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Abstract

The spread of antibiotic resistance, a major threat to human health, is poorly understood. Simple 

population-level models of disease transmission predict that above a certain rate of antibiotic 

consumption in a population, resistant bacteria should completely eliminate non-resistant strains, 

while below this threshold they should be unable to persist at all. This prediction stands at odds 

with empirical evidence showing that resistant and non-resistant strains coexist stably over a wide 

range of antibiotic consumption rates. Not knowing what drives this long-term coexistence is a 

barrier to developing evidence-based strategies for managing the spread of resistance. Here, we 

argue that competition between resistant and sensitive pathogens within individual hosts gives 

resistant pathogens a relative fitness benefit when they are rare, promoting coexistence between 

strains at the population level. To test this hypothesis, we embed mechanistically-explicit within-

host dynamics in a structurally-neutral disease transmission model. Doing so allows us to 

reproduce patterns of resistance observed in the opportunistic pathogens Escherichia coli and 

Streptococcus pneumoniae across European countries, and to identify factors that may shape 

resistance evolution in bacteria by modulating the intensity and outcomes of within-host 

competition.
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Antibiotic-resistant infections tend to be more common in populations that consume more 

antibiotics1–3. The explanation seems obvious: greater antibiotic use selects for more 

resistance. But capturing this pattern in an explicit model of disease transmission has been 

notoriously difficult4. The problem is that empirical observation suggests a gently rising, 

roughly linear relationship between consumption and resistance, with both resistant and 

sensitive (i.e., non-resistant) strains coexisting over a 4- to 20- fold range of antibiotic 

treatment rates1–3 (Fig. 1a). In contrast, simple models of disease transmission predict 

competitive exclusion5—that is, they predict that resistant strains will either disappear 

completely or spread to fixation, depending upon the rate of antibiotic consumption in a 

population (Fig. 1b–d). Although potential explanations for this discord between theory and 

observation have been proposed4,6–8, a generalisable, biologically-explicit mechanism that 

accounts for widespread coexistence has yet to be identified. In short, despite the global 

public health threat of antibiotic resistance9,10, we do not fully understand how resistance 

spreads in human populations.

We propose that within-host competition shapes resistance evolution and can promote 

widespread coexistence in commensal bacteria (i.e., species that are normally part of the 

host microbiota, but which occasionally cause disease when they invade sterile sites). 

Mathematical models of resistant disease transmission routinely overlook within-host 

interactions between different bacterial strains, but commensal bacteria regularly cohabit 

with genetically- and phenotypically-distinct strains of the same11–15 or different16–18 

species. Laboratory experiments have shown that resistant and sensitive microbes inhibit 

each other’s growth when co-colonising the same host19–22, suggesting that these distinct 

strains engage in exploitative competition23 for host resources. Meanwhile, theory 

developed for malarial parasites24 has proposed that within-host competition between co-

colonising resistant and sensitive strains may interact with antimicrobial treatment to 

generate frequency-dependent selection25,26 for resistance at the population level, 

promoting coexistence. We develop this theory, arguing that population-level coexistence 

can be promoted by any phenotypic diversity that mediates competition between co-

colonising strains. Accordingly, we expect co-colonisation to promote coexistence not only 

between resistant and sensitive bacteria, but also among other diverse microbes exploiting 

the same host niche, such as pneumococcal serotypes27.

We develop a “mixed-carriage” model that mechanistically captures within-host competition 

in an explicit model of bacterial transmission. This stochastic individual-based model—

which can be approximated using deterministic ordinary differential equations (ODEs) for 

analytical simplicity—observes the key requirement of structural neutrality28, i.e., it avoids 

systemic biases that non-mechanistically promote (or inhibit) coexistence. When fit to data 

across 30 European countries, the model provides a parsimonious and generalizable 

explanation for empirical patterns of resistance across four pathogen-drug combinations. We 

also show how within-host competition can help to explain observed patterns of resistance7 

and antigenic diversity27 among competing serotypes of the commensal bacterium 

Streptococcus pneumoniae.
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Results

Co-colonisation creates frequency-dependent selection for resistance

Frequency-dependent selection25,26 is known to promote diversity among competitors in 

animals25,29, plants30, and microbes31. In the classic scenario, a rare mutant invades a 

population by exploiting some weakness of wild-type individuals, but gradually becomes a 

victim of its own success by displacing the competitors it relies upon to exploit. Stable 

coexistence between types can result if mutants tend to increase in frequency when they are 

rare (because there are ample wild-type individuals to exploit) but decrease in frequency 

when they are common (because there are too few wild-type individuals to exploit). 

Extending a hypothesis suggested by Hastings for malarial parasites24, we suggest that 

frequency-dependent selection for resistant bacteria is created by within-host competition 

among co-colonising strains.

The mechanism works as follows. Suppose that a small group of resistant cells could 

colonise one of two hosts. One host already carries sensitive bacteria, while the other carries 

resistant bacteria. All else equal, the resistant cells would benefit more by colonising the 

sensitive-cell carrier, because if that host were to subsequently take antibiotics—eliminating 

the resident sensitive cells—the newly-arrived resistant cells could multiply to fully exploit 

the host niche, increasing their potential to be transmitted to new hosts. Indeed, in vivo 
studies have shown that in co-colonised hosts harboring both sensitive and resistant cells, the 

resistant pathogens increase in abundance when their sensitive competitors are killed by 

antibiotic treatment19,20,32,33—that is, treatment results in competitive release20 for the 

resistant cells. On the other hand, co-colonising the resistant-cell carrier offers no such 

benefit to resistant cells, because later antibiotic use gives no advantage to the invading 

bacteria over the resident bacteria. This disparity creates frequency-dependent selection for 

resistance (Fig. 2a) because—on average—a resistant cell is more likely to find itself co-

colonising a sensitive-strain carrier when resistance is rare.

Although originally phrased in terms of competition between malarial parasites mediated by 

antibiotic treatment and resistance24, this mechanism has broader applicability. First, other 

forms of within-host competition—not just treatment-mediated competitive release—can 

promote coexistence. For example, in vitro21 and in vivo22,32 studies have shown that, in 

the absence of antibiotics, sensitive cells often exhibit greater within-host growth relative to 

resistant cells—consistent with resistance carrying a fitness cost34,35 manifesting as a 

reduced growth rate. Sensitive cells would then benefit more from co-colonising a resistant-

strain carrier than a sensitive-strain carrier (Fig. 2b). This relative advantage may also 

promote frequency-dependent selection acting on resistance phenotypes, because a sensitive 

cell is more likely to co-colonise a resistant-strain carrier when resistance is common. 

Second, there is no requirement that competing strains are closely related—only that they 

competitively suppress each other when colonising the same niche—although we focus here 

on competition between strains of the same species.
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Implicit versus explicit models of within-host dynamics

Models that do not account for within-host competition will fail to capture this source of 

frequency-dependent selection for resistance (Fig. 2c). Nonetheless, existing models that do 

incorporate co-colonisation have not convincingly reproduced empirically-observed 

coexistence4,6. We suggest that these models have fallen short not because within-host 

competition is a poor driver of coexistence, but because they feature unrealistic assumptions 

concerning within-host dynamics. To illustrate this point, we compare two models of 

resistant disease transmission: an existing model4 which we refer to as the “knockout 

model”, and a new “mixed-carriage model”. These models share the same population-level 

dynamics, but differ in how they capture within-host dynamics, resulting in a substantial 

disparity in population-level patterns of resistance.

The shared assumptions of both models are as follows. There are two co-circulating bacterial 

strains, one resistant and one sensitive. Hosts mix randomly, with each colonised host 

infecting other hosts at rate β, transmitting a “germ” to a randomly-selected host. A germ 

contains cells of one strain, chosen randomly in proportion to the number of cells of each 

strain carried by the transmitting host; all colonised hosts, including those carrying multiple 

strains, are assumed to be equally infectious. Resistant germs fail to transmit with 

probability c, where c is the transmission cost of resistance34,35; additionally, transmission 

only succeeds with probability k if the recipient is already a carrier, where k is the efficiency 

of co-colonisation relative to primary colonisation. Finally, each host is naturally cleared of 

all strains at rate u, and cleared of sensitive cells by antibiotic treatment at an additional rate 

τ.

Starting from this common framework, the two models make divergent assumptions about 

within-host dynamics. First, the existing “knockout” model4,28 assumes that hosts can be 

treated as though they contain two subcompartments of equal size (Fig. 3a). When a germ is 

transmitted to an uncolonised host, the invading strain fills the entire host niche, occupying 

both subcompartments. If instead, germs are successfully transmitted to an already-

colonised host, the invading strain “knocks out” and replaces the contents of one of the two 

subcompartments at random. These assumptions allow the knockout model to be 

implemented using only four host states—namely, X hosts are uncolonised, S hosts carry the 

sensitive strain only, R hosts carry the resistant strain only, and SR hosts carry both strains, 

one in each subcompartment (Fig. 3b). In the Methods, we describe how these model 

dynamics may be analysed either using stochastic individual-based methods or by 

integrating systems of ordinary differential equations (ODEs).

As shown by Lipsitch et al.28, the knockout model is the simplest mathematical model that 

allows co-colonisation without exhibiting systemic biases that artificially promote 

coexistence (i.e., it is structurally neutral28). Nonetheless, a mechanistic interpretation of a 

host’s two equally-sized subcompartments, as posited by this model, is challenging. For 

example, they could represent two physically-distinct but ecologically-equivalent niches, but 

the identity of these two niches would be unclear, and it is known that bacteria of different 

strains can readily occupy the same host niche11–14. Alternatively, the two 

subcompartments may be a way of representing a single host niche—e.g. the nasopharynx or 

the gut—but it is unclear why a group of invading cells should replace either all resistant 
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cells or all sensitive cells from an SR carrier rather than replacing cells from either strain at 

random. In addition to these conceptual difficulties, the knockout model predicts coexistence 

only across a narrow range of treatment rates that does not reflect the wide range over which 

coexistence is observed empirically (Fig. 3c).

To overcome these issues, we propose a new “mixed-carriage” model that explicitly tracks 

within-host strain frequencies without splitting the host niche into two subcompartments. As 

in the knockout model, when a host is newly colonised, the invading strain is assumed to 

immediately occupy the entire host niche, reaching the host’s carrying capacity (Fig. 3d). 

But when new cells enter, they are simply added to the cells that are already being carried. 

Carrying capacity is then immediately reimposed by eliminating excess cells at random, 

rather than by eliminating all cells from a given subcompartment containing only one strain. 

That is, following co-colonisation, the host niche contains a fraction 1
1 + ι  of the “old” cells

—an unbiased sample of the host’s carriage prior to co-colonisation—and a fraction ι
1 + ι  of 

the “new” cells, where ι is the “germ size”, the relative size of an invading group of cells 

compared to the host’s carrying capacity. Because this model allows hosts to carry an 

arbitrary mix of cells of different strains, it requires keeping track of a large number of host 

states, which our stochastic individual-based implementation achieves. However, under the 

simplifying assumption that germ sizes are small (ι ≪ 1), the model is well approximated 

using a system of ODEs with only five host states (Fig. 3e), for a similar mathematical 

tractability to the knockout model (see Supplementary Note 1 for details). Strikingly, the 

mixed-carriage model supports much more coexistence than the knockout model, suggesting 

that a more explicit model of within-host dynamics may more readily explain observed 

patterns of resistance (Fig. 3f).

Because it specifically tracks within-host strain frequencies, the mixed-carriage model can 

serve as a starting point for more complex models. To illustrate this, we add differential 

within-host growth to the model, such that sensitive cells gradually grow in frequency 

relative to resistant cells sharing the same host (Fig. 3g). Accordingly, we assume that the 

sensitive strain grows exponentially relative to the resistant strain at rate ws—eliminating the 

resistant strain completely if its relative within-host frequency drops below a critical 

threshold fmin—while overall carriage remains fixed at the host’s carrying capacity. Again, 

this differential growth requires tracking a large number of host states, which can either be 

accounted for directly with an individual-based model implementation or be approximated 

using a finite number of mixed-carriage states in a system of ODEs, with the number of 

states depending upon the desired degree of concordance with the idealised dynamics of 

within-host growth (Fig. 3h; Supplementary Note 1). Differential within-host growth tends 

to gradually eliminate resistant cells from co-colonised carriers, partially reducing the 

frequency-dependent benefit associated with resistant cells co-colonising sensitive-strain 

carriers. However, it also introduces an additional frequency-dependent advantage for 

sensitive cells co-colonising resistant-strain carriers, which, overall, can further expand the 

potential for coexistence (Fig. 3i).

In each model, the potential for coexistence depends upon the prevalence of co-colonisation, 

which is partly governed by the parameter k: while setting k = 0 eliminates co-colonisation 

Davies et al. Page 5

Nat Ecol Evol. Author manuscript; available in PMC 2019 August 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and recovers competitive exclusion, allowing co-colonisation (k > 0) promotes coexistence. 

In Supplementary Note 2, we identify the key processes that inhibit coexistence in the 

knockout model and promote coexistence in the mixed-carriage model, showing how the 

extent of coexistence depends crucially upon the prevalence of hosts carrying both sensitive 

and resistant strains.

Structural neutrality of the knockout and mixed-carriage models

A structurally-neutral model is one in which, when the biological differences between two 

strains are stripped away, pathogens of either strain are not treated differently from one 

another28. The aim of structural neutrality is to ensure that the predicted outcome of 

competition between strains—whether it is coexistence or competitive exclusion—is 

attributable to identifiable, biological differences between the strains, rather than to hidden 

assumptions embedded in the model structure. The knockout model meets the mathematical 

criteria for structural neutrality proposed by Lipsitch et al.28, but we argue that it violates 

the spirit of neutrality nonetheless. Specifically, the knockout model assumes that when a 

host carrying pathogens of two different strains is invaded by a new strain, the invading 

strain completely replaces one of the two resident strains while leaving the other untouched

—even if the two resident strains differ only by a neutral, biologically-meaningless label. 

This property artificially depletes within-host strain diversity, inhibiting coexistence by 

reducing the scope for within-host competition. By contrast, the mixed-carriage model 

avoids this artificial loss of diversity, while adhering to both the spirit and the letter of 

structural neutrality. In Supplementary Note 3, we demonstrate the structural neutrality of 

the mixed-carriage model, and discuss how a model’s adherence to within-host neutrality 

depends upon the interpretation of within-host states.

Explicitly capturing within-host dynamics reproduces widespread coexistence

We used Bayesian inference via Markov chain Monte Carlo (MCMC) to fit both the 

knockout and mixed-carriage models to consumption and resistance data reported by 30 

European countries across two common drug classes for the commensal pathogens E. coli 
and S. pneumoniae2,3. We assumed that countries differ only in antibiotic consumption, 

while other epidemiological parameters are shared across countries and are constrained to be 

consistent with empirically-observed ranges for carriage prevalence and average duration of 

carriage. Due to the limited range of coexistence predicted by the knockout model, we find 

that it cannot capture observed patterns of resistance4,6 (Fig. 4a). However, the empirical 

data are better captured by the mixed-carriage model (Fig. 4b), particularly when differential 

within-host growth is introduced (Fig. 4c). Using the Akaike Information Criterion to select 

the most parsimonious model, we find that the mixed-carriage model with differential 

within-host growth has the most statistical support across all bacteria-drug combinations 

(Fig. 3). Frequent co-colonisation by sensitive and resistant cells—irrespective of the overall 

prevalence of the species of interest—is needed to maintain widespread coexistence via 

within-host competition (Supplementary Note 4).

Patterns of coexistence among pneumococcal serotypes

So far, we have focused on a simplified scenario in which bacterial diversity is limited to 

sensitive versus resistant strains, but the mixed-carriage model can be extended in this 
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respect. The nasopharyngeal coloniser S. pneumoniae exhibits extensive diversity in the 

expression of capsular proteins exposed to the host immune system, subdividing the species 

into nearly 100 distinct “serotypes” that—like resistant versus sensitive strains—are known 

to stably coexist in host populations27,36. Understanding both the coexistence of these 

serotypes and the evolution of resistance within each is vital for building a comprehensive 

picture of resistance evolution in pneumococci. We thus extended the two-strain mixed-

carriage model (Supplementary Note 5) by parameterising it with the serotype-specific 

duration of carriage for 30 of the most common S. pneumoniae serotypes7, assuming a 10% 

transmission cost and a 20% growth cost of resistance, and introduced serotype- specific 

adaptive immunity to the model (i.e. host immunity to colonisation by previously-cleared 

serotypes). The extended model captures much of the observed serotype diversity and 

patterns of resistance among serotypes (Fig. 5).

General predictions of the mixed-carriage model

Our extended serotype model illustrates that within-host competition can promote pathogen 

diversity more broadly than for resistance-associated phenotypes per se. For example, 

consider a host carrying cells of two different serotypes. If one serotype is cleared by the 

host immune system, the other serotype may benefit from competitive release. So long as 

clearance of one serotype does not result in clearance of all serotypes within a host, 

clearance will tend to promote rare serotypes, since the hosts they co-colonise are more 

likely to be carrying a different serotype, and hence they are more likely than common 

serotypes to be the beneficiaries of competitive release mediated by natural clearance. This 

effect can promote serotype diversity (Fig. 6a) even in the absence of any host acquired 

immunity27,36.

We conclude by considering the impact of carriage duration, transmission rate and growth 

rate upon resistance evolution. In agreement with previous theoretical work7, we find that a 

longer duration of carriage promotes greater resistance when resistance carries a 

transmission cost (Fig. 6b). However, this association can be reversed when resistance 

instead carries a within-host growth rate cost (Fig. 6c), because a longer duration of carriage 

affords sensitive cells a greater opportunity to outcompete resistant cells within hosts. 

Accordingly, the overall relationship between duration of carriage and resistance likely 

depends upon the balance of these two costs of resistance for a given species. Our model 

also predicts that a higher transmission rate promotes co-colonisation. In co-colonised hosts, 

sensitive strains may be eliminated by treatment, while resistant strains may be eliminated 

by faster-growing sensitive strains. The relative importance of these two forms of 

competition determines whether increased transmission promotes or inhibits resistance (Fig. 

6b & c). This mechanism may elucidate an observed positive relationship between resistance 

prevalence and population density37. Finally, we find that resistance is promoted in 

serotypes with greater within-host growth, as they are less likely to be excluded by other 

serotypes before antibiotic treatment results in their competitive release. Each of these three 

trends appears stronger when serotypes circulate in the same population than in different 

populations (Fig. 6b&c). Why various species exhibit different levels of resistance when 

faced with similar rates of antibiotic treatment is an outstanding problem in resistance 

evolution, which further analysis may help to resolve.
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Discussion

Our model provides two advances over previous work: it harmonises pathogen dynamics by 

mechanistically capturing both between-host and within-host processes, and it better 

captures empirical patterns of antibiotic resistance. We argue that frequency-dependent 

selection drives these patterns of resistance, and that explicitly tracking within-host 

dynamics helps to reproduce them.

In order for within-host competition to maintain substantial coexistence, a high proportion of 

hosts must be colonised by both resistant and sensitive bacteria. Co-colonised strains must 

also compete for transmission; models with co-colonisation but no competitive release do 

not produce extensive coexistence6. Empirical estimates suggest that dual carriage may be 

widespread. A study of Staphylococcus aureus carriage in children found 21% of carriers 

were colonised by both resistant and sensitive S. aureus strains14. Relatively few studies 

have measured simultaneous carriage of both sensitive and resistant strains of the same 

species, but carriage of multiple strains more generally appears to be common: genotyping 

studies have found up to 48% multiple carriage of genetically-distinct S. pneumoniae 
strains11,12 and up to 86% multiple carriage of E. coli strains13,15. Although we have 

focused on competition between conspecific strains, competition between different species 

could also promote coexistence, reducing the need for widespread carriage of multiple 

strains of the same species. There is ample opportunity for between-species competition: the 

nasopharynx typically hosts tens or hundreds of species16,17, while the gut typically hosts 

thousands18. The extent to which this extensive diversity may contribute to resistance 

evolution remains to be evaluated.

Alternative mechanisms that could explain coexistence between drug-sensitive and resistant 

pathogens have been proposed4,6–8,38–40. Some support only modest amounts of 

coexistence4,6, while others may be less empirically generalisable, such as strongly age-

assortative mixing6,7, independent mappings of balancing selection7, or specific immune 

responses to resistance-associated phenotypes4,38–40. We have focused on how within-host 

competition can promote substantial coexistence on its own. A more complex model 

incorporating additional drivers of coexistence would support similar amounts of 

coexistence while diminishing the relative importance of within-host competition.

The models we have contrasted here make a number of simplifying assumptions. We have 

assumed that observed resistance patterns represent the equilibrium state, following from the 

lack of conclusive evidence for significant time lags in resistance prevalence41 

(Supplementary Note 6). We have assumed that antibiotics kill all sensitive cells 

instantaneously rather than adopting a more mechanistically-explicit model of treatment42, 

and that host immunity completely prevents colonisation by previously-cleared serotypes 

rather than providing partial protection27. We have ignored effects of population structure, 

such as age-assortative mixing6,7 and heterogeneity in antibiotic consumption4,6, which 

may promote additional coexistence. We have assumed that co-colonisation occurs through 

sequential transmission, ignoring the alternative routes of de novo mutation (which may be 

especially important for long-lived chronic infections43,44), acquisition or loss of resistance 

through horizontal gene transfer, and simultaneous transmission of multiple strains from co-
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colonised carriers. Finally, we have focused on modelling resistance to a single drug at a 

time rather than exploring multi-drug resistance45. Elaborations of our simple mixed-

carriage model incorporating these additional complexities may provide a means with which 

to explore the importance of these mechanisms.

Antibiotic resistance is one of the foremost threats to human health, and combating this 

threat will require the global deployment of coordinated interventions9,10. Mathematical 

models of disease transmission will play a crucial role in this endeavour, because they can 

explicitly integrate the mechanisms that drive resistance evolution in a population-level 

framework and allow us to quantify long-term trends as well as the likely impact and cost-

effectiveness of any large-scale interventions for reducing resistance46. Providing a 

framework in which to answer public health questions demands a balance between 

mathematical tractability and necessary complexity; building on the simple model proposed 

here will help to establish that balance. If mathematical models incorporate a truly 

mechanistic understanding of resistance evolution, they will be better able to explain 

empirical patterns of resistance and accurately predict the impact of interventions at a 

national and global level46.

Methods

The problem of coexistence

Data and sources—We use data from the European Centre for Disease Prevention and 

Control (ECDC) on primary-care consumption of penicillins, fluoroquinolones, and 

macrolides2 versus aminopenicillin resistance and fluoroquinolone resistance in E. coli, and 

macrolide non-susceptibility and penicillin non-susceptibility in S. pneumoniae3, across up 

to 30 European countries. All data are from 2015, except for S. pneumoniae penicillin non-

susceptibility versus penicillin consumption, which are from 2007 as breakpoints for S. 
pneumoniae penicillin non-susceptibility were changed in some countries after this year, 

yielding inconsistencies in resistance data between countries4,47. Antibiotic use is classified 

into primary-care and hospital consumption, with the majority of consumption in primary 

care2. We use primary-care data only, as we are focusing on community-acquired bacterial 

carriage. Resistance is measured from invasive isolates extracted from blood and 

cerebrospinal fluid3. We assume that each isolate is an unbiased sample of commensally-

carried strains7. See Supplementary Note 7 for full details.

Trends in resistance prevalence—In Fig. 1a, linear regressions are least-squares fits to 

maximum-likelihood estimates of the resistance prevalence in each country. In Fig. 1d, the 

average resistance prevalence in Europe is calculated as the population-weighted mean of 

resistance prevalence across countries that reported data for all years in 2007–2015. See 

Supplementary Note 6 for more details.

Two models of within-host dynamics

In the Results section, we contrast two models of within-host dynamics: the existing 

knockout model4,28, and the novel mixed-carriage model. Here, we describe how the 

knockout and mixed-carriage models can be implemented for two strains in a stochastic 
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individual-based framework, then show how they can be approximated using systems of 

ODEs. The individual-based and ODE implementations are equivalent under certain limiting 

assumptions and produce similar results (Supplementary Note 1). We use the ODE 

implementations to illustrate coexistence between resistant and sensitive strains and for 

model fitting (Figs. 1, 3, & 4). The individual-based implementation of the mixed-carriage 

model can be extended to simulate an arbitrary number of strains (Supplementary Note 5) 

and is used to analyse serotype dynamics (Figs. 5 & 6).

Knockout model4,28 —In a population of N hosts indexed by i ∈ [1..N], there are NX 

non-carriers, NS sensitive-strain carriers, NR resistant-strain carriers, and NSR dual carriers; 

we notate host i’s state as hi ∈ {X, S, R, SR}. The following host-state transitions occur as 

inhomogeneous Poisson point processes at the specified per-host rates:

X
λs

S (sensitive strain colonisation)

X
λr

R (resistant strain colonisation)

S
kλr

SR (sensitive strain co − colonisation)

R
kλs

SR (resistant strain co − colonisation)

SR

1
2kλs

S (knockout o f resistant strain)

SR

1
2kλr

R (knockout o f sensitive strain)

S
u + τ

X (sensitive − strain carrier clearance or treatment)

R
u

X(resistant − strain carrier clearance)

SR
u

X (dual carrier clearance)

SR
τ

R (dual carrier treatment) .

For example, non-carriers (X) become sensitive-strain carriers (S) at rate λs, and so on. 

Above, λS = β
NS + 1

2 NSR
N  is the sensitive strain’s force of infection, λr = β(1 − c)

NR + 1
2 NSR

N  is 

the resistant strain’s force of infection, β is the transmission rate, c is the transmission cost 

of resistance, k is the relative efficiency of co-colonisation, u is the natural clearance rate, 

and τ is the treatment rate. In this model, the resistance prevalence is 

ρ = (NR + 1
2 NSR)/(NS + NR + NSR) .

Mixed-carriage model—In a population of N hosts indexed by i ∈ [1..N] as above, host 

i’s state is (si,ri), where si ≥ 0 is host i’s carriage of the sensitive strain and ri ≥ 0 is host i’s 

carriage of the resistant strain. In a non-carrier, si = ri = 0, while in a carrier, si + ri = 1. We 

model transmission, clearance, and treatment events as inhomogeneous Poisson point 

processes, while within-host strain growth is updated in each host at regular discrete time 

steps. The following host-state transitions occur at the specified per-host rates:
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si, ri

κiλS si + ι

si + ri + ι ,
ri

si + ri + ι (sensitive strain transmission)

si, ri

κiλr si
si + ri + ι ,

ri + ι

si + ri + ι (resistant strain transmission)

si, ri
u (0, 0) (clearance)

si, ri
τ (0, 0) if ri = 0

(0, 1) if ri > 0 (treatment) .

For example, a host with state (si, ri) = (0,1) changes state to si, ri = ι
1 + ι ,

1
1 + ι  at rate κi 

λs, and so on. Above, κi = 1 if (si, ri) = (0,0) and κi = k otherwise; ι is the germ size; and 

force-of-infection terms are λS = βmax Ymin, ∑iSi /N and λr = β(1 − c)max Ymin, ∑iri /N,

where we can set Ymin = 1 to effectively assume there is always at least one carrier of each 

strain to avoid stochastic elimination of strains27, or set Ymin = 0 to not do this. The 

resistance prevalence is ρ = ∑iri/∑i (si + ri) .

Updates to within-host strain growth happen to all hosts simultaneously at intervals of Δt 
(unless otherwise specified, Δt = 0.001 mo–1), as follows. For each host, any strains for 

which carriage is less than fmin are set to zero (we primarily use fmin = 3×10-5 to keep strains 

from persisting when they reach low frequencies, but can set fmin = 0 to allow them to 

remain at any frequency until treatment and/or natural clearance occurs). Then the sensitive 

strain in each carrier grows by a factor ωs = ws
Δt, where ws is the sensitive strain’s relative 

growth rate (such that ws = 1 translates to no differential within-host growth). Finally, each 

colonised host’s total carriage is normalised so that si + ri = 1. That is, every Δt units of time, 

each colonised host undergoes the transition

(si, ri)
ωsq(si)

ωsq(si) + q(ri)
,

q(ri)
ωsq(si) + q(ri)

,

where

q(a) =
a if a ≥ f min
0 if a < f min

.

In our implementation, we calculate the force-of-infection terms and the number of events of 

each type between time t and t + Δt during the “updating” step, then execute each event in a 

random order.

Systems of ODEs—The knockout and mixed-carriage models can be approximated using 

ODEs (Supplementary Note 1). Following previous work4,28, the knockout model is 

implemented as
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dS
dt = βStotX − (u + τ)S − kβ(1 − c)RtotS +

kβStotD
2

dR
dt = β(1 − c)RtotX − uR − kβStotR +

kβ(1 − c)RtotD
2 + τD

dD
dt = kβ(1 − c)RtotS + kβStotR − (u + τ)D −

kβStotD
2 −

kβ(1 − c)RtotD
2

X = 1 − S − R − D .

(1)

Here, S is the fraction of sensitive-strain carriers in the population; R is the fraction of 

resistant-strain carriers; D is the fraction of dual carriers (i.e., SR hosts); and X is the 

fraction of non-carriers. Here, Stot = S + D/2 and Rtot = R + D/2 give the effective population 

burden of sensitive- and resistant-strain colonisation, respectively, and the resistance 

prevalence is ρ = Rtot/(1–X). The parameters β,c,u,τ, and k correspond to those used in the 

individual-based implementation of the knockout model, described above.

Similarly, the mixed-carriage model (in the absence of differential within-host growth) can 

be approximated using the following system of ODEs:

dS
dt = βStotX − (u + τ)S − kβ(1 − c)RtotS

dR
dt = β(1 − c)RtotX − uR − kβStotR + τ(SR + RS)

dSR
dt = kβ(1 − c)RtotS − (u + τ)SR

dRS
dt = kβStotR − (u + τ)RS

X = 1 − S − R − SR − RS .

(2)

Here, the compartment SR captures the fraction of the population predominantly colonised 

with sensitive bacteria, but also carrying a small amount of resistant bacteria that are carried 

in insufficient quantity to transmit, and Stot = S + SR gives the effective population burden of 

sensitive-strain colonisation. Similarly, the compartment RS captures the fraction of the 

population predominantly colonised with resistant bacteria, but also carrying a small amount 

of sensitive bacteria that are carried in insufficient quantity to transmit, and Rtot = R + RS 

gives the effective population burden of resistant-strain colonisation. The overall resistance 

prevalence is ρ = Rtot/(1–X). The parameters β,c,u,τ, and k correspond to those used in the 

individual-based implementation of the mixed-carriage model, described above.

Finally, the mixed-carriage model with differential within-host growth can be approximated 

with ODEs by adding “intermediate” compartments between RS and SR:
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dS
dt = βStotX − (u + τ)S − kβ(1 − c)RtotS + b0SR

dR
dt = β(1 − c)RtotX − uR + τ SR + ∑

v = 1

Z
Dv + RS − kβStotR

dSR
dt = kβ(1 − c)RtotS − (u + τ)SR − b0SR + bD1

dDv
dt = − (u + τ)Dv − bDv + bDv + 1 for all v ∈ [1..Z]

DZ + 1 ≡ RS

dRS
dt = kβStotR − (u + τ)RS − bRS

X = 1 − S − R − SR − ∑
v = 1

Z
Dv − RS .

(3)

Here, there are Z “intermediate” compartments between RS and SR, labelled D1 through DZ 

(we use Z = 7; see Supplementary Note 1 for a graphical illustration of the dynamics of 

these intermediate compartments). Here, b determines the within-host growth rate of the 

sensitive strain relative to the resistant strain, setting the rate at which individuals move from 

the RS compartment through intermediate compartments and finally through to S as the 

resistant strain is gradually outcompeted by the sensitive strain. A separate parameter b0 sets 

the rate of the final transition from SR to S. In practice, we set b0 = 1
2b, which for Z = 7 and ι 

= 0.001 corresponds to the resistant strain effectively becoming lost once its within-host 

frequency drops below fmin = 3×10-5 (Supplementary Note 1). The parameters b and b0 

replace the parameters ws and fmin from the individual-based implementation of the mixed-

carriage model, above; all other parameters (i.e. β,c,u,τ, and k) correspond to those used in 

the individual-based implementation.

Notating the fraction of a host’s bacterial carriage that is resistant as rY for a host with state 

Y, we assume that rRS
= 1

1 + ι , rSR
= ι

1 + ι , and that intermediate compartments are evenly 

spaced between these points on a logistic curve, i.e. that 

rDv
= 1

1 + exp(y(v))′ where y(v) = log(ι) 2v
Z + 1 − 1 . We assume that individuals in compartment 

Dv transmit the resistant strain a fraction rDv of the time and transmit the sensitive strain a 

fraction 1 − rDv of the time, but that RS individuals only transmit the resistant strain and SR 

individuals only transmit the sensitive strain. Ignoring transmission of the minor strain for 

these two host types maintains consistency with equations (2) and maintains structural 

neutrality for equivalent strains in equations (3). Accordingly, in the model above, Stot = S + 

SR + ∑vDv(1 − rDv) and Rtot = R + RS + ∑vDvrDv. Note that the mixed-carriage model 

without differential within-host growth can be recovered from the above model by setting b 
= b0 = 0; in model fitting, when we allow differential growth (i.e. b > 0) we assume that this 
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accounts for the cost of resistance, and accordingly set c = 0. In this model, the overall 

resistance prevalence is ρ = Rtot/(1–X).

Initial conditions and solutions—For all individual-based model simulations, we 

assume that 5% of hosts are colonised at the beginning of the simulation by a single 

randomly-selected strain, and run the simulation for 100–400 years, taking the average state 

over the last 50–100 years as the equilibrium state. Individual-based models are simulated in 

C++. All ODE models are solved by setting single-carriage compartments (S and R) equal to 

0.001 and all dual-carriage compartments to 0, then integrating the systems of ordinary 

differential equations numerically in C++ using the Runge–Kutta Dormand–Prince method 

until they reach equilibrium.

Model fitting to resistance prevalence in commensal bacteria

In the source data2, antibiotic consumption rates are given in defined daily doses (DDD) per 

thousand people per day; we convert these to overall treatment rates by assuming that 10 

DDD comprise one treatment course for penicillin7 and fluoroquinolones, while 7 DDD 

comprise one treatment course for macrolides.

We use Bayesian inference to fit the model to empirical data, using differential evolution 

Markov chain Monte Carlo (DE-MCMC48) to estimate the posterior distribution of model 

parameters. We assume that the number of resistant isolates observed in a given country is 

binomially distributed; the probability of observing a resistant isolate is equal to the 

resistance prevalence ρ predicted by the model, plus some additional dispersion modelled 

using a [0,1]–truncated normal distribution. Modelling the “true” resistance prevalence as a 

random variable allows us to account for between-country variation in resistance prevalence 

not captured by our dynamic model. As we assume that the only parameter that varies 

between European countries is the rate of antibiotic consumption, this additional variation is 

intended to account for other factors that may vary between countries, whether they are 

explicitly part of the model structure (e.g. transmission rates varying from country to 

country) or not (e.g. differences in laboratory procedures, population structure, or 

prescription patterns from country to country).

For a given model fit with parameters θ, suppose that country m (where countries are 

numbered 1 to M) has antibiotic treatment rate τm and reports that rm out of nm isolates are 

resistant. Over all M countries, these data are denoted τ = (τ1, τ2, …, τM), r = (r1, r2, …, 

rM), and n = (n1, n2, …, nM), respectively. We also have Y(0) and Y(1), which are the lower 

and upper bounds for carriage prevalence in any country (see below). Together, τ,r,n,Y(0) 

and Y(1) are the data to which the model is being fit, and model parameters are θ = 

(β,c,b,u,k,σ). (Note that, for certain data sets, not all of the parameters in θ are permitted to 

vary; specifically, we assume u = 1 when fitting S. pneumoniae for consistency with 

previous studies, and we only allow one of c and b to vary at a time in order to contrast these 

two alternative costs of resistance.) Suppose that, for a given treatment rate τm, the model 

predicts a resistance prevalence of ρ(τm|θ) and a prevalence of carriage Y(τm|θ). Then, the 

likelihood of the model fit is
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ℒ τ , r, n, Y 0 , Y 1 θ = ∏
m

𝒞 τm, Y 0 , Y 1 θ ℛ τm, rm, nm θ ,

which is constructed of two components that are evaluated for each country. The first 

component,

𝒞 τm, Y 0 , Y 1 θ = 1 if Y 0 ≤ Y τm θ ≤ Y 1

exp −1000 otherwise
,

heavily penalises any model fit which predicts that any country has a prevalence of carriage 

not within the bounds [Y(0),Y(1)] and is used to prevent the model-fitting process from 

predicting an unrealistic carriage prevalence for any country. The second component,

ℛ(τm, rm, nm |θ) = ∫
0

1
𝒯(x μ = ρ(τm θ), σ = σ(θ)) ℬ(rm |n = nm, p = x)dx,

assigns a likelihood to the model-predicted resistance prevalence ρ(τm|θ) given that country 

m has reported that rm of nm bacterial isolates are resistant. Above: 

𝒯(x μ, σ) = φ(x μ, σ)/ Φ(1 μ, σ) − Φ(0 μ, σ)  is the probability density function (PDF) of a 

truncated normal distribution with bounds 0 and 1, where φ(x | μ, σ) = 1
2πσ2exp − (x − μ)2

2σ2  is 

the untruncated normal PDF and Φ(x | μ, σ) = 1
2 (1 + erf x − μ

σ 2 ) is the untruncated normal 

cumulative distribution function (CDF); and ℬ(r |n, p) = n
r

pr(1 − p)n − r is the binomial 

distribution probability mass function (PMF), such that the integral calculates a weighted 

likelihood over all possible “true” resistance prevalences x. The parameter σ(θ) of the 

truncated normal distribution is fit as one of the parameters of the model so that between-

country variation is estimated separately for each alternative model.

Priors used for model fitting, posterior distributions from model fitting, and further details of 

MCMC can be found in Supplementary Note 4. Note that since we are only fitting to the 

measured resistance prevalence in each European country and to a fixed range of carriage 

prevalence, the values of certain parameters are difficult to identify, particularly for the 

knockout model.

Model comparison—For each model fit, we calculate the Akaike Information Criterion 

AIC = 2K − 2 log( ℒ ), where K is the number of free parameters and ℒ is the maximum 

likelihood for a given model fit.

Patterns of resistance and coexistence among bacterial subtypes

For Figs. 5 & 6, we extend the individual-based mixed-carriage model to accommodate an 

arbitrary number of strains (Supplementary Note 5). For Fig. 5 only, we also introduce 
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serotype-specific adaptive immunity. Hosts develop immunity to a serotype when they 

naturally clear that serotype, and immunity provides complete protection against future 

colonisations by that serotype. We assume that hosts are replaced by new, immunologically-

naïve, uncolonised hosts at rate α = 1/60 mo-1, reflecting the relative importance of hosts 

aged 5 years and under for pneumococcal transmission4,49. Other parameters for Fig. 5 are 

β = 3.2 mo-1 for sensitive strains and β = 2.88 mo-1 for resistant strains (i.e. a 10% 

transmission cost of resistance), w ranging from 1 to 30 for sensitive strains, where the 

serotype with the highest growth rate also has the longest duration of carriage, w ranging 

from 0.8 to 24 for resistant strains (i.e. a 20% growth cost of resistance), k = 1, τ = 0.025, 

and N = 1×106. For Fig. 6, other parameters are β = 2 mo-1, u = 1 mo-1, w = 1, and k = 1 

unless otherwise specified in the caption. The treatment rate is τ = 0 for Fig. 6a and τ = 

0.075 for Fig. 6b for serotypes circulating both separately and in the same population. For 

Fig. 6c, the treatment rate is τ = 0.075 when serotypes circulate together, but τ = 0.05 when 

serotypes circulate individually. The reduced treatment rate when serotypes circulate 

individually is necessary to observe the trend in resistance prevalence among serotypes (with 

τ = 0.075, all serotypes show 100% resistance prevalence, so trends are not apparent). We 

use a population size of N = 1×106 for runs with serotypes circulating together, and N = 

2×105 for runs with serotypes circulating individually.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The problem of coexistence.
(a) Resistant and sensitive strains of E. coli and S. pneumoniae coexist, and resistance 

increases moderately with antibiotic consumption1–3. The proportion of invasive isolates 

testing positive for drug resistance (with 95% confidence intervals) is plotted against 

community-level antibiotic consumption for 30 European countries (linear regressions with 

95% confidence intervals overlaid). In contrast with observed coexistence, a simple model of 

resistant disease transmission (b) predicts competitive exclusion (c). The model is defined 

by the system of ordinary differential equations 
dS
dt = βSX − (u + τ)S, dR

dt = β(1 − c)RX − uR, X = 1 − S − R, with X non-carriers, S sensitive-

strain carriers, and R resistant-strain carriers. Here, β is the transmission rate (solid arrows), 

u is the natural clearance rate (dotted arrows), τ is the antibiotic treatment rate (dashed 

arrow), and c is the cost of resistance. When β > u + τ and β(1–c) > u, either strain can 

persist in isolation, but only one strain persists when both are present, with the sensitive 

strain prevailing when τ/u > c/(1−c). (d) The average resistance prevalence in Europe has 

hardly changed in recent years, suggesting that observed coexistence is stable rather than a 

transient state on the way to competitive exclusion.
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Fig. 2. Co-colonisation creates frequency dependent selection for resistance.
With co-colonisation, (a) antibiotic treatment causes resistant cells to have higher fitness 

when sensitive-strain hosts are more common and (b) differential within-host growth causes 

sensitive cells to have higher fitness when resistant-strain hosts are more common. Either 

mechanism can promote coexistence between resistant and sensitive strains. (c) Without co-

colonisation, the relative frequency of sensitive-strain and resistant-strain carriers has no 

differential impact upon the fitness of resistant versus sensitive cells, so there is no 

frequency-dependent selection acting on resistance phenotypes.
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Fig. 3. Two models of within-host dynamics.
(a) In the knockout model28, hosts contain two subcompartments. A resident strain must be 

“knocked out” from its subcompartment for a new strain to invade. (b) The knockout model 

requires four host states, adding the “SR” dual carriage state to the model of Fig. 1b. (c) We 

plot the equilibrium resistance prevalence (the probability that a randomly-selected pathogen 

from a randomly-selected host is resistant) as a function of the treatment rate τ and the 

relative efficiency of co-colonisation k (with k = 0, 0.25, 0.5, 1.0 shown, from dark to light). 

Coexistence increases with k but remains limited. Setting k = 0 recovers the single-strain 

model of Fig. 1b and competitive exclusion. (d) The mixed-carriage model explicitly tracks 

within-host strain frequencies and treats cells of either strain equally, relaxing the 

assumption of host subcompartments that contain only one strain at a time. When new cells 

enter the host, they mix freely with existing strains. (e) The mixed-carriage model can be 

approximated using five host states, where SR and RS represent hosts colonised primarily by 

one strain, with a small complement of the other. (f) Explicitly tracking within-host 

dynamics promotes coexistence. (g) We extend the mixed-carriage model to incorporate 

differential within-host growth of strains, adding (h) “intermediate” host states representing 

different relative frequencies of the two strains. Treatment and clearance events for 

intermediate states (dark grey circles) are omitted for clarity. (i) Within-host growth further 
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promotes coexistence. In panels c, f, and i, β = 5 mo-1 and u = 1 mo-1, while specific values 

of c ≈ 0.07–0.12 (panels c, f) and ws ≈ 14–34 (panel i) are chosen such that resistance 

prevalence passes through 0.5 when τ = 1 y-1 (Supplementary Note 1).
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Fig. 4. Within-host dynamics explain patterns of resistance in commensal bacteria.
The knockout model (a) does not capture widespread coexistence, while the mixed-carriage 

model without (b) or with (c) differential within-host growth does. Solid lines and ribbons 

show the single best-fit run for each model (solid lines) and the 67% highest density interval 

(HDI) incorporating between-country random effects (shaded ribbon). Regions bounded by 

dashed lines show the 67% HDI across the estimated posterior, again incorporating between-

country random effects. The Akaike Information Criterion associated with each model fit is 

given in parentheses on each panel; note that AICs are not strictly comparable across 

pathogen-drug data sets (columns) as the number of countries and sample sizes differ.
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Fig. 5. Resistance in coexisting pneumococcal serotypes.
We use the mixed-carriage model to simulate 30 co-circulating pneumococcal serotypes, 

using a previously-published data set7,50 to assign measured durations of carriage to each 

serotype, while incorporating a simple model of host adaptive immunity. We assume that 

serotypes with a longer duration of carriage also have a within-host growth rate 

advantage27, and that resistance carries a 10% transmission cost and a 20% within-host 

growth cost. We recover extensive diversity in (a) pneumococcal carriage (error bars show 

95% interquantile range for the prevalence of each serotype among carriers in the final 100 

years of the 400-year simulation) and (b) resistance prevalence (grey error bars show 95% 

confidence intervals for empirical resistance prevalence; red ribbon shows 95% interquantile 

range for model resistance prevalence). Note that model serotypes are ranked from high to 

low duration of carriage (a, b) while empirical serotypes are ranked from high to low 

resistance prevalence (b), to facilitate comparing general trends of within-serotype 

coexistence. Results from one model run are shown.
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Fig. 6. General effects of within-host competition.
Serotype-specific clearance promotes coexistence between serotypes, and intrinsic fitness 

differences between serotypes are correlated with resistance prevalence within serotypes. 

Serotypes are assumed to differ in duration of carriage (u = 1.04, 1.02, 1, 0.98, 0.96), 

transmission rate (β = 1.84, 1.92, 2, 2.08, 2.16), or within-host growth rates (w = 1, 2, 4, 8, 

16). In each plot, the fittest serotype is shown in red. (a) In a model with five serotypes (all 

antibiotic-sensitive) differing in various measures of intrinsic fitness, serotype-specific 

clearance maintains coexistence between serotypes in the absence of any acquired immune 
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response. (b) When resistance carries a 10% transmission-rate cost, fitter serotypes are more 

strongly selected for resistance. We contrast trends in resistance when serotypes circulate in 

separate populations or together in the same population; circulating together tends to 

magnify differences in resistance between serotypes. The mean and 95% interquantile range 

for the last 50 years of each 100-year simulation is shown. (c) When resistance carries a 

growth-rate cost (with sensitive strains growing at 10 times the rate of resistant strains), fitter 

serotypes are less strongly selected for resistance, except when serotypes differ in growth 

rate, where the trend is reversed. While serotypes circulating in the same population tends to 

increase average resistance prevalence when resistance carries a transmission cost, it tends to 

decrease resistance when resistance carries a growth cost. For each plot, results from a single 

model run are shown.
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