material, figure S6, where every

response has been classified as ‘bilateral’, ‘left only’ or

‘right only’, and the relative fractions of such responses
were plotted as barplots for each region. The time of occur-

rence of a response was defined as the beginning of

the corresponding calcium transient, and the threshold

of visual detection of such an event corresponded to a

signal-to-noise ratio of approximately 3 : 1. To be noted: a

permanent activity of the eye photoreceptor cells was

induced by the 488 nm laser illumination. All response

scorings were performed twice at a 6-month interval by the

same person; the resulting data are available as .xlsx file in

electronic supplementary material, table S2.
5.7. Quantification of activity

5.7.1. Occurrence of responses (figure 3)

A scoring window was defined, starting with the earliest

possible onset of the stimulant (1 s after the pump trigger,

see electronic supplementary material, figure S1C) and last-

ing 9 s. Responses of the regions were scored for each

stimulus exposure, with a 1 counted if at least one response

was seen during the scoring window and a 0 otherwise.

The fractions of exposures with an observed response were

calculated for each animal and each region, separately for

exposures to stimulants and flow controls (figure 3a). The

averages of these fractions for each stimulant are shown as

a heatmap (figure 3b). For each set of animals assayed with

a given stimulus, e.g. for the nine animals tested with gluta-

mate, a Wilcoxon signed-rank test (significance level a ¼

0.05) was performed for each region to determine whether

the fraction of responses over exposures statistically differed

between the chemical stimulant and its flow controls

(figure 3a). To quantify response occurrences in the absence

of chemical stimulation, control experiments were run: 15 of

the animals assayed with chemical stimulants had been

beforehand imaged in one experiment with both side chan-

nels containing filtered natural seawater only, prior to any

introduction of chemical stimulant in the device. The

response occurrences were quantified as described above,

and a global fraction of observed responses over the

number of exposures was calculated for each region by

pooling responses of the 15 animals (figure 3a,b).
5.7.2. Distributions of relative response times
and response offsets (figure 4)

All responses of all 35 animals were pooled for each region,

and the cumulated distributions of their times of occurrence

with respect to the stimulation period were calculated.

Student’s t-test (a ¼ 0.05) was performed to determine

whether the mean of each distribution differed from the

mean response time of the antennal cell masses (all means

were calculated over the 9 s scoring window defined for

figure 3). Additionally, for each individual response that

co-occurred with a response of the antennal cell masses

within this window, the time offset between the two was

calculated. The cumulated distributions of these offsets for

each region are shown as barplots in figure 4 (outer graphs)

for responses to the chemical stimuli only, not to the flow

controls. Student’s t-test (a ¼ 0.05) was performed to deter-

mine whether the means of these offsets differed from 0,

i.e. whether these regions responded at a different time

than the antennal cell masses.
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5.7.3. Single-cell activity traces and kymographs (figure 3c,
figure 5a,c)

Movement artefacts on the raw calcium recordings were first

corrected in IMAGEJ (v. 1.50a) using the plugin StackReg [100]

with rigid body transformations. Whenever needed, several

parts of the recordings were registered individually and the

traces obtained from each of them subsequently reassembled.

Mean fluorescence intensity was then calculated from regions

of interest (ROI) drawn manually in IMAGEJ. Further data

analysis was done in MATLAB (2014a student version, The

MathWorks, Inc.). Traces were plotted as DF/F0, with F0

calculated as the mean fluorescence value over a 10 s time

window during a resting state, i.e. outside of stimulation

periods. Muscle contractions (figure 5c), which are likewise

reflected by calcium activity, were quantified in the same

way from ROIs drawn manually on part of the trunk or stomo-

deal muscles, and plotted as kymographs instead of curves,

with darker parts corresponding to higher fluorescence levels.

5.8. Immunohistochemistry
Animals collected at the 6-day stage (precisely 144 hpf) were

fixed in 4% PFA and 0.1% Triton X-100. Tubulin structures

were marked with a monoclonal mouse antibody against

alpha-acetylated tubulin (Cat# T6793, Sigma-Aldrich

GmbH, Germany, 1 : 250 dilution) and an Alexa 488 second-

ary antibody (Jackson Laboratories, USA, 1 : 500 dilution).

Nuclear DNA was stained with DAPI (1 : 1000 dilution) and

membranes with mCLING–ATTO 647N (Synaptic Systems

GmbH, Germany, 1 : 50 dilution). DAPI, tubulin and

mCling fluorescence was excited at 405, 488 and 633 nm,

respectively, and recorded with a Leica TCS-SP8 confocal

microscope equipped with a 63� glycerol-immersion

objective. For details, see chapter III in Chartier [34].
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